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Abstract
Alcoholic liver disease (ALD) remains an important health problem worldwide. 
Perturbation of micronutrients has been broadly reported to be a common 
characteristic in patients with ALD, given the fact that micronutrients often act as 
composition or coenzymes of many biochemical enzymes responsible for the 
inflammatory response, oxidative stress, and cell proliferation. Mapping the 
metabolic pattern and the function of these micronutrients is a prerequisite before 
targeted intervention can be delivered in clinical practice. Recent years have 
registered a significant improvement in our understanding of the role of 
micronutrients on the pathogenesis and progression of ALD. However, how and 
to what extent these micronutrients are involved in the pathophysiology of ALD 
remains largely unknown. In the current study, we provide a review of recent 
studies that investigated the imbalance of micronutrients in patients with ALD 
with a focus on zinc, iron, copper, magnesium, selenium, vitamin D and vitamin 
E, and determine how disturbances in micronutrients relates to the 
pathophysiology of ALD. Overall, zinc, selenium, vitamin D, and vitamin E 
uniformly exhibited a deficiency, and iron demonstrated an elevated trend. While 
for copper, both an elevation and deficiency were observed from existing 
literature. More importantly, we also highlight several challenges in terms of low 
sample size, study design discrepancies, sample heterogeneity across studies, and 
the use of machine learning approaches.

Key words: Alcoholic liver disease; Metabolism; Trace elements; Vitamins; Malnutrition; 
Oxidative stress
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pathophysiology of ALD. More importantly, we also highlight several challenges in terms 
of low sample size, study design discrepancies, sample heterogeneity across studies, and 
the use of machine learning approaches.
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INTRODUCTION
Hepatitis B virus infection remains a major cause of chronic liver disease due to its 
high prevalence and high susceptibility to progress to cirrhosis. With the intensive 
implementation of hepatitis B vaccination and treatment programs, the epidemiology 
of liver disease is undergoing major changes in the Asia–Pacific region. Converging 
evidence has suggested the dramatic benefits of moderate alcohol consumption in 
cardio-protection, which is the so-called “J” shaped curve in the relationship between 
alcohol consumption and overall mortality[1]. However, the threshold of consumption 
is difficult to define. Heavy alcohol consumption may eventually result in a broad 
spectrum of liver damage ranging from liver steatosis, alcoholic hepatitis, liver 
cirrhosis, and finally to hepatocellular carcinoma[2]. The incidence of alcoholic liver 
disease (ALD) is increasing, and requires more attention[3]. Globally, excessive alcohol 
consumption accounts for nearly half of the burden of liver disease[4]. Notably, the 
estimated number of deaths from diseases caused by alcoholism was about 3.3 million 
in 2012 globally, accounting for 7.6% of all deaths among males and 4.0% among 
females[5]. From the year 2005 to 2015, alcoholism was responsible for 9.8% and 22.1% 
of the global incidence of liver cirrhosis and liver cancer respectively[6].

For patients with severe liver damage, there are frequent complications including 
malnutrition, ascites, spontaneous bacterial peritonitis, encephalopathy, and 
esophageal varices. Specifically, protein-energy malnutrition, which is associated with 
poor prognosis, is uniformly recognized in almost all patients with alcoholic hepatitis 
and ALD, which further increases liver vulnerability to alcohol toxicity[7]. For these 
patients, nutritional support is essential to prevent further progression. Current 
guidelines from the European Society for Clinical Nutrition and Metabolism and the 
American Association for the Study of Liver Disease recommend a daily energy intake 
of 35-40 kcal/kg and protein intake of 1.2-1.5 g/kg through night time snacks and 
morning feeding for patients with ALD[5]. However, it is really difficult to achieve this 
objective in practice, since alcohol ingestion usually constitutes half of the daily energy 
intake in these patients, resulting in a deficiency of energy converted from daily food.

