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Abstract
The gastrointestinal tract is the key interface between the ingesta and the human 
body. There is wide recognition that the gastrointestinal response to nutrients or 
bioactive compounds, particularly the secretion of numerous hormones, is critical 
to the regulation of appetite, body weight and blood glucose. This concept has led 
to an increasing focus on “gut-based” strategies for the management of metabolic 
disorders, including type 2 diabetes and obesity. Understanding the underlying 
mechanisms and downstream effects of nutrient-gut interactions is fundamental 
to effective translation of this knowledge to clinical practice. To this end, an array 
of research tools and platforms have been developed to better understand the 
mechanisms of gut hormone secretion from enteroendocrine cells. This review 
discusses the evolution of in vitro and in vivo models and the integration of 
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innovative techniques that will ultimately enable the development of novel 
therapies for metabolic diseases.
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Core tip: The development of platforms for investigating nutrient-gut interactions is critical 
to understanding how nutrients trigger the release of gut hormones and has the potential to 
yield novel targets for improved management of metabolic disorders. In addition to the use 
of endoscopic or surgical gut tissues or primary enteroendocrine cells, in vitro models now 
include enteroendocrine cell lines originating from rodent (STC-1 and GLUTag) or human 
(NCI-H716 and HuTo-80) intestinal tumours, and intestinal organoids differentiated from 
intestinal stem cells. The physiological relevance of these models has been challenged, but 
may be improved substantially by incorporating advanced biomedical techniques (e.g., 
microfluidic devices) into the culture system. These approaches have complemented 
clinical studies utilising intestinal intubation, often with integrated manometry and 
impedance recording, which have revealed gut region-specific responses to intraluminal 
contents. Newer clinical developments include the use of novel ingestible sensors.

Citation: Huang WK, Xie C, Young RL, Zhao JB, Ebendorff-Heidepriem H, Jones KL, Rayner 
CK, Wu TZ. Development of innovative tools for investigation of nutrient-gut interaction. 
World J Gastroenterol 2020; 26(25): 3562-3576
URL: https://www.wjgnet.com/1007-9327/full/v26/i25/3562.htm
DOI: https://dx.doi.org/10.3748/wjg.v26.i25.3562

INTRODUCTION
It is now widely appreciated that the gastrointestinal (GI) tract not only serves to 
process food, but also represents the largest endocrine organ in the body, releasing a 
wide array of peptide hormones to orchestrate metabolic homeostasis[1]. Ghrelin, for 
example, is released from gastric Gr-cells into the circulation during fasting or periods 
of negative energy balance and triggers hunger to drive food intake[2]; ghrelin levels in 
circulation are subsequently suppressed upon feeding[3]. The interaction of nutrients 
and digestive juices with the intestinal mucosa triggers the secretion of a number of 
postprandial hormones, including cholecystokinin (CCK) from enteroendocrine (EE) 
I-cells[4] and glucose-dependent insulinotropic polypeptide (GIP) from K-cells in the 
upper small intestine, and glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) from 
L-cells located predominantly in the distal small and large intestine[5,6]. A subset of EE 
cells in the proximal small intestine have also been shown to secrete both GLP-1 and 
GIP[7]. GLP-1 and GIP are known as the incretin hormones; both stimulate insulin 
secretion in a glucose-dependent manner[8,9]. GLP-1 also suppresses glucagon and acts 
with CCK and PYY to inhibit appetite, slow the delivery of nutrients from the stomach 
into the small intestine and retard their subsequent absorption[10]. Accordingly, the 
integrated responses of GI hormones to meal ingestion is a critical determinant of 
energy balance and postprandial glycaemia.

That plasma concentrations of GI hormones are typically increased after enteral, but 
not intravenous, nutrient administration attests to the importance of nutrient-gut 
interactions to the release of these hormones[11]. Accordingly, improved understanding 
of the sensor and actuator mechanisms through which nutrients or bioactive 
compounds interact with EE cells, has the potential to yield novel “gut-based” 
approaches for the management of metabolic diseases. In the last few decades, a broad 
range of preclinical and clinical models have been developed to study nutrient-gut 
interactions, with increasing efforts to achieve clinically relevant outcomes. To this 
end, ex vivo studies have extended from the use of EE cell lines towards primary 
intestinal tissues and organoids, and have increasingly incorporated sophisticated 
culture conditions to mimic normal physiology. Clinical studies employing customised 
intestinal perfusion catheters for targeted delivery of nutrients or therapeutic 
compounds, or novel ingestible sensors, have attempted to better characterise the 
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regional specificity of GI responses. In this review, we summarise the research tools 
and models used to investigate nutrient-gut interactions, and discuss their advantages 
and limitations for clinical translation of findings (Table 1).

CELLULAR MODELS
The GI mucosa incorporates a monolayer of columnar epithelium with region-specific 
architecture and EE cell composition that is uniquely tuned to secrete specific gut 
hormones and absorb nutrients to fulfil specific metabolic functions. EE cells account 
for less than 1% of all epithelial cells, and their distribution varies substantially along 
the GI tract (Figure 1)[12]. Immortalised cell lines derived from murine and human 
intestinal tumours have been developed for in vitro studies, and retain the capacity to 
secrete GI hormones in response to nutrient stimuli (Table 2).

STC-1 cells are a heterogeneous and poorly differentiated EE cell line derived from 
intestinal secretin-producing tumours in mice. They have a high immunoreactivity to 
anti-proglucagon sera and are capable of releasing glucagon-like immuno-reactants[13]. 
STC-1 cells were subsequently shown to secrete multiple gut hormones, including 
CCK[14], GLP-1[15,16], GIP[17], and PYY[18,19], in a similar manner to native murine EE cells, 
when stimulated by glucose[20], amino acids and fatty acids. As a result, STC-1 cells 
have been a popular model to screen for gut hormone-releasing stimuli. However, the 
clinical relevance of this model has been frequently questioned. For example, 
treatment with potato protease inhibitor concentrate (PPIC) or whey protein does not 
induce CCK secretion from STC-1 cells[21,22]. By contrast, oral administration of PPIC 
(100 mg/kg per day) stimulates CCK secretion in rodents[21], while ingestion of whey 
protein (55 g) increases plasma CCK levels in humans[23].

GLUTag cell line is a subcloned homogeneous EE cell model developed by the 
Drucker group from an endocrine carcinoma of the large bowel in transgenic mice[24]. 
These cells express both proglucagon and CCK genes[25] but produce primarily 
GLP1(7-36)-amide. GLUTag cells are equipped with a wide repertoire of nutrient 
sensors and transporters, including G-protein coupled receptors (GPCRs)[26], 
glucokinase[27] and the sodium-glucose linked transporter 1 (SGLT1)[28] involved in 
nutrient-induced GLP-1 secretion. In agreement with in vivo findings, GLUTag cells 
exhibit robust release of GLP-1 in response to glucose[29], bile acids[30], fatty acids[31] and 
amino acids[32]. These observations have promoted GLUTag cells as a frontline model 
of L cells, leading to a wide application for studying the mechanisms underlying GLP-
1 secretion and for screening potential GLP-1 secretagogues. However, clinical studies 
are still required to validate in vitro findings. For example, the treatment of glutamine 
(10 mmol/L) was shown to markedly increase GLP-1 secretion (7-fold) from GLUTag 
cells[32]. However, oral administration of encapsulated ileal-release glutamine (6 g) or 
intra-duodenal glutamine infusion (7.5-15 g) evoked only modest increases in plasma 
GLP-1 levels in healthy subjects and patients with type 2 diabetes[33,34].

The human cell lines NCI-H716 and HuTu-80 have also been used widely to 
characterise nutrient-evoked GLP-1 release. The NCI-H716 cell line was first reported 
by Park et al[35] from human colorectal carcinoma. It contains dense-core granules, 
expresses chromogranin A, and secretes GLP-1 in response to glucose, fatty acids and 
protein hydrolysates[36]. Studies incorporating the NCI-H716 cell line have revealed 
cr i t ical  roles  of  amino acid transporters[37], type 1  taste  receptors[38] and 
monoacylglycerol-sensing GPCR[31] in GLP-1 secretion. However, the secretory profile 
of NCI-H716 cells is more limited compared to murine STC-1 or GLUTag cells. For 
example, NCI-H716 cells secrete GLP-1 and GLP-2 but not GIP, PYY or CCK in 
response to 50 mmol/L KCl, or combined glucose (10 mmol/L), forskolin and 
phosphodiesterase inhibitor (10 µmol/L)[39]. That NCI-H716 cells do not secrete PYY 
reflects their limited resemblance to native L-cells.

The HuTu-80 cell line is an alternative EE cell model of human origin that secretes 
GLP-1, GIP, PYY and CCK[40] and was developed initially to study the biology of GI 
cancers[41]. Sweet and bitter taste receptors are abundantly expressed in HuTo-80 cells 
as in native human L-cells, making them a potential model to investigate tastant-
induced gut hormone secretion[42,43]. However, unlike native L-cells, bitter tastants, 
including quinine, denatonium benzoate and phenylthiocarbamide fail to trigger GLP-
1 secretion from HuTu-80 cells[44]. Relative to the three aforementioned cell lines, 
HuTu-80 cells have been less frequently employed to study nutrient-gut interactions.
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Table 1 Available tools used for investigation of nutrient-gut interactions

Tools Advantages Disadvantages/challenges

Cellular models EE cell lines Established secretion profiles; genetically modifiable; 
readily accessible

Limited resemblance to native l-cells; lack of inter-organ 
interaction; limited success in clinical translation

Intestinal 
organoids

Preserved native architecture; region-specific 
functions; high plasticity for oriented differentiation

Undefined secretion profiles; lack of integrated nervous or 
immune systems; inconsistent culture outcomes

Tissue-based 
approaches

Isolated 
intestinal 
tissues

Preserved native intestinal structure; access to 
luminal and basolateral surface; high physiological 
relevance

Short viable period; lack of inter-organ interaction; limited 
access to human tissue; low EE cell density

Intestinal 
intubation

In vivo infusion 
in gut

Region-specific delivery; direct insights into human 
(patho-)physiology

Technically demanding; restricted to specialised research 
centre

3D culture Enhanced anatomical complexity; compatibility with 
co-culture system

Limited cellular variety; static culture environment

Intestine-on-a-
chip

Dynamic culture environment; recapitulation of 
luminal events

Sophisticated validation of the system; partial resemblance to 
luminal physiology

Novel 
techniques

Ingestible 
sensors

A broad range of application; high potential for 
multi-purposed in vivo investigation

Difficulty in signal interpretation; lack of stability; High cost

EE: Enteroendocrine.

Table 2 Enteroendocrine cell models

Species Model Origin Hormones Features

Mouse STC-1 Duodenal secretin 
tumour cells

GLP-1, GLP-2, CCK, 
GIP, PYY,

Heterogeneous cell population; respond to glucose, amino acids, fatty acids and 
neural stimuli; poor expression of CaSR

GLUTag Colonic tumour GLP-1, GLP-2, CCK Subcloned homogenous cells; respond to glucose, bile acids, fatty acids, amino 
acids

Human NCI-
H716

Colorectal carcinoma GLP-1, GLP-2 Heterogeneous cell population; poorly differentiated; respond to glucose, fatty 
acids, protein hydrolysates

HuTu-80 Duodenal carcinoma GLP-1, PYY, GIP, CCK Respond to antioxidant compounds, sweet and bitter substances

CCK: Cholecystokinin; GLP-1: Glucagon-like peptide 1; GIP: Glucose-dependent insulinotropic polypeptide; PYY: Peptide YY; CaSR: Ca2+-sensing 
receptor.

TISSUE-BASED GUT HORMONE RELEASE EX VIVO
The major functional differences between immortalised intestinal cell lines and 
primary EE cells have led to an increased research focus on primary intestinal models 
to study the endocrine function of the gut. These have included the isolation and use 
of primary EE cells[45-47] and use of ex vivo intestinal tissue preparations from 
animals[48-51] and humans[52,53]. These tissue-based approaches maintain native cell-cell 
connections and polarity, and have hitherto yielded a deep understanding of the 
mechanisms governing nutrient and drug-evoked 5-hydroxytryptamine and GLP-1 
release[54,55]. However, clinical access to gut endoscopic, colonoscopic or surgical 
tissues, tissue viability and potentially low EE cell density can limit these primary 
models. The purification of primary EE cells is also technically demanding. The recent 
development of intestinal organoids holds the promise to overcome some of these 
limitations.

INTESTINAL ORGANOIDS
Intestinal organoids, also known as “mini-guts”, are miniaturised intestinal units that 
display many features of gut tissue architecture and function. In 2007, Barker and 
colleagues identified leucine-rich repeat-containing GPCRG-5 (Lgr5) -positive cells as 
stem cells in the small intestine and colon via genetic lineage tracing experiments[56]. 
Subsequently, a single Lgr5-positive stem cell was shown to differentiate into crypt-



Huang WK et al. Innovative tools/nutrient-gut interaction/metabolic health

WJG https://www.wjgnet.com 3566 July 7, 2020 Volume 26 Issue 25

Figure 1  The composition of intestinal epithelial cells along the gastrointestinal tract (left); anatomical features and typical length of 
different sections of gastrointestinal tract (middle); regionally specific secretion profile of different gut hormones, including ghrelin, 
cholecystokinin, glucose-dependent insulinotropic polypeptide, glucagon-like peptide 1 and peptide YY (right). CCK: Cholecystokinin; GLP-1: 
Glucagon-like peptide 1; GIP: Glucose-dependent insulinotropic polypeptide; PYY: Peptide YY.

villus organoids, namely enteroids, that are inclusive of all cell types present in the 
native intestinal epithelium[57]. Of note, enteroids can be developed from Lgr5-positive 
cells originating from any section of the gut. Ex vivo characterisation has shown that 
these enteroids display the basal-apical polarity of mature epithelial cells[58,59]. 
Moreover, they retain many region-specific functions of the original location from 
which the stem cells were taken[60].

Intestinal organoids can also be developed from human pluripotent stem cells, 
which are referred to as human intestinal organoids (HIOs)[61,62]. HIOs have similar 
morphology as enteroids and display crypt-villus structures inclusive of all intestinal 
cell types. By contrast, HIOs contain a mesenchyme layer that is composed of 
myofibroblasts, endothelial cells and smooth muscle[63]. Moreover, HIOs do not show 
region-specific features and eventually grow into an unselective population of EE 
cells[61]. The differentiation process has been shown to be enhanced by the Happy Cell 
Advanced Suspension Medium[64] and by activation of the bone morphogenetic protein 
signalling pathway[65].

In contrast to primary intestinal epithelium, intestinal organoids remain viable for 
over 1-year ex vivo and show plasticity in cellular composition in response to changes 
in the culture environment or modified gene expression. Accumulating evidence 
suggests that the density of EE cells in organoids is subject to the expression of several 
translational factors, including Neurogenin 3 and Aristaless-related homobox[61,66,67], 
raising the prospect that EE cells can be customised in an organoid. Indeed, exposure 
of mouse or human enteroids to short-chained fatty acids (SCFAs) increases the 
number of L cells, and hence GLP-1 secretion, over 48 h of SCFA treatment[68]. Similar 
trends in differentiation have also been observed with enteroids treated with 
dibenzazepine or bile acids[69,70]. However, the secretory profile of intestinal organoids 
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in response to nutrients or non-nutritive compounds has not been well characterised. 
It should also be noted that delivery of stimuli to the lumen of the organoids requires 
individual microinjection, which is both labour-intensive and technically demanding 
due to their small size[71]. Moreover, the culture of organoids in conventional platforms 
makes it difficult to mimic the continuous movement of luminal contents and 
constantly changing nature of the extracellular fluid. Finally, it is not yet possible to 
recreate the architectural complexity of the GI tract, including its vascular, nervous, 
immune, mucous elements and the microbiome, in any organoid preparation.

INTESTINAL PERFUSION IN VIVO
The development of intestinal perfusion techniques and analytic methods capable of 
measuring GI hormones released into the peripheral circulation has allowed the 
evaluation of nutrient-gut interactions in vivo. In rodents, dietary effects on gut 
hormone secretion have been investigated in models of isolated intestinal 
perfusion[72,73]. In humans, it is also possible to characterise the responses of various 
regions of the gut to intraluminal stimuli, and to examine the underlying mechanisms.

A rubber feeding tube was initially designed to deliver medication to the intestine 
and to examine luminal contents in paediatric patients[74]. This early design 
incorporated 1-2 cm wide lateral window(s) for infusion/aspiration of liquids and a 
weighted terminal bulb to facilitate passage of the catheter by peristalsis. 
Subsequently, intestinal catheters have been increasingly customised to study gut 
function. For example, the integration of an inflatable balloon at the distal end of the 
catheter was employed to evaluate the perception of distension or control the position 
of the catheter[75]. Use of a multi-lumen catheter has allowed for multiple inflatable 
balloons, making it possible to isolate segments of the lumen[76], within which nutrient 
absorption can be carefully characterised[77-79]. Incorporation of manometry and 
impedance sensors into the catheter design has further facilitated concurrent recording 
of gut motility[34] and flow events[80]. Positioning these catheters has relied on 
fluoroscopy, for which radiation exposure represents a major limitation. To overcome 
this, Andersson and Grossman established an alternative method of monitoring 
catheter position by measuring transmucosal potential difference (TMPD) between 
skin or blood and the intestinal lumen[81]. Corresponding to the differences in pH 
between the stomach and the duodenum, TMPD in the distal antral channel and the 
proximal duodenal channel record around -40 mV and 0 mV, respectively[82,83]. 
Accordingly, a change of TMPD from -40 mV to 0 mV reflects passage of channels 
through the transpyloric area (Figure 2).

Relative to oral administration, intestinal perfusion of nutrients or investigational 
compounds circumvents the impact of inter-individual variations in the rate of gastric 
emptying – which can be substantial[84-86] – such that the exposure of the small intestine 
to nutrients can be standardised. Studies employing intraduodenal infusion of 
nutrients spanning the normal range of gastric emptying (1-4 kcal/min) have 
established that the stimulation of gut hormones, including CCK, GIP, GLP-1 and 
PYY, is dependent on the rate of nutrient entry into the small intestine. In line with the 
biological distribution of respective EE cells, the secretion of CCK and GIP appears to 
be proportional to the load of glucose, lipid or protein, whereas GLP-1 and PPY 
responses are non-linear, being modest at 1-2 kcal/min and substantially greater at 3-4 
kcal/min[87]. Moreover, when glucose and fat are infused intraduodenally at an 
identical rate of 2 kcal/min, it is observed that fat is significantly more potent than 
glucose at stimulating GLP-1 and GIP secretion[88].

A multi-lumen catheter of adequate length can also be positioned over a long length 
of small intestine to allow targeted delivery of nutrients or investigational compounds 
into proximal or distal sites, to determine the regional specificity of nutrient-gut 
interactions. In this way, infusion of glucose (2 kcal/min) into jejunum (50 cm distal to 
pylorus) was shown to elicit more GLP-1 and GIP release compared to equivalent 
duodenal infusion (12 cm distal to pylorus) in healthy men[89]. Furthermore, ileal 
glucose infusion (2 kcal/min, 190 cm distal to pylorus) resulted in markedly greater 
GLP-1 and lower (but more sustained) GIP responses compared to intraduodenal 
infusion, and was associated with a greater incretin effect and GI-mediated glucose 
disposal in both healthy subjects and patients with type 2 diabetes (Figure 3)[90]. 
Administration of compounds into the rectum can similarly be undertaken using a soft 
tube with minimal discomfort[91,92]. Characterisation of the region-specific profile of gut 
hormone release has shed light on the mechanisms by which Roux-en-Y gastric bypass 
surgery improves blood glucose control in type 2 diabetes[93]. In addition, this 
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Figure 2  Schematic of a multichannel intestinal catheter to study regional specificity of nutrient-gut interactions. Multiple channels are 
opened on the catheter to record the transmucosal potential difference and monitor its position. These channels can also deliver investigational compounds of 
aspirate luminal samples in a specific region of intestine. The balloon is generally designed to create physical restriction to prevent the fluid flow or the movement of 
the catheter. TMPD: Transmucosal potential difference.

knowledge has directed the precise delivery of stimuli to optimise gut hormone 
response for therapeutic gain. For example, enteric coating of a small dose of lauric 
acid to allow targeted release in the ileum and colon was shown to be effective at 
stimulating GLP-1 secretion and lowering blood glucose in patients with type 2 
diabetes[94].

Access to the intestines via endoscopy and colonoscopy has provided an additional 
means for targeting intestinal perfusion to a specific region, while also allowing for the 
collection of mucosal biopsies to study anatomical and molecular mechanisms 
underlying nutrient-gut interactions (discussed in earlier section). In this way, sweet 
taste receptors (STRs) (heterodimeric T1R2 and T1R3) were found to be involved in 
intestinal glucose sensing and linked to regulation of glucose absorption in both health 
and type 2 diabetes; in patients with type 2 diabetes, a defect in the downregulation of 
STRs in the face of hyperglycaemia was shown to contribute to excessive postprandial 
glycaemic excursions[95]. Moreover, ex vivo studies using human intestinal biopsies 
have revealed a critical role for both SGLT1 and the facilitative glucose transporter 2 in 
mediating glucose-induced GLP-1 secretion[55].

NOVEL TECHNIQUES TO STUDY GUT HORMONE SECRETION
Several novel techniques are emerging to evaluate nutrient-gut interactions with 
improved physiological or therapeutic relevance, while overcoming limitations of 
clinical studies.

Recent development of culture engineering techniques has allowed integration of 
advanced culture interfaces into the conventional 2D culture platforms of intestinal 
organoids and primary epithelial cells. This has enabled the provision of culture 
frameworks that support the growth of intestinal cells and facilitate the assessment of 
tissue function in a more physiologically relevant environment[96,97]. For example, 
culturing intestinal cells on a porous polyester membrane provides access to both 
basolateral and apical sides of the polarised epithelial cells, which is of particular 
importance for the investigation of the intestinal function in response to luminal 
stimuli (Figure 4A). In addition, the membrane can be coated with an extracellular 
matrix containing growth factors to induce growth and differentiation of organoids. 
This experimental platform is being increasingly used to study intestinal barrier 
function[98,99], immune responses[100], and drug metabolism[101,102], with a handful of 
studies focusing on nutrient-gut interactions. Kozuka et al[103] developed an intestinal 
monolayer culture platform utilising Transwell (a culture plate with an inserted 
membrane) with a 0.4 µm or 1 µm pore membrane and successfully cultured murine 
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Figure 3  Comparison of the effect of enteral (proximal or distal) and intravenous (i.v.) isoglycemic glucose administrations on plasma 
incretin hormone, glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 secretions in healthy subjects and subjects 
with type 2 diabetes mellitus. A and B: Glucose-dependent insulinotropic polypeptide; C and D: Glucagon-like peptide-1. Asterisk represents P < 0.05 for 
proximal vs distal enteral glucose infusion; Numbersign represents P < 0.05 for proximal enteral vs corresponding i.v. glycemic glucose infusion; Delta represents P 
< 0.05 for distal enteral vs corresponding i.v. glycemic glucose infusion. Data are presented as mean ± SEM. GLP-1: Glucagon-like peptide 1; GIP: Glucose-
dependent insulinotropic polypeptide; T2DM: Type 2 diabetes mellitus. Citation: Zhang X, Young RL, Bound M, Hu S, Jones KL, Horowitz M, Rayner CK, Wu T. 
Comparative Effects of Proximal and Distal Small Intestinal Glucose Exposure on Glycemia, Incretin Hormone Secretion, and the Incretin Effect in Health and Type 2 
Diabetes. Diabetes Care 2019; 42: 520-528. Copyright© The Authors 2019. Published by American Diabetes Association.

and human intestinal enteroids. Treatment with forskolin (100 µM) in the apical 
chamber stimulated GLP-1 release into the basolateral chamber, consistent with the 
presence of functional L-cells and GLP-1 deployment mechanisms. With this 
compartmental culture system, it is possible to model the interaction between the 
intestinal epithelium and luminal content and monitor the hormonal response in the 
downstream chamber.

More advanced and complex intestine models have been achieved by applying 
microfluidic devices in gut function studies, also known as “intestine-on-a-chip”. 
These microfluidic devices have the capacity to provide a dynamic culture 
environment, including continuously refreshed culture media and biomimetic 
mechanical strain, to more accurately resemble physiological conditions (Figure 4B). 
Current in vitro gut models on microfluidic devices have mainly been used to 
investigate drug metabolism[104] and gut-liver interactions[105]. The application of the 
“intestine-on-a-chip” model for gut hormone secretion study is in its infancy. In 2016, 
Hsiao et al[106] developed a high-throughput automated microfluidic platform to assess 
the response of NCL-H716 cells to sweet and bitter stimuli. Although gut hormones 
were not measured in the study, the microfluidic system recorded the dynamic 
changes in intracellular Ca2+ in over 500 single NCI-H716 cells trapped in each micro-
well. In another study, Park and his colleagues established a co-culture of GLUTag 
cells and the β cell line INS-1 to screen compounds of anti-diabetic potential[107]. 
Relative to the use of intestinal cancer cell line, intestinal organoids cultured on a 
microfluidic device display a high resemblance to the native intestine transcriptome, 
including the expression of genes related to cell proliferation, digestion and responses 
to nutrients[108], and may prove to be a useful ex vivo model for studying GI hormone 
secretion.

Ingestible sensors are under rapid development in clinical settings. These are 
typically capsule devices of up to 11 mm in diameter and 28 mm in length, to allow 
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Figure 4  Emerging advanced techniques to study nutrient-gut interaction. A: 2D culture of intestinal epithelium on a porous membrane; B: intestine-
on-a-chip model with intestinal organoids cultured in a microfluidic device, where constant perfusion and periodic mechanical strain can be applied on the system; C: 
ingestible sensors for measuring various parameters relevant to gut functions.

easy transit through the gut while measuring biomedical parameters (Figure 4C). To 
date, ingestible sensors have been developed for imaging[109-112] and measurements of 
gases[113], pH, temperature[114-117], pressure[118] and luminal contents[119-121]. The pH sensors 
have been used to assess gastric emptying and small intestinal transit, marked by 
abrupt pH changes between the stomach and duodenum (> 3 units) and between the 
ileum and colon (> 1 unit)[122,123]. The wide application of ingestible sensors will require 
further technical development to improve stability, signal interpretation and reduce 
costs, but offer an exciting glimpse into the future of GI surveillance.

CONCLUSION
A better understanding of the mechanisms underlying nutrient-gut interactions is 
fundamental to the development of gut-based therapies for major metabolic disorders. 
For this purpose, the development of in vitro EE cell models, and techniques suitable 
for in vivo studies, particularly in humans, is of critical importance. EE cell lines of both 
murine (STC-1 and GLUTag) and human (NCI-H716 and HuTo-80) origin are useful 
for early studies on gut hormone secretion, but have had limited translational success. 
This necessitates the development of more physiologically relevant in vitro gut models. 
The emergence of intestinal organoids and novel co-culture systems represents a major 
advance in this area. In particular, the combination of intestinal organoids and 
microfluidics will provide an unprecedented opportunity to study the dynamic 
hormonal response to stimuli under various conditions. In vivo validation of research 
outcomes derived from these models remains critical. In clinical studies, intestinal 
intubation and the application of novel ingestible sensors, have provided deep 
knowledge of the region-specific nature of nutrient-gut interactions, and ensuing 
hormonal and metabolic responses. Further development of non-invasive techniques 
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suitable for use in humans will expand opportunities to translate research findings 
from the bench to bedside.
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