
World Journal of
Gastroenterology

ISSN 1007-9327 (print)
ISSN 2219-2840 (online)

World J Gastroenterol  2020 July 7; 26(25): 3517-3711

Published by Baishideng Publishing Group Inc



WJG https://www.wjgnet.com I July 7, 2020 Volume 26 Issue 25

World Journal of 

GastroenterologyW J G
Contents Weekly Volume 26 Number 25 July 7, 2020

GUIDELINES

Chinese expert consensus and practice guideline of totally implantable access port for digestive tract 
carcinomas

3517

Zhang KC, Chen L, Chinese Research Hospital Association Digestive Tumor Committee; Chinese Association of Upper 
Gastrointestinal Surgeons; Chinese Gastric Cancer Association and Gastrointestinal Surgical Group of Chinese Surgical 
Society Affiliated to the Chinese Medical Association

OPINION REVIEW

Management of nonalcoholic fatty liver disease in the Middle East3528

Sanai FM, Abaalkhail F, Hasan F, Farooqi MH, Nahdi NA, Younossi ZM

REVIEW

Practical review for diagnosis and clinical management of perihilar cholangiocarcinoma3542

Dondossola D, Ghidini M, Grossi F, Rossi G, Foschi D

Development of innovative tools for investigation of nutrient-gut interaction3562

Huang WK, Xie C, Young RL, Zhao JB, Ebendorff-Heidepriem H, Jones KL, Rayner CK, Wu TZ

MINIREVIEWS

Monoacylglycerol lipase reprograms lipid precursors signaling in liver disease3577

Tardelli M

ORIGINAL ARTICLE

Basic Study

TBL1XR1 induces cell proliferation and inhibit cell apoptosis by the PI3K/AKT pathway in pancreatic 
ductal adenocarcinoma

3586

Gu JF, Fu W, Qian HX, Gu WX, Zong Y, Chen Q, Lu L

Retrievable puncture anchor traction method for endoscopic ultrasound-guided gastroenterostomy: A 
porcine study

3603

Wang GX, Zhang K, Sun SY

Case Control Study

Risk factors associated with inflammatory bowel disease: A multicenter case-control study in Brazil3611

Salgado VCL, Luiz RR, Boéchat NLF, Leão IS, Schorr BDC, Parente JML, Lima DC, Silveira Júnior ES, Silva GOS, 
Almeida NP, Vieira A, de Bueno MLQ, Chebli JM, Bertges ÉR, Brugnara LMDC, Junqueira Neto C, Campbell SBG, 
Discacciati LL, Cézar JPS, Nunes T, Kaplan GG, Zaltman C



WJG https://www.wjgnet.com II July 7, 2020 Volume 26 Issue 25

World Journal of Gastroenterology
Contents

Weekly Volume 26 Number 25 July 7, 2020

Retrospective Cohort Study

Predictors of irreversible intestinal resection in patients with acute mesenteric venous thrombosis3625

Sun SL, Wang XY, Chu CN, Liu BC, Li QR, Ding WW

Functionality is not an independent prognostic factor for pancreatic neuroendocrine tumors3638

Chen HY, Zhou YL, Chen YH, Wang X, Zhang H, Ke NW, Liu XB, Tan CL

Retrospective Study

Chronic atrophic gastritis detection with a convolutional neural network considering stomach regions3650

Kanai M, Togo R, Ogawa T, Haseyama M

Multiphase convolutional dense network for the classification of focal liver lesions on dynamic contrast-
enhanced computed tomography

3660

Cao SE, Zhang LQ, Kuang SC, Shi WQ, Hu B, Xie SD, Chen YN, Liu H, Chen SM, Jiang T, Ye M, Zhang HX, Wang J

Observational Study

Type I and type II Helicobacter pylori infection status and their impact on gastrin and pepsinogen level in a 
gastric cancer prevalent area

3673

Yuan L, Zhao JB, Zhou YL, Qi YB, Guo QY, Zhang HH, Khan MN, Lan L, Jia CH, Zhang YR, Ding SZ

SYSTEMATIC REVIEWS

Quality of life in patients with gastroenteropancreatic tumours: A systematic literature review3686

Watson C, Tallentire CW, Ramage JK, Srirajaskanthan R, Leeuwenkamp OR, Fountain D



WJG https://www.wjgnet.com III July 7, 2020 Volume 26 Issue 25

World Journal of Gastroenterology
Contents

Weekly Volume 26 Number 25 July 7, 2020

ABOUT COVER

Editorial board member of World Journal of Gastroenterology, Prof. Antonio Biondi is an Associate Editor of Updates 
in Surgery, the official journal of the Italian Society of Surgery, and a Full Professor of surgery at the School of 
Medicine, University of Catania, Italy. Prof. Biondi obtained his MD degree from the University of Catania in 1993, 
and his PhD degree in 2001. He was promoted to Full Professor in the School of Medicine, University of Catania, in 
2018. His ongoing research interests are colorectal surgery and laparoscopic procedures. He is a member of the 
editorial boards and a reviewer of several scientific journals, and has published more than 150 peer-reviewed 
articles. Prof. Biondi served as elected member of the Italian National University Council (CUN). Currently, he is 
the Chief of the Laparoscopic Surgery Division, Department of General Surgery and Medical-Surgical Specialties, 
University Hospital Policlinico Vittorio Emanuele, Catania and Director of the Multidisciplinary Research Center 
for Diagnosis and Treatment of Rare Diseases, University of Catania.

AIMS AND SCOPE

The primary aim of World Journal of Gastroenterology (WJG, World J Gastroenterol) is to provide scholars and readers 
from various fields of gastroenterology and hepatology with a platform to publish high-quality basic and clinical 
research articles and communicate their research findings online. WJG mainly publishes articles reporting research 
results and findings obtained in the field of gastroenterology and hepatology and covering a wide range of topics 
including gastroenterology, hepatology, gastrointestinal endoscopy, gastrointestinal surgery, gastrointestinal 
oncology, and pediatric gastroenterology.

INDEXING/ABSTRACTING

The WJG is now indexed in Current Contents®/Clinical Medicine, Science Citation Index Expanded (also known as 
SciSearch®), Journal Citation Reports®, Index Medicus, MEDLINE, PubMed, PubMed Central, and Scopus. The 2020 
edition of Journal Citation Report® cites the 2019 impact factor for WJG as 3.665 (5-year impact factor: 4.048), 
ranking WJG as 35 among 88 journals in gastroenterology and hepatology (quartile in category Q2). 

RESPONSIBLE EDITORS FOR THIS ISSUE

Electronic Editor: Yu-Jie Ma; Production Department Director: Xiang Li; Editorial Office Director: Ze-Mao Gong.

NAME OF JOURNAL INSTRUCTIONS TO AUTHORS

World Journal of Gastroenterology https://www.wjgnet.com/bpg/gerinfo/204

ISSN GUIDELINES FOR ETHICS DOCUMENTS

ISSN 1007-9327 (print) ISSN 2219-2840 (online) https://www.wjgnet.com/bpg/GerInfo/287

LAUNCH DATE GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH

October 1, 1995 https://www.wjgnet.com/bpg/gerinfo/240

FREQUENCY PUBLICATION ETHICS

Weekly https://www.wjgnet.com/bpg/GerInfo/288

EDITORS-IN-CHIEF PUBLICATION MISCONDUCT

Andrzej S Tarnawski, Subrata Ghosh https://www.wjgnet.com/bpg/gerinfo/208

EDITORIAL BOARD MEMBERS ARTICLE PROCESSING CHARGE

http://www.wjgnet.com/1007-9327/editorialboard.htm https://www.wjgnet.com/bpg/gerinfo/242

PUBLICATION DATE STEPS FOR SUBMITTING MANUSCRIPTS

July 7, 2020 https://www.wjgnet.com/bpg/GerInfo/239

COPYRIGHT ONLINE SUBMISSION

© 2020 Baishideng Publishing Group Inc https://www.f6publishing.com

© 2020 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA

E-mail: bpgoffice@wjgnet.com  https://www.wjgnet.com

https://www.wjgnet.com/bpg/gerinfo/204
https://www.wjgnet.com/bpg/GerInfo/287
https://www.wjgnet.com/bpg/gerinfo/240
https://www.wjgnet.com/bpg/GerInfo/288
https://www.wjgnet.com/bpg/gerinfo/208
http://www.wjgnet.com/1007-9327/editorialboard.htm
https://www.wjgnet.com/bpg/gerinfo/242
https://www.wjgnet.com/bpg/GerInfo/239
https://www.f6publishing.com
mailto:bpgoffice@wjgnet.com
https://www.wjgnet.com


WJG https://www.wjgnet.com 3660 July 7, 2020 Volume 26 Issue 25

World Journal of 

GastroenterologyW J G
Submit a Manuscript: https://www.f6publishing.com World J Gastroenterol 2020 July 7; 26(25): 3660-3672

DOI: 10.3748/wjg.v26.i25.3660 ISSN 1007-9327 (print) ISSN 2219-2840 (online)

ORIGINAL ARTICLE

Retrospective Study

Multiphase convolutional dense network for the classification of 
focal liver lesions on dynamic contrast-enhanced computed 
tomography

Su-E Cao, Lin-Qi Zhang, Si-Chi Kuang, Wen-Qi Shi, Bing Hu, Si-Dong Xie, Yi-Nan Chen, Hui Liu, Si-Min Chen, 
Ting Jiang, Meng Ye, Han-Xi Zhang, Jin Wang

ORCID number: Su-E Cao 0000-
0002-0756-1957; Lin-Qi Zhang 0000-
0002-0607-6300; Si-Chi Kuang 0000-
0003-3674-651X; Wen-Qi Shi 0000-
0003-2497-3299; Bing Hu 0000-0002-
8270-433X; Si-Dong Xie 0000-0003-
1280-5706; Yi-Nan Chen 0000-0003-
0858-2087; Hui Liu 0000-0001-6218-
8123; Si-Min Chen 0000-0001-7073-
1472; Ting Jiang 0000-0002-6630-
3392; Meng Ye 0000-0003-2210-3396
; Han-Xi Zhang 0000-0001-9489-3062
; Jin Wang 0000-0002-7956-9579.

Author contributions: Cao SE, 
Zhang LQ, Shi WQ, Chen YN, Liu 
H, and Ye M contributed to the 
conception and design of the 
study; Cao SE, Kuang SC, Shi WQ, 
Hu B, Jiang T, Chen SM, and 
Zhang HX collected the patient 
data, analyzed and interpreted the 
data; Cao SE wrote original draft 
and revised the manuscript; Wang 
J contributed to the conception of 
the study and provided final 
approval of the version to be 
submitted and any revised 
versions.

Supported by National Natural 
Science Foundation of China, No. 
91959118; Science and Technology 
Program of Guangzhou, China, 
No. 201704020016; SKY Radiology 
Department International Medical 

Su-E Cao, Lin-Qi Zhang, Si-Chi Kuang, Wen-Qi Shi, Bing Hu, Si-Dong Xie, Si-Min Chen, Ting Jiang, 
Han-Xi Zhang, Jin Wang, Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen 
University, Guangzhou 510630, Guangdong Province, China

Yi-Nan Chen, Hui Liu, Meng Ye, Department of Scientific and Technological Research, 12 Sigma 
Technologies, Beijing 100102, China

Corresponding author: Jin Wang, MD, Doctor, Professor, Department of Radiology, The Third 
Affiliated Hospital, Sun Yat-Sen University, No. 600, Tianhe Road, Tianhe District, 
Guangzhou 510630, Guangdong Province, China. wangjin3@mail.sysu.edu.cn

Abstract
BACKGROUND 
The accurate classification of focal liver lesions (FLLs) is essential to properly 
guide treatment options and predict prognosis. Dynamic contrast-enhanced 
computed tomography (DCE-CT) is still the cornerstone in the exact classification 
of FLLs due to its noninvasive nature, high scanning speed, and high-density 
resolution. Since their recent development, convolutional neural network-based 
deep learning techniques has been recognized to have high potential for image 
recognition tasks.

AIM 
To develop and evaluate an automated multiphase convolutional dense network 
(MP-CDN) to classify FLLs on multiphase CT.

METHODS 
A total of 517 FLLs scanned on a 320-detector CT scanner using a four-phase DCE-
CT imaging protocol (including precontrast phase, arterial phase, portal venous 
phase, and delayed phase) from 2012 to 2017 were retrospectively enrolled. FLLs 
were classified into four categories: Category A, hepatocellular carcinoma (HCC); 
category B, liver metastases; category C, benign non-inflammatory FLLs including 
hemangiomas, focal nodular hyperplasias and adenomas; and category D, hepatic 
abscesses. Each category was split into a training set and test set in an 
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approximate 8:2 ratio. An MP-CDN classifier with a sequential input of the four-
phase CT images was developed to automatically classify FLLs. The classification 
performance of the model was evaluated on the test set; the accuracy and 
specificity were calculated from the confusion matrix, and the area under the 
receiver operating characteristic curve (AUC) was calculated from the SoftMax 
probability outputted from the last layer of the MP-CDN.

RESULTS 
A total of 410 FLLs were used for training and 107 FLLs were used for testing. The 
mean classification accuracy of the test set was 81.3% (87/107). The 
accuracy/specificity of distinguishing each category from the others were 
0.916/0.964, 0.925/0.905, 0.860/0.918, and 0.925/0.963 for HCC, metastases, 
benign non-inflammatory FLLs, and abscesses on the test set, respectively. The 
AUC (95% confidence interval) for differentiating each category from the others 
was 0.92 (0.837-0.992), 0.99 (0.967-1.00), 0.88 (0.795-0.955) and 0.96 (0.914-0.996) for 
HCC, metastases, benign non-inflammatory FLLs, and abscesses on the test set, 
respectively.

CONCLUSION 
MP-CDN accurately classified FLLs detected on four-phase CT as HCC, 
metastases, benign non-inflammatory FLLs and hepatic abscesses and may assist 
radiologists in identifying the different types of FLLs.

Key words: Deep learning; Convolutional neural networks; Focal liver lesions; 
Classification; Multiphase computed tomography; Dynamic enhancement pattern

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: We developed and evaluated a deep learning-based convolutional neural network 
(CNN) to classify focal liver lesions (FLLs) on multiphase computed tomography. The 
most important highlight of the current study is that, to the best of our knowledge, this 
study is the first to employ four-channel input data to preserve the dynamic enhancement 
properties. The combination of the lesion's dynamic enhancement pattern with a CNN can 
imitate the image diagnosis of radiologists and is expected to improve diagnostic accuracy. 
It was interesting to note that the accuracy and specificity of differentiating each category 
from others were high. This model may become an efficient tool to assist radiologists in 
the classification of FLLs.

Citation: Cao SE, Zhang LQ, Kuang SC, Shi WQ, Hu B, Xie SD, Chen YN, Liu H, Chen SM, 
Jiang T, Ye M, Zhang HX, Wang J. Multiphase convolutional dense network for the 
classification of focal liver lesions on dynamic contrast-enhanced computed tomography. World 
J Gastroenterol 2020; 26(25): 3660-3672
URL: https://www.wjgnet.com/1007-9327/full/v26/i25/3660.htm
DOI: https://dx.doi.org/10.3748/wjg.v26.i25.3660

INTRODUCTION
The frequency of detection of focal liver lesions (FLLs) has increased due to the 
widespread application of imaging techniques[1,2]. Because the treatment of FLLs 
depends on the nature of the lesion, the ability to accurately distinguish the types of 
FLLs is an important step in the management of these patients. Currently, dynamic 
contrast-enhanced computed tomography (DCE-CT) is commonly used for the 
noninvasive detection and characterization of FLLs due to its high scanning speed and 
high-density resolution[3,4]. The appearances, especially the dynamic enhancement 
patterns of FLLs on CT imaging, are essential for categorizing lesions. With the careful 
evaluation of CT images, diagnosis with a relatively high accuracy can be achieved for 
most liver lesions. However, in current clinical practice, the evaluation of CT images is 
mainly performed by radiologists. The results are influenced by the radiologist’s 
experience and are generally subjective. Radiologists have began investigating the 
potential of computer-aided diagnostic systems to overcome these limitations. Rather 
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than using qualitative reasoning, artificial intelligence (AI) conducts quantitative 
assessments by automatically identifying imaging information[5]. Therefore, AI can 
assist radiologists in making more accurate imaging diagnoses and substantially 
reduces the radiologists’ workload.

Traditional machine learning algorithms need features to be predefined and require 
the placement of complexly shaped regions of interest (ROIs) on images[6-8]. The 
predefined features are applied in various combinations to effectively determine the 
diagnosis using traditional machine learning algorithms, but the combinations are 
usually incomprehensive and result in low accuracy. Today, deep learning-based 
algorithms are widely used due to their automatic feature generation and image 
classification abilities[9,10]. A convolutional neural network (CNN) is considered the first 
truly successful deep-learning method based on a multilayer hierarchical network, and 
shows high performance in the image analysis field[9-11]. CNN has been successfully 
applied to analyze the medical images of patients with many diseases such as 
pulmonary tuberculosis, breast cancer, brain tumors, and some hepatic diseases[12-19]. 
However, few studies have attempted to apply CNN in the differential diagnosis of 
FLLs, and these studies have limited value. The dynamic enhancement pattern of FLLs 
is essential for making differential diagnoses and may have a complementary role to 
CNN in the diagnostic workup of FLLs.

Hence, we developed and evaluated an automated multiphase convolutional dense 
network (MP-CDN) that uses four channels of input data to classify FLLs on four-
phase CT.

MATERIALS AND METHODS
Patients
The retrospective study was reviewed and approved by our institutional review 
board, and written informed consent was obtained from the patients whose data were 
analyzed. Two radiologists (Cao SE and Shi WQ, both with 5 years of experience in 
imaging diagnosis) searched for patients with FLLs in the picture archiving and 
communication system (PACS). The images of patients who underwent a four-phase 
DCE-CT examination and for whom FLLs were confirmed by histopathological 
evaluation or were diagnosed based on a combination of clinical and radiological 
findings with follow-up were collected for further screening. The exclusion criteria 
were as follows: Lesions larger than 10 cm; images with prominent artifacts; and prior 
local-regional therapy prior to the CT examination.

Standard of classification
The lesions were classified into four categories according to different pathological 
types and treatment decisions. (1) Category A was hepatocellular carcinoma (HCC), 
which was confirmed by histopathologic evaluation after surgery or biopsy. (2) 
Category B represents liver metastases derived from different primary sites such as 
colorectal cancer, gastric carcinoma, breast cancer, lung cancer, thyroid cancer, 
malignant jejunal stromal tumor, duodenal papillary carcinoma, and lary-
ngocarcinoma. The primary lesions were confirmed by a pathological examination, but 
the metastatic lesions were diagnosed based on the clinical data, patient history, other 
follow-up CT, magnetic resonance imaging, and positron emission tomography/CT 
scans. For liver metastases, the follow-up time was 60 d to 1230 d, and the median was 
300 d. (3) Category C was defined as benign non-inflammatory FLLs, including 
hemangiomas, focal nodular hyperplasias (FNHs), and adenomas. A total of 27 
lesions, including all adenomas, were confirmed by a histopathological evaluation 
after surgery, while the remaining 135 lesions were diagnosed based on imaging 
diagnostic criteria from the CT scan in combination with the clinical information and 
follow-up MRI; the follow-up time was 90 d to 1800 d, and the median was 330 d. And 
(4) Category D was hepatic abscesses. The diagnosis of hepatic abscess was based on 
typical imaging findings, clinical aspects, laboratory findings, and microbiology on 
blood or aspirate culture results. While all patients received early empirical antibiotic 
treatment, 37% patients underwent percutaneous or surgical drainage. A longer 
follow-up with a median time of 100 d (range, 60-365 d) confirmed the remission or 
absence of signs and symptoms together with imaging studies without findings 
compatible with hepatic abscess after treatment.

Finally, a total of 375 patients with 517 lesions were enrolled in this study from 2012 
to 2017. Each category was split into a training set and test set. Patients who 
underwent CT scan before June 2016 were used for training, while those after June 



Cao SE et al. Classification of FLLs using AI

WJG https://www.wjgnet.com 3663 July 7, 2020 Volume 26 Issue 25

2016 were used for testing. The ratio between training set and test set was 
approximately 8:2.

Basic information about the patients was obtained from the hospital information 
system, including gender, age, surgical and pathological reports, lesion size, and 
follow-up time.

Input data: CT imaging protocol
A 320-detector CT scanner (Aquilion ONE; Toshiba Medical Systems, Otawara, Japan) 
was used to acquire four-phase DCE-CT imaging protocols including precontrast 
phase (PP), arterial phase (AP), portal venous phase (PVP), and delayed phase (DP). 
The following scan parameters were used: A peak tube voltage of 120 kV, a tube 
rotation time of 0.5 s per rotation, a pitch factor of 0.828, a field of view of 35 cm × 35 
cm, a matrix of 512 × 512, and automatic tube current modulation.

The first phase was PP to cover the whole liver. The next three phases were contrast-
enhanced phases with the same scanning range after the intravenous injection of low 
osmolar nonionic contrast medium (Ioversol-350; Tyco Healthcare, Montreal, Quebec, 
Canada and Isovue-370, Bracco Diagnostics, Guangzhou, China) into the right 
antecubital vein at an injection rate of 3 mL/s and a dose of 1.5 mL/kg body weight, 
followed by a 20-mL saline chaser.

The AP was acquired by performing a bolus tracking technique. The AP was 
scanned 15 s after CT attenuation of the aorta at the level of the diaphragm had 
reached 200 Hounsfield Units. For the PVP, images were acquired 30 s after the AP. 
The DP was scanned 45 s after the PVP. All images were reconstructed in the axial 
plane with a slice thickness of 5 mm and interval of 5 mm using a kernel for the 
evaluation of soft tissues (FC19) and then sent to the PACS.

Input data: CT imaging annotation
The CT imaging annotation was manually and independently performed by four 
radiologists (all had at least 4 years of imaging experience), and the results were 
reviewed by a radiologist with 20 years of imaging experience. For each patient, the 
four-phase CT images were manually loaded into 3D Slicer (https://www.slicer.org). 
The boundary of each lesion was manually drawn slice-by-slice along the visible 
borders of the lesion using the annotation module available in 3D Slicer. The 
classification of the type of each lesion was manually annotated using a home-
developed lesion annotation module in 3D Slicer.

Input data: CT imaging processing pipeline
The four phases were organized in a sequence according to the acquisition time and 
fed into the image processing pipeline, as shown in Figure 1. The inner-phase 
registration and normalization were used to achieve volume-wise processing. The 
inner-phase registration was performed by using a nonrigid registration module 
implemented in Elastix (http://elastix.isi.uu.nl) with PVP as the reference phase, and 
then each phase was linearly normalized to (-1, 1) with a corresponding HU of (0, 300). 
Cropping and resizing were performed for lesion-wise processing using the Python 
library scikit-image 0.15.0 (https://scikit-image.org/scikit-image 0.15.0). For each 
lesion, a three-dimensional bounding box was generated to cover the lesion boundary 
and extended with a spare boundary of 10 mm along each direction. After extracting 
the bounding box of the lesion, ROIs were cropped from the PVP. The ROI was a 
square on each axial plane, the length of the side was 1.5 times the value of the longest 
side of the bounding box on the axial plane, and the center point was the projection of 
the center point of the bounding box on each axial plane. Then the bounding boxes 
were propagated on other phases to crop the lesion. Following lesion cropping, each 
cropped ROI was resized into an identical shape in the size of 128 × 128. ROIs from 
five slices centered at the lesion were extracted and stacked together to form a (128, 
128, 5) tensor as the input data for each phase.