Apart from protein-energy deficiency, metabolic disturbances of micronutrients 
including vitamins and mineral elements malnutrition are quite common in patients 
with ALD, as liver dysfunction may affect the metabolism of these elements. ALD 
patients usually exhibit a clinical spectrum of manifestations including poor-quality 
diet, polyuria, diarrhea, and vomiting, which to some extent carry an elevated risk of 
nutrient loss. In addition, portal hypertension in patients with cirrhosis exerts adverse 
effects on nutrition absorption, another synergistic contributor resulting in fluctuations 
in the concentration of micronutrients. Accordingly, screening for micronutrient-
deficiency and giving adequate supplementation are also recommended by the 
American Association for the Study of Liver Disease guidelines[8]. However, a definite 
amount of daily micronutrient intake is not provided. Thus, in contrast to protein-
energy malnutrition, perturbations of micronutrients in ALD patients have attracted 
less attention. Oxidative stress is one of the most important contributors facilitating 
pathogenesis and progression of ALD[9]. Trace elements are cofactors or structural 
constituents of key antioxidant enzymes and other crucial metabolic enzymes for the 
maintenance of homeostasis. Consequently, a deficiency of these trace elements would 
lead to disturbances in antioxidant systems, which have long been recognized in 
ALD[10]. In addition, the abnormal accumulation of elements such as iron in the liver 
and/or other organs can also trigger malfunction of the corresponding organ.

https://www.wjgnet.com/1007-9327/full/v26/i31/4567.htm
https://dx.doi.org/10.3748/wjg.v26.i31.4567
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Recent years have witnessed a significant improvement in our understanding of the 
role of micronutrients in the pathogenesis and progression of ALD. However, the 
highly complex nature of ALD poses an immense challenge for understanding the 
precise biological mechanisms. The goal of this review is to summarize the findings on 
the imbalance of micronutrients in patients with ALD with a focus on zinc, iron, 
copper, magnesium, selenium, vitamin D, and vitamin E, and determine their 
potential mechanisms (Table 1). Moreover, we also highlight some challenges 
emerging from existing studies that aim to assess how disturbances in micronutrients 
relate to the pathophysiology of ALD, as well as present some promising future 
directions.

MINERAL MALNUTRITION IN ALD
Zinc deficiency
The investigation of mineral malnutrition in ALD has been most active in Zinc (Zn). 
As an essential metallic element, Zn plays a pivotal role in multiple biological 
processes including the regulation of neurotransmitter functions, intracellular 
signaling transduction, inflammatory response, reactive oxygen species (ROS) 
production, immunoregulation, wound healing, as well as gene expression[11-15]. 
Independent lines of research suggest that approximately 10% of the human proteome, 
which includes a total of 2800 proteins, may bind with Zn and cellular Zn fluctuations 
may dramatically disturb the biological functions of these Zn-binding proteins[16]. 
Convergent findings suggested that there was a significant Zn deficiency in patients 
with ALD[17]. Dietary Zn supplementation could provide protection against metabolic 
dysfunction and alcoholic liver injury[18-21]. Apart from the common factors (e.g., poor-
quality diet, polyuria, diarrhea), that can result in Zn deficiency, the Zn deficiency-
induced anorexia or acrodermatitis enteropathica might, in turn, exacerbate the 
deficiency[22,23]. Zn may protect against ethanol-induced liver injury by participating in 
multiple pathways. A mouse model suggested that Zn could decrease tight-junction 
proteins and further increase the risk of intestinal barrier dysfunction, thereby 
resulting in endotoxemia and liver injury[15]. Another study observed that a reduction 
in the Zn level was linked with mitochondrial dysfunction and oxidative liver injury 
through ROS generation and depletion of glutathione. Glutathione is the most 
important member of the antioxidants in cellular antioxidant defense[10]. Consequently, 
the hepatoprotective effect of Zn in alcoholic liver injury may be ascribed to its 
inhibition of oxidative stress[10]. Moreover, some studies found that Zn may be 
involved in hepatocyte apoptosis. Zinc depletion contributed to the overexpression of 
Fas ligand and elevation of cytosolic cytochrome, which may further activate caspase-
3, a hallmark of cell apoptosis[24]. In terms of immunomodulation, Zn can interfere with 
the NF-kB pathway, which can influence the production of lipopolysaccharide (LPS)-
induced hepatic TNF-α and disturb dendritic cells’ ability to respond to LPS. Growing 
in vivo experiments suggest that oral Zn supplementation has therapeutic potential in 
the prevention and/or treatment of ALD[10,25].

Iron overload
Iron is critical in many fundamental biological processes as it participates in 
hemoglobin and myoglobin formation, which control the transportation of oxygen, as 
well as deoxyribonucleic acid biosynthesis and ATP synthesis[26]. In addition, iron is a 
cofactor of multiple enzymes that regulate the tricarboxylic acