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Abstract
Ceramides are significant metabolic products of sphingolipids in lipid
metabolism and are associated with insulin resistance and hepatic steatosis. In
chronic inflammatory pathological conditions, hypoxia occurs, the metabolism of
ceramide changes, and insulin resistance arises. Hypoxia-inducible factors (HIFs)
are a family of transcription factors activated by hypoxia. In hypoxic adipocytes,
HIF-1α upregulates pla2g16 (a novel HIF-1α target gene) gene expression to
activate the NLRP3 inflammasome pathway and stimulate insulin resistance, and
adipocyte-specific Hif1a knockout can ameliorate homocysteine-induced insulin
resistance in mice. The study on the HIF-2α—NEU3—ceramide pathway also
reveals the role of ceramide in hypoxia and insulin resistance in obese mice.
Under obesity-induced intestinal hypoxia, HIF-2α increases the production of
ceramide by promoting the expression of the gene Neu3 encoding sialidase 3,
which is a key enzyme in ceramide synthesis, resulting in insulin resistance in
high-fat diet-induced obese mice. Moreover, genetic and pathophysiologic
inhibition of the HIF-2α—NEU3—ceramide pathway can alleviate insulin
resistance, suggesting that these could be potential drug targets for the treatment
of metabolic diseases. Herein, the effects of hypoxia and ceramide, especially in
the intestine, on metabolic diseases are summarized.

Key words: Ceramide; Intestinal hypoxia; Insulin resistance; Diabetes mellitus; Hypoxia-
inducible factors; Obesity

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Hypoxia is an essential risk factor that promotes insulin resistance in a variety
of tissues, such as adipocytes, intestines, and the liver. In hypoxic adipocytes, hypoxia-
inducible factor-1α upregulates pla2g16 gene expression to activate the NLRP3
inflammasome pathway, leading to insulin resistance. In obese animals or people,
increased ceramide further results in insulin resistance under hypoxia. In intestinal
epithelial cells, hypoxia-inducible factor-2α is activated and accumulates under hypoxia
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in high-fat diet-fed mice, which upregulates the target gene Neu3, accelerating the
process of insulin resistance.
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INTRODUCTION
Diabetes mellitus is caused by abnormal secretion or utilization of insulin, resulting in
disorders of carbohydrate, protein, and fat metabolism. Hyperglycemia is the primary
symptom that can induce visual lesions and impair the kidney, heart, brain, and other
organs.  Diabetes is  characterized by high morbidity and mortality,  which brings
serious economic and medical burdens to modern society. According to the latest
report of the International Diabetes Federation, there were 463 million patients with
diabetes in the world in 2019, which is expected to reach 700 million in 2045 at a
growth rate of 51%. According to the Global Burden of Disease Study 2013, in 2013,
globally, 1.47 million people died because of diabetes and its complications[1]. In 2019,
the International Diabetes Federation estimates that 4.2 million people worldwide
died  from  diabetes  every  year,  which  was  one  of  the  three  major  causes  of
noncommunicable diseases worldwide[2].

Insulin resistance is another essential clinical feature of diabetes mellitus. Both
weight gain and obesity are important risk factors for metabolic diseases such as type
2 diabetes mellitus (T2DM) and nonalcoholic  fatty liver disease (NAFLD)[3].  It  is
universally  known  that  low-grade  inflammation,  abnormal  glucose  and  lipid
metabolism, endoplasmic reticulum stress, and oxidative stress are involved in insulin
resistance[4]. Recently, it was reported that the regulator of hypoxia [hypoxia-inducible
factor (HIF)] and the corresponding changes in lipid metabolism, especially ceramide,
promote the progression of insulin resistance and NAFLD[5].

HYPOXIA-INDUCIBLE FACTOR IN HYPOXIA
Normoxia refers to physiological oxygen levels (PO2) in normal tissue in a healthy
state, but the oxygen content of different tissues varies in the physiological state,
creating a wider range of oxygen levels (range from 13 kPa in the pulmonary vein to
2.7 kPa in the interstitial spaces), such as the intestinal mucosa PO2 being significantly
lower  than  that  of  the  lung  mucosa[6].  Hypoxia  refers  to  the  phenomenon  of
insufficient oxygen in tissues or blood relative to physiological conditions.

HIF is a pivotal intracellular transcriptional regulator in response to hypoxia in
metazoan development, physiology, and disease pathogenesis[7]. Most species that
breathe oxygen express the highly conserved transcription complex HIF-1[8]. HIF-1, a
heterodimer composed of an alpha and a beta subunit, belongs to the Per-Arnt-Sim
(PAS) subfamily of the basic helix-loop-helix (bHLH) family of transcription factors.
The structure of HIF consists of the following three parts: An N-terminal basic helix-
loop-helix domain for deoxyribonucleic acid binding, a central region PAS domain
that facilitates heterodimerization, and a C-terminus for recruitment of transcriptional
coregulatory proteins[9]. There are six members of the human HIF family: HIF-1α, HIF-
1β, HIF-2α, HIF-2β, HIF-3α, and HIF-3β. Many cells  express HIF-1α and HIF-2α,
especially intestinal epithelial cells[10].

There are  two major  regulatory mechanisms under normoxia.  One way is  the
degradation of HIFα protein. Hydroxylated by the prolyl hydroxylase domain, HIFα
binds to the E3 ubiquitin ligase complex containing the von Hippel-Lindau disease
tumor suppressor protein, resulting in expeditious degradation of HIFα. The other
way  is  suppression  of  transcriptional  activity.  After  hydroxylation  by  HIFα
asparaginyl residue with factor inhibiting HIF1 enzyme, the interaction of HIFα with
the  transcriptional  coactivator  cAMP-response  element  binding protein-binding
protein  and  histone  acetyltransferase  p300  is  incapacitated,  thus  impeding
transcription. However, in hypoxia, HIFα subunits remain stabilized and are not
hydroxylated by prolyl hydroxylase domain and factor inhibiting HIF1, which are O2-
dependent oxygenases, resulting in the accumulation of HIFα and the upregulation of
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target gene expression[5,11].

HYPOXIA AND INSULIN RESISTANCE
Metabolic syndrome is a clustering of central obesity, insulin resistance, dysglycemia,
and a proatherogenic  plasma lipid profile,  which are associated with the risk of
developing cardiovascular disease and T2DM and are presumably caused by chronic
inflammation[12,13].  Low-grade  inflammation  was  due  to  hypoxia,  lipids  and
metabolites, reactive oxygen species, and endoplasmic reticulum stress[4]. At the onset
of obesity, resident M2 macrophages contribute to tissue and vascular remodeling to
help  adipocytes  accommodate  the  new environment  of  overnutrition  to  protect
adipose tissue from hypoxia and ischemia.  Owing to the imbalance between M1
macrophages and M2 macrophages (decrease in protective M2 macrophages and
increase  in  deleterious  M1 macrophages),  obesity  promotes  the  development  of
hypoxia in adipose tissue.  Moreover,  M1 macrophages generate reactive oxygen
species  and  nitrogen  monoxide  (NO),  which  influence  endothelial  cells,  com-
promising the angiogenesis needed to confront hypoxia[14].  In hypoxic tissues, for
example, adipose tissue, chronic low-grade inflammation enhances the expression of
HIF-1α, which stimulates inflammatory genes to amplify the “meta-inflammatory”
reaction, leading to insulin resistance[15,16].

Increased uncoupled respiration by saturated fatty acids binding to adenosine
diphosphate/adenosine-triphosphate translocase 2 (ANT2) is the original event in
hypoxic adipocytes. A mass of free fatty acids provokes an ANT2-dependent increase
in uncoupled mitochondrial respiration and oxygen consumption in obese/high-fat
diet (HFD) mice, which stimulates the production of HIF-1α and relative hypoxia in
adipocytes.  Increased  HIF-1α  stimulates  NO  production  by  inducing  iNOS
expression. Then, insulin resistance could emerge by NO nitrosylation of the insulin-
signaling  molecule  protein  kinase  B  (Akt/PKB),  which  suppresses  Akt-
phosphorylated  activation[17].  In  addition,  abundant  HIF-1α  increases  lactate
production in hypoxic adipocytes, giving rise to higher fasting blood glucose levels
and accumulation of basal hepatic glucose[18]. Simultaneously, the activation of ANT2
plays a crucial role in furthering adipose inflammation and fibrosis and metabolic
dysfunction. Nevertheless, adipocyte-specific ANT2 knockout seems to be effective in
preventing  inflammation  and  fibrosis  in  adipose  tissue  and  improving  glucose
tolerance and insulin sensitivity in mice[19,20].