Deep convolutional network architecture
The deep convolutional network was designed following the concept of the automatic 
extraction of useful features from each phase and then the sequential combination of 
each phase's features to achieve classification, as detailed in Figure 2. Each phase’s 
automatic feature extraction was implemented using a densely connected stack of two-
dimensional convolutional, center-cropping and max-pooling layers, where the 
convolutional kernel size was 3 × 3; the cropping and pooling size was 2 × 2; and the 
activation layer used the “ReLU” activation function. Then, the four-phase 
convolutional layers were flattened and sequentially connected to the last dense layer 
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Figure 1  Four-phase images processing pipeline for multiphase convolutional dense network. AP: Arterial phase; DP: Delayed phase; HU: 
Hounsfield unit; MD-CDN: Multiphase convolutional dense network; PP: Precontrast phase; PVP: Portal venous phase; ROI: Region of interest.

Figure 2  Architecture of the proposed multiphase convolutional dense network. AP: Arterial phase; DP: Delayed phase; FLLs: Focal liver lesions; 
HCC: Hepatocellular carcinoma; PP: Precontrast phase; PVP: Portal venous phase.

with SoftMax activation for classification purposes. The sequential connection of each 
phase's CNN network block was designed to preserve the dynamic enhancement 
properties.

The deep convolutional network was a 2.5 D MP-CDN with the four phases of 
resized multichannel images as the input (the slice was used as the channel dimension 
in this network). The classification tasks consisted of training and testing, in which the 
training task was performed with a batch size of 100 and the test task was performed 
once for each lesion.

Training and evaluation
For the training set, data augmentation options, which include scaling and rotation, 
were applied to each ROI. An augmented training dataset with a size 21 times greater 
than the raw dataset was used to train the model. The test set without augmentation 
was directly used to assess the model.

During the training phase, the category label was converted to 0.0 or 1.0 as the 
SoftMax probability to train the model. During the testing phase, the category label 
included the binary label and probability label, where the binary label was 1.0 or 0.0 
corresponding to the class with the largest or non-largest probability from the SoftMax 
layer. In terms of probability label, the result was derived from the SoftMax 
probability outputted from the last layer of the MP-CDN.



Cao SE et al. Classification of FLLs using AI

WJG https://www.wjgnet.com 3665 July 7, 2020 Volume 26 Issue 25

Model implementation
The model was programmed using Python3.7 (https://www.python.org/) under the 
deep learning model development framework of Keras (https://keras.io) with the 
TensorFlow (https://www.tensorflow.org) backend. The network weights were 
optimized using the Adam optimizer, the learning rate was 0.00001 and the loss 
function was categorical cross-entropy. A graphics processing unit (GPU) (NVIDIA 
Titian 1080Ti) was used to accelerate the model training and testing phases.

Statistics
The distributions of age, sex, and lesion size in each of the sets (training and test sets) 
were compared using SPSS 17.0 software (SPSS Inc., Chicago, IL, United States). 
Quantitative variables were compared using the Wilcoxon rank sum test or t-test, and 
qualitative variables were compared using the chi-squared test.

The classification performance of the model was assessed on the test set: The 
accuracy, specificity, and sensitivity for differentiating each category from the others 
were calculated from the confusion matrix from the confusion matrix, and the area 
under the receiver operating characteristic (ROC) curve (AUC) was calculated from 
the SoftMax probability outputted from the last layer of the MP-CDN using SPSS 17.0 
Software.

The model was further evaluated by applying a “phase cheating” experiment on the 
test set. The “phase cheating” experiment was implemented by eliminating one or 
more phases from the four phases and replacing it with the wrong phase(s) before 
feeding it into the model. The design idea of this experiment was based on the 
following concepts: (1) The liver lesion's dynamic enhancement pattern is vital in 
differential diagnosis; (2) Our model was designed to accommodate the correct 
sequence of four phases, which preserved the dynamic enhancement properties; and 
(3) The “phase cheating” experiment was used to test whether our model had learned 
this important dynamic enhancement pattern. If the phases were replaced by a certain 
phase (the so-called “phase cheating” experiment), its dynamic enhancement pattern 
might be different and may result in an incorrect category prediction. We re-evaluated 
the classification performance by comparing the AUCs between the model in the 
normal set and that in the “phase cheating” sets by using MedCalc Software (version 
11.4.2 for Windows, MedCalc Software bvba).

Statistical significance was defined as P < 0.05.

RESULTS
Of the 15680 patients with FLLs treated at our hospital from 2012 to 2017, 375 patients 
with 517 lesions met the inclusion criteria. Of the 517 FLLs, 410 FLLs (88 HCCs, 89 
metastases, 128 benign non-inflammatory FLLs, and 105 abscesses) were used for 
training, and 107 FLLs (23 HCCs, 23 metastases, 34 benign non-inflammatory FLLs, 
and 27 abscesses) were used for testing. Table 1 presents the basic and detailed 
information of each dataset.

The confusion matrix analysis on the test set is shown in Table 2. Of the 23 HCCs, 17 
lesions were correctly classified, 4 lesions were misclassified as benign non-
inflammatory FLLs, and the remaining 2 lesions were misclassified as metastases. It 
was interesting to note that all metastases (23 lesions) were correctly classified. Of the 
34 benign non-inflammatory FLLs, 25 lesions were correctly classified, 3 lesions were 
misclassified as HCC, 3 lesions were misclassified as metastases, and the remaining 3 
lesions were misclassified as hepatic abscesses. Of the 27 hepatic abscesses, 22 lesions 
were correctly classified, 3 lesions were misclassified as metastases, and the remaining 
2 lesions were misclassified as benign non-inflammatory FLLs. The representative 
correctly classified and misclassified examples of each category are shown in Figure 3. 
The accuracy/specificity/sensitivity of differentiating each category from others were 
0.916/0.964/0.739, 0.925/0.905/1.0, 0.860/0.918/0.735 and 0.925/0.963/0.815 for HCC, 
metastases, benign non-inflammatory FLLs, and abscesses, respectively.

ROC analysis was performed on the test set. The AUC (95% confidence interval 
[CI]) for differentiating each category from the others was 0.92 (0.837-0.992), 0.99 
(0.967-1.00), 0.88 (0.795-0.955) and 0.96 (0.914-0.996) for HCC, metastases, benign non-
inflammatory FLLs, and abscesses, respectively (Figure 4A). The model's classification 
probability was calibrated for each category, as shown in Figure 4B, and the Brier 
scores were 0.104, 0.080, 0.124, and 0.074 for HCC, metastases, benign non-
inflammatory FLLs, and hepatic abscesses, respectively.

Table 3 shows the AUC and P value when using the “phase cheating” sets 

https://www.python.org/
https://keras.io
https://www.tensorflow.org
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Table 1 The basic information and detail distribution of each dataset

Training set Test set P value

No. of lesions/No. of patients 88/79 23/22

Age (median [range]) in yr 49 (24-81) 49.5 (33-70) 0.726

Sex (percentage of women) 6/79 (7.6%) 5/22 (22.7%) 0.044

Size of lesion (mean ± SD) in mm 60.6 ± 36.3 63.0 ± 45.4 0.789

Histopathologic diagnosis (No. of lesions/No. of patients)

Surgery 79/70 20/19

Category A: HCC

Biopsy 9/9 3/3

No. of lesions/No. of patients 89/34 23/14

Age (Median [range]) (yr) 58.5 (23-79) 58 (23-79) 0.937

Sex (Percentage of women) 8/34 (23.5%) 6/14 (42.9%) 0.181

Size of lesion (mean ± SD) in mm 23.0 ± 13.9 22.7 ± 11.5 0.937

Primary tumors (No. of lesions/No. of patients)

Colorectal cancer 40/20 10/6

Gastric carcinoma 13/3 3/2

Breast cancer 2/1 0/0

Lung cancer 14/4 4/2

Thyroid cancer 16/4 4/2

Malignant jejunal stromal tumor 2/1 1/1

Duodenal papillary carcinoma 0/0 1/1

Category B: Metastases

Laryngocarcinoma 2/1 0/0

No. of lesions/No. of patients 128/97 34/32

Age (median [range]) in yr 34 (17-82) 34 (10-74) 0.729

Sex (percentage of women) 52/97 (53.6%) 16/32 (50.0%) 0.723

Size of lesion (mean ± SD) in mm 41.9 ± 30.5 52.9 ± 28.4 0.060

Histological type (No. of lesions/No. of patients)

Hemangioma 55/35 15/15

FNH 67/58 17/15

Category C: Benign non-inflammatory FLLs

Adenoma 6/4 2/2

No. of lesions/No. of patients 105/77 27/20

Age (median [range]) in yr 54 (4-82) 55 (25-82) 0.936

Sex (percentage of women) 24/77 (31.2%) 7/20 (35.0%) 0.743

Category D: Hepatic abscesses

Size of lesion (mean ± SD) in mm 64.5 ± 34.9 63.8 ± 24.2 0.916

FLLs: Focal liver lesions; FNH: Focal nodular hyperplasias.

compared to the normal set. The AUCs were lower for the “phase cheating” set with 
eliminating AP and/or PVP than for the normal set in differentiating HCC from the 
others (P < 0.05). When we replaced PP with AP, there was no significant difference 
between the AUCs of the normal set and “phase cheating” sets in differentiating HCC 
from the others (P > 0.05). Figure 5 shows the heatmaps of the predicted category 
when using the “phase cheating” sets compared to the normal set.
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Table 2 The confusion matrix analysis on test set

Ground truth

Benign

non-inflammatory FLLs
Metastases HCCs Hepatic abscesses

Positive predictive value

Benign non-inflammatory FLLs 25 0 4 2 0.806

Metastases 3 23 2 3 0.742

HCCs 3 0 17 0 0.85

Prediction

Hepatic abscesses 3 0 0 22 0.88

Sensitivity 0.735 1 0.739 0.815

Specificity 0.918 0.905 0.964 0.963

Accuracy 0.86 0.925 0.916 0.925

Mean accuracy 0.813

HCCs: Hepatocellular carcinomas; FLLs: Focal liver lesions.

Table 3 The model's performance comparison between the normal set and “phase cheating” sets

Policy HCCs (AUC [95%CI]/P 
value)

Metastases (AUC 
[95%CI]/P value)

Benign non-inflammatory (AUC 
[95%CI]/P value)

Hepatic Abscesses (AUC 
[95%CI]/P value)

PP + AP + PVP + 
DP

0.92 (0.837-0.992) 0.99 (0.967-1.00) 0.88 (0.795-0.955) 0.96 (0.914-0.996)

AP + AP + PVP + 
DP

0.820 (0.705-0.905)/0.0699 0.901 (0.805- 0.960)/0.0289 0.893 (0.809-0.949)/0.2502 0.924 (0.823-0.977)/0.3387

PP + PVP + PVP + 
DP

0.704 (0.565-0.821)/0.0017 0.930 (0.832- 0.981)/0.2573 0.799 (0.701- 0.877)/0.0924 0.938 (0.846-0.984)/0.4317

PP + AP + AP + 
DP

0.768 (0.643-0.866)/0.0013 0.833 (0.714 -0.916)/0.0120 0.864 (0.774-0.929)/0.9720 0.935 (0.846-0.981)/0.4047

PP + AP+ PVP + 
PVP

0.911 (0.815-0.967)/0.6404 0.959 (0.882- 0.992)/0.4066 0.913 (0.832-0.963)/0.7877 0.831 (00.716- 0.914)/0.0184

PP + AP + AP + 
AP

0.672 (0.542-0.785)/< 
0.0001

0.758 (0.692- 0.909)/0.0079 0.863 (0.773-0.927)/0.3188 0.806 (0.690- 0.893)/0.0475

PP + PVP + PVP + 
PVP

0.721 (0.584-0.834)/0.0019 0.913 (0.807-0.972)/0.1165 0.775 (0.675-0.857)/ 0.0247 0.900 (0.796- 0.962)/0.7491

PP + DP+ DP+ DP 0.652 (0.513-0.774)/0.0002 0.818 (0.692-0.909)/0.0079 0.790 (0.688-0.870)/0.0356 0.904 (0.802-0.964)/0.7911

AP + AP + AP + 
AP

0.573 (0.443- 0.696)/< 
0.0001

0.674 (0.548-0.785)/< 0.0001 0.833 (0.739- 0.904)/0.3375 0.697 (0.567- 0.807)/0.0019

PVP + PVP + 
PVP+ PVP

0.697 (0.554-0.817)/0.0029 0.859 (0.748- 0.934)/0.0101 0.794 (0.693- 0.874)/0.1144 0.782 (0.650-0.882)/0.0278

DP + DP + DP + 
DP

0.697 (0.562- 
0.811)/0.0007

0.787 (0.666- 0.880)/0.0008 0.751 (0.646-0.838)/0.0387 0.873 (0.760-0.946)/0.1805

AP: Arterial phase; AUC: Area under the receiver operating characteristic curve; CI: Confidence interval; DP: Delayed phase; FLLs: Focal liver lesions; 
HCC: Hepatocellular carcinoma; PP: Precontrast phase; PVP: Portal venous phase.

DISCUSSION
The correct diagnosis of liver lesions before treatment is of great significance. In our 
study, a classification system was proposed based on the features derived from the 
four-phase DCE-CT images. The AUC (95%CI) for differentiating each category from 
the others was 0.92 (0.837-0.992), 0.99 (0.967-1.00), 0.88 (0.795-0.955), and 0.96 (0.914-
0.996) for HCC, metastases, benign non-inflammatory FLLs, and hepatic abscesses, 
respectively, indicating that the classification system is highly capable of 
distinguishing one lesion type from the others.
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Figure 3  The representative correctly classified and misclassified categories. For each patient, axial four-phase (PP, AP, PVP, DP) computed 
tomography images were obtained and focal liver lesions were diagnosed by histopathologic evaluation after biopsy or surgery. A: A 33-year-old man with focal 
nodular hyperplasia was correctly classified as category C; B: A 54-year-old woman with hemangioma was misclassified as category D; C: A 52-year-old man with 
hepatic abscess was correctly classified as category D; D: An 82-year-old woman with hepatic abscess was misclassified as category B; E: A 55-year-old man with 
HCC was correctly classified as category A; F: A 38-year-old woman with HCC was misclassified as category C; G: A 75-year-old man with liver metastases derived 
from colorectal cancer was correctly classified as category B. And there was no misclassification for the metastasis group. AP: Arterial phase; DP: Delayed phase; 
PP: Precontrast phase; PVP: Portal venous phase.

Figure 4  The receiver operating characteristic analysis of model's classification performance on test set and calibration curve of model's 
classification probability for each category. A: The receiver operating characteristic analysis of model's classification performance on test set; B: Calibration 
curve of model's classification probability for each category. FLLs: Focal liver lesions; HCC: Hepatocellular carcinoma; ROC: Receiver operating characteristic.

Since the different types of FLLs have different outcomes and require different 
clinical interventions, the current challenge in determining an accurate diagnosis 
involves not only effectively differentiating between benign and malignant FLLs 
according to the medical image but also accurately recognizing the different types of 
FLLs. A previous study[20] proposed a novel two-stage multiview learning framework 
for the ultrasound-based computer-aided diagnosis of benign and malignant liver 
tumors. Although both HCC and metastases are malignant liver tumors, their 
treatment strategies are completely different; thus, more accurate classification is 
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Figure 5  Predicted probability heatmaps. The top color bar represents the classification probability of the model from 0 to 1, which corresponds to dark blue 
to bright yellow. A: Shows the results from normal four-phase input; B: Shows the results from different “phase cheating” sets as indicated in the policy of input data; 
C: Shows the representative examples. AP: Arterial phase; DP: Delayed phase; PP: Precontrast phase; PVP: Portal venous phase.

needed. Yasaka et al[15] investigated the feasibility of applying deep learning models for 
liver lesion classification using CT images and showed good model performance. 
However, their standard of classification was based on the radiologic features. HCC is 
treated differently from metastases, as are abscesses and FNHs. In our study, the 
category label obtained from the combination of contemporaneous histology and 
treatment decisions should have more practically applicable value.

Notably, the sensitivity for distinguishing HCC was not high (0.739) in our study, 
similar to that of previous studies. The range of sensitivities reported in the literature 
for the detection of HCC on DCE-CT is 50%-75%[21-24]. However, the diagnosis of the 
lesions may vary depending on the imaging modality. Hamm et al[18] developed a CNN 
model based on MRI images for liver lesion classification, demonstrating high 
sensitivity. Previous studies[24,25] also reported the superiority of MRI over CT. 
However, in clinical practice, CT is more accessible and more inexpensive than MRI. 
Those patients who have a contraindication for MRI due to a comprehensive past 
history and clinical evaluation are candidates for the CT examination. Our model 
should be made available to these patients.

The interpretation of how neural networks, particularly deep neural networks, 
obtain the conclusion is difficult, and these networks are criticized as black boxes[26]. To 
evaluate whether our model correctly learned useful features from the four-phase CT 
images, we applied a “phase cheating” experiment on the test set. Compared to the 
normal set, the performance of the deep-learning network in differentiating HCC from 
others was dramatically degraded once the placeholder on AP and/or PVP was 
occluded (P < 0.05). This finding probably indicates that the networks make decisions 
by using accurate distinguishing features, AP hypervascularity and washout in the 
PVP, which is consistent with the clinical diagnostic criteria for HCC[26]. However, 
there was no significant difference in the AUCs for differentiating HCC from others 
between the normal set and the “phase cheating” set when PP was replaced by AP. 
This result was likely because most lesions are hypodense in the PP[27,28] and the normal 
hepatic parenchyma shows only minimal enhancement during the AP. The degree of 
enhancement of lesions in the AP was obtained by comparing the normal hepatic 
parenchyma around the lesions. In addition, the enhanced scans and the PP have the 
same value in the diagnosis of calcium, necrosis and gas in the lesion.

One issue for supervised learning is overfitting[29], which normally shows good fit 
on training data but performs poorly on unseen test data. When the size of training set 
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is small, this phenomenon becomes more apparent. To avoid overfitting, we applied 
various regulation techniques in the model during training, such as adding 
normalization layers to generalize the model, applying L2 regulation to the filters, 
adding a dropout layer, and augmenting the data to accommodate data variation. The 
Brier scores for HCCs, metastases, benign non-inflammatory FLLs and hepatic 
abscesses also suggest that our model is accurate and reasonable.

Our study had several limitations. First, we only evaluated the four-phase CT 
images and did not consider the clinical information, such as an increased alpha-
fetoprotein level and a history of hepatitis B, C infection or liver cirrhosis, which might 
suggest HCC[29]. Second, we only trained and evaluated the model in a single center 
setting using a single CT scanner, where there might be a data bias that may lead to 
model bias. The model should display better generality if more variable data are 
analyzed. Third, the sample size of the test set was relatively small. Therefore, a larger 
sample is needed for further studies. Finally, we did not include lesions larger than 10 
cm due to the balance among network depth, input matrix size, receptive field size, 
and memory load. For larger lesions, a higher matrix input size and a deeper network 
depth are needed, causing a rapid increase in memory requirement, which exceeds the 
capacity of the current GPUs.

In conclusion, the MP-CDN showed a high differential diagnostic performance for 
classifying FLLs as HCC, metastases, benign non-inflammatory FLLs and hepatic 
abscesses in four-phase CT images. If trained on a larger sample or a diverse cohort 
imaged with a variety of CT scanners, the MP-CDN could become an efficient tool to 
assist radiologists in accurate identification of the different types of FLLs. However, 
further evaluation of this model in a multicenter setting is necessary to evaluate its 
clinical utility.

ARTICLE HIGHLIGHTS
Research background
The accurate classification of focal liver lesions (FLLs) is essential to properly guide 
treatment options and predict prognosis. Dynamic contrast-enhanced computed 
tomography (DCE-CT) is commonly used for the noninvasive detection and exact 
classification of FLLs due to its high scanning speed and high-density resolution. Since 
their recent development, convolutional neural network (CNN)-based deep learning 
techniques have been recognized to have high potential for image recognition tasks.

Research motivation
Since the different types of FLLs have different outcomes and require different clinical 
interventions, the current challenge in determining an accurate diagnosis involves not 
only effectively differentiating between benign and malignant FLLs according to the 
medical image but also accurately recognizing the different types of FLLs. Our 
purpose was to develop and evaluate a deep learning-based CNN to classify FLLs on 
multiphase CT. Our CNN model is expected to become an efficient tool to assist 
radiologists in accurately identifying the different types of FLLs.

Research objectives
The appearances, especially the dynamic enhancement patterns of FLLs on CT 
imaging, are essential for categorizing lesions. We employed a four-channel input data 
to preserve the dynamic enhancement properties. The combination of the lesion's 
dynamic enhancement pattern with a CNN can imitate the image diagnosis of 
radiologists and is expected to improve diagnostic accuracy.

Research methods
A total of 517 FLLs scanned on a 320-detector CT scanner using a four-phase DCE-CT 
imaging protocol (including precontrast phase, arterial phase, portal venous phase, 
and delayed phase) from 2012 to 2017 were retrospectively enrolled. FLLs were 
classified into four categories: Category A, hepatocellular carcinoma (HCC); category 
B, liver metastases; category C, benign non-inflammatory FLLs including 
hemangiomas, focal nodular hyperplasias and adenomas; and category D, hepatic 
abscesses. Each category was split into a training set and test set in an approximately 
8:2 ratio. The CNN model with a sequential input of the four-phase CT images was 
developed to automatically classify FLLs. The classification performance of CNN 
model was evaluated on the test set: The accuracy, specificity and sensitivity were 
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calculated from the confusion matrix, and the area under the receiver operating 
characteristic curve (AUC) was calculated from the SoftMax probability outputted 
from the last layer of the CNN model.

Research results
A total of 410 FLLs were used for training and 107 FLLs were used for testing. The 
accuracy/specificity/sensitivity of differentiating each category from others were 
0.916/0.964/0.739, 0.925/0.905/1.0, 0.860/0.918/0.735 and 0.925/0.963/0.815 for HCC, 
metastases, benign non-inflammatory FLLs, and abscesses on the test set, respectively. 
The AUC (95% confidence interval) for differentiating each category from others was 
0.92 (0.837-0.992), 0.99 (0.967-1.00), 0.88 (0.795-0.955) and 0.96 (0.914-0.996) for HCC, 
metastases, benign non-inflammatory FLLs, and abscesses on the test set, respectively. 
Also, for this study, we only trained and evaluated the CNN model in a single center 
setting using a single CT scanner, where there might be a data bias that may lead to 
model bias. Further evaluation of this model in a multicenter setting is needed to 
evaluate its clinical utility.

Research conclusions
Overall, our CNN model showed a high differential diagnostic performance for 
classification FLLs as HCC, metastases, benign non-inflammatory FLLs and hepatic 
abscesses in four-phase CT image and could become an efficient tool to assist 
radiologists in accurate identification of the different types of FLLs.

Research perspectives
Further multicenter studies are necessary to evaluate the clinical utility of our CNN 
model. In addition, it’s worth to evaluate the clinical information whether can further 
improve the perform of CNN model.
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