At length, two pathways dominate the accumulation of HIF-1α to generate insulin
resistance  in  hypoxic  adipocytes:  The  JAK-signal  transducer  and  activator  of
transcription 3 (STAT3) signaling pathway and the phospholipase A2 group 16-
lysophosphatidylcholine pathway. In the JAK-STAT3 signaling pathway, stabilization
and  accumulation  of  HIF-1α  enhance  the  expression  of  suppressor  of  cytokine
signaling 3 in the nucleus. Suppressor of cytokine signaling 3 protein phosphorylates
STAT3,  which  downregulates  the  expression  of  adiponectin  (encoded  by
ADIPOQ)[21,22]. In the phospholipase A2 group 16-lysophosphatidylcholine pathway,
HIF-1α mediates homocysteine-induced adipose pla2g16 (a novel HIF-1α target gene)
gene expression to elevate lysophosphatidylcholine (lyso-PC), which acts as a second
signal activator in homocysteine-induced activation of the NLRP3 inflammasome
pathway.  Lysophosphatidylcholine  (lyso-PC)  not  only  further  activates  NLRP3
inflammasomes in adipocytes but also stimulates adipose tissue macrophage NLRP3
inflammasomes in a paracrine manner to induce insulin resistance[23] (Figure 1).

CERAMIDE AND INSULIN RESISTANCE
Ceramides, a family of waxy lipid molecules that are composed of sphingosine and
fatty acid, are important pathogenic lipids in obesity-related disorders. Starting with
saturated fatty acids and palmitate intake, de novo synthesis of ceramide undergoes
four major steps. This begins with the condensation of palmitate and serine to form 3-
keto-dihydrosphingosine. This reaction is catalyzed by the enzyme serine palmitoyl
transferase  and  is  the  rate-limiting  step  of  the  pathway.  In  turn,  3-keto-
dihydrosphingosine is reduced to dihydrosphingosine, followed by acylation through
(dihydro) ceramide synthase to produce dihydroceramide. Then, ceramide synthesis
is catalyzed by dihydroceramide desaturase[24]. Ceramide is also produced through
the sphingomyelinase and salvage pathways. Via hydrolysis of sphingomyelin, which
is  catalyzed  by  the  enzyme  sphingomyelinase,  ceramide  can  be  generated.  In
addition, the salvage pathway reutilizes long-chain sphingoid bases to form ceramide
through the action of ceramide synthase[25] (Figure 2).
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Figure 1

Figure 1  Accumulation of hypoxia-inducible factor 1α induces insulin resistance in hypoxic adipocytes. Owing to excess saturated fatty acids binding to
adenosine diphosphate/adenosine-triphosphate translocase 2 in mitochondria, which increases uncoupled respiration leading to hypoxia in adipose tissue, the
stabilized and accumulated hypoxia-inducible factor 1α (HIF-1α) further regulates relative target genes. On the one hand, HIF-1α induces expression of suppressor of
cytokine signalling 3, which in turn activates signal transducer and activator of transcription 3, and dimerized signal transducer and activator of transcription 3 enters
the cell nucleus and inhibits the transcription of ADIPOQ, resulting in insulin resistance. On the other hand, HIF-1α up-regulates the expression of pla2g16 to increase
the level of lyso-PC, which in turn activates NLRP3 inflammasomes and stimulates NLRP3 inflammasomes in macrophages of adipose tissue, promoting insulin
resistance. ANT2: Adenosine diphosphate/adenosine-triphosphate translocase 2; HIF-1α: Hypoxia-inducible factor 1α; SOCS3: Suppressor of cytokine signalling 3;
JAK: Janus kinase; STAT3: Signal transducer and activator of transcription 3; HRE: Hypoxia-inducible factor regulating element; P: Phosphate; lyso-PC: Lyso-
phosphatidylcholine.

In obese rodents, the production of ceramide increased compared with that in lean
controls[26], especially glucosylceramide[27]. Similarly, studies performed in insulin-
resistant human subjects demonstrate aberrant ceramide accumulation[28]. In subjects
with T2DM, investigators observed elevations in serum ceramide compared with
healthy control subjects[29]. It was reported that exercising training improved insulin
sensitivity in obese and T2DM patients, and decreased the level of plasma ceramide
especially C16:0 and C14:0. C16:0 was reduced from 2.5 nmol/mL to 1.75 nmol/mL
and C14:0 reduced from 0.213 nmol/m to 0.185 nmol/mL[30]. In another clinical trial, it
was found that in the group treated with berberine, the weight, body mass index, and
ceramide of patients with T2DM significantly decreased compared with the lifestyle
intervention group[31].  However,  due to  the small  sample size  and limitations of
ceramide  detection  methods,  there  is  no  consistent  clinical  data  on  the  specific
ceramide concentration in obese or diabetic patients.

Risk  factors  that  associate  with  obesity,  such  as  saturated  fatty  acids  and
inflammatory  cytokines,  selectively  promote  sphingolipid  synthesis  enzymes.
Moreover, lipidomic profiling reveals the relationship between sphingolipid levels
and  metabolic  diseases,  and  sphingolipid  is  shown  to  be  involved  in  insulin
resistance, pancreatic beta cell failure, cardiomyopathy, and vascular dysfunction in in
vivo and in vitro studies[32,33]. Adiponectin modulates ceramide by controlling its rate of
degradation[34].

Mechanism of ceramide synthesis affecting insulin resistance
Ceramide  is  produced  in  response  to  almost  all  stress  stimuli,  including  those
associated with obesity (e.g., chemotherapy, inflammatory agonists, and saturated
fatty acids). Aberrant accumulation of ceramide may lead to the activation of several
signals, which may impair normal cellular function, especially insulin[34,35]. How does
ceramide  synthesis  affect  insulin  resistance  in  metabolic  disease?  By  blocking
translocation  of  the  glucose  transporter  4  through  the  inhibition  of  Akt/PKB
activation,  ceramides  inhibit  insulin-stimulated  glucose  uptake  and  glycogen
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Figure 2

Figure 2  Ceramide synthesis pathways. Ceramides are synthesize through three ways, namely, de novo pathway,
salvage pathway, and sphingomyelinase pathway. The de novo synthesis of ceramide commences with the
condensation of serine and palmitate via action of serine palmitoyl-coenzyme A acyltransferase, followed by the
continuous action of 3-keto-dihydrosphingosine reductase, dihydroceramide synthases, and dihydroceramide
desaturase. In the sphingomyelinase pathway, ceramide can be produced from hydrolysis of sphingomyelin through
the action of either acid or neutral sphingomyelinase, and ceramide also can synthesize sphingomyelin through the
action of sphingomyelin synthase. The salvage pathway is more complex than the other two pathways.
Glucosylceramide, complex sphingolipids, sphingosine, and sphingomyelin can generate ceramide from the action of
diverse enzymes such as glucosylceramide synthase, LASS, and sphingomyelinase. SPT: Serine palmitoyl-
coenzyme A acyltransferase; SMase: Sphingomyelinase; GCS: Glucosylceramide synthase.

synthesis  in  adipocytes  and  isolated  skeletal  muscle[36,37].  Ceramides  block  the
activation of  Akt/PKB through two key regulatory mechanisms.  First,  ceramide
activates  the  atypical  protein  kinase  C isoform protein  kinase  Cç  and stabilizes
interactions between Akt/PKB and protein kinase Cç by recruiting the enzymes to
detergent-resistant membrane fractions[38].  The enzyme’s PH domain of Akt/PKB
reduces its affinity for phosphoinositides, resulting in inactivation of Akt/PKB and
preventing the translocation of Akt/PKB to the plasma membrane[39,40]. The second
mechanism  is  that  activation  of  protein  phosphatase  2A  (PPA2,  the  primary
phosphatase  responsible  for  dephosphorylating  Akt/PKB)  dephosphorylates
Akt/PKB. The effects of ceramide on Akt/PKB can be prevented by adding okadaic
acid or overexpressing the SV40 small T antigen to inhibit PPA2[41] (Figure 3).

HYPOXIA AND CERAMIDE
HIFα is stabilized and activated under hypoxic conditions[42]. It seems that hypoxia
may enhance  the  level  of  ceramide  in  the  majority  of  tissues.  Hypoxia  leads  to
ceramide upregulation in NT-2 neuronal precursor cells due to the actions of acid
sphingomyelinase and ceramide synthase (LASS-5) to a large extent[43]. In addition, in
resistant  pulmonary  arteries,  hypoxia  induces  increased  ceramide  and  reactive
oxygen species[44]. Hypoxia activates neutral sphingomyelinases (nSMases), which are
key enzymes in ceramide synthesis, enhancing the production of ceramide and the
subsequent ceramide-triggered activation of protein kinase C ζ, which is an early and
essential  event  in  the  signaling  cascade  of  acute  hypoxic  pulmonary  arteries.
Inhibition of  nSMase (GW4869)  can prevent  p47phox  phosphorylation induced by
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Figure 3

Figure 3  The mechanism of ceramide inducing insulin resistance. Ceramide inactivates protein kinase B (Akt) through stimulating the activity of protein kinase Cç
isoform and protein phosphatase 2A which phosphorylates and inhibits the translocation of Akt. The inactivation of Akt prevents from translocation of
glucosetransporter4 vesicle to plasma membrane, resulting in inhibiting glucose uptake. Simultaneously, inactivated Akt in turn activates glycogen synthase 3, leading
to inactivation of glycogen synthase and thus inhibition of glycogen synthesis and resulting in insulin resistance. PKB: Protein kinase B; PKCç: Protein kinase Cç;
PP2A: Protein phosphatase 2A; GLUT4: Glucosetransporter4; PM: Plasma membrane; GSK-3: Glycogen synthase 3; GYS: Glycogen synthase; IRS: Insulin receptor
substrate; PI-3K: Phosphoinositide 3-kinase; PIP3: Phosphatidylinositol-3,4,5-trisphosphate; PDK1/2: 3-phosphoinositide-dependent protein kinase 1/2.

hypoxia[45].  Likewise,  palmitoyltransferase (SPT)  and glucosylceramide synthase
(GCS) are the pivotal enzymes of ceramide synthesis, which may regulate the cellular
level of ceramide, deciding the fate of the cell  exposed to hypoxia.  The hypoxia-
induced increase in ceramide is partially attributed to the transcriptional upregulation
of SPT2. Specific siRNA of SPT2 or GCS can reduce ceramide[46]. Therefore, ceramide
synthase inhibitors may be an efficient way to restrain ceramide synthase against
hypoxic injury[47].

RELATIONSHIP BETWEEN INTESTINAL HYPOXIA AND
CERAMIDE INCREASES WITH INSULUN RESISTANCE

Intestinal mucosal barrier and hypoxia
The intestine is one passageway that communicates between the environment and the
external environment of the human body and plays an essential role in the absorption
of  nutrients  and  protection  from chemical  and  physical  injury.  The  function  of
absorption  and protection  is  benefited  by  the  intestinal  mucosal  barrier,  which
involves the external physical barrier and internal functional immune barrier[48]. The
physical barrier mainly consists of cells and extracellular components, and the cellular
components compromise intestinal epithelial cells and the inherent layer. Intestinal
epithelial  cells  consist  of  absorption (absorbent  intestinal  cells  and M cells)  and
secretion lines (Pan cells, cup cells, tuft cells, and intestinal endocrine cells)[49], and the
inherent  layer  includes  dendritic  cells,  macrophages,  epithelial  lymphocytes,
regulatory T cells, and B lymphocytes[50]. The functional immune barrier consists of
the  chemical  barrier  (antimicrobial  peptides,  digestive  secretions,  cytokines,
inflammatory mediators, etc.), intestinal microbiota barrier, and immune function
barrier[51]. The barrier functions of the intestinal mucous membrane are regulated by
the availability of oxygen[52].
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Intestinal tissue oxygen has several characteristics. First, the intestinal epithelium is
located between the underlying mucosa with high oxygen content and the anaerobic
lumen  of  the  intestine,  forming  a  cliffy  oxygen  gradient  under  physiological
conditions[53]. Second, slight changes in blood flow can cause a significant variation in
intestinal oxygen, such as an increase in blood flow volume after feeding (5% of total
blood flow increased to 30%), which leads to a change in blood flow of the intestinal
mucosa being the reason for the distinct change in local oxygen levels[54]. Intestinal
epithelial cells have better adaptability and regulation of hypoxia than other tissues,
and physiologic hypoxia might be an adaptive regulation mechanism for the steep
oxygen gradient[55].

Intestinal hypoxia is divided into physiological hypoxia and pathological hypoxia.
Physiological hypoxia refers to a relatively low PO2 state present in mucosal epithelial
cells  even at  baseline levels because the intestinal  mucosa has a wealth of  blood
vessels, even if a slight reduction in blood flow can lead to a greater reduction in
oxygen transport to the intestinal epithelial cells[52,56]. Pathological intestinal hypoxia
widely exists in cancer, acute lung injury, inflammatory bowel disease and metabolic
diseases[5,54,57].  Intestinal hypoxia is usually associated with the destruction of the
intestinal mucosal barrier, such as that occurs in inflammatory intestinal diseases
from the reduction in blood supply due to inflammatory immersion, edema, and
vasoconstriction, leading to limited oxygen transport of the intestinal epithelium and
aggregation  of  polymorphonuclear  cells.  At  the  same  time,  a  large  number  of
neutrophils  rapidly  deplete  local  oxygen through respiratory  action,  leading  to
hypoxia in the intestines[54]. The HIF-2α—NEU3—ceramide pathway may explain the
relationship between intestinal hypoxia and insulin resistance.

The HIF-2α—NEU3—ceramide pathway
In intestinal epithelial cells, HIF-2α is activated and accumulates by hypoxia in HFD
mice,  which  upregulates  the  target  gene  Neu3  encoding  sialidase  3.  Sialidase  3
hydrolyses  gangliosides  to  form ceramides  in  the  salvage  pathway[25].  The  HIF-
2α—NEU3—ceramide pathway can promote the development of metabolic diseases,
such as NAFLD, obesity, and insulin resistance. Ceramides are synthesized through
three different pathways: De novo pathway, sphingomyelinase (SMase) pathway, and
salvage pathway[58]. Increased levels of ceramide cause obesity, insulin resistance, and
hepatic steatosis owing to upregulation of fatty acid synthesis.  Nevertheless,  the
target  genes  of  the  three  ceramide synthesis  pathways,  including Degs2,  Smpd1,
Smpd3,  Smpd4,  Enpp7,  Neu3,  Glb1,  and Gba2,  were  substantially  downregulated,
further resulting in the reduction in ceramide in intestine-specific HIF-2α ablation
mice, which significantly ameliorates HFD-induced obesity and hepatic steatosis and
improves insulin sensitivity in mice. In addition, treatment with a pharmacological
specific inhibitor of HIF-2α (PT2385) or inhibitor of NEU3 (N-acetyl-2,3-didehydro-N-
acetyl-neuraminic  acid,  DANA,  or  naringin)  lessens  serum levels  of  ceramides,
reduces obesity and fatty liver, and enhances insulin sensitivity[33,59].

The  components  of  the  intestinal  barrier  are  abundant.  HIF-1α  derived  from
intestinal epithelial cells is important for intestinal intraepithelial lymphocytes and
intestinal  flora  homeostasis.  Whether  other  mechanisms are  involved in  insulin
resistance under hypoxia requires more research to confirm.

CONCLUSION
The  global  incidence  of  T2DM  has  obviously  increased  in  recent  decades  with
economic  development  and lifestyle  changes,  especially  in  developed countries.
Chronic inflammation, hypoxia, and the metabolism of ceramide are closely related to
insulin resistance. Many studies have shown that HIFα regulates insulin resistance,
for example, in adipocyte-specific Hif1a knockout mice, homocysteine-induced insulin
resistance is ameliorated, the NLRP3 inflammasome is inhibited, and the production
of ceramide is decreased[23]. Meanwhile, intestine-specific Hif2a ablation mice show
improved HFD-induced insulin resistance[33].

Ceramide is a significant metabolic product of sphingolipids and contributes to
insulin  resistance  and  hepatic  steatosis[60].  Under  hypoxia,  HIF-2α  can  induce
ceramide in adipocytes and intestines, resulting in insulin resistance in HFD-induced
obesity  mice.  As  a  result  of  a  cliffy  oxygen  gradient  in  intestinal  tissue  and
inflammatory  changes  in  the  intestinal  mucosal  barrier,  hypoxia  occurs  in  the
intestine. Intestinal hypoxia may lead to HFD-induced insulin resistance. A study on
the HIF-2α—NEU3—ceramide pathway revealed the role of ceramide in hypoxia and
insulin resistance in obese mice.

In summary, hypoxia is a key feature of the progression of metabolic disease and
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HIF signaling, which can strongly influence metabolic disease by both genetic and
pathophysiologic inhibition. Recent discoveries have identified exciting effects of
pharmacologic inhibitors of HIF-2α or inhibitors of key enzymes (sialidase 3, NEU3)
in ceramide synthesis. This may become a promising approach to the treatment of
metabolic diseases, including insulin resistance and NAFLD.
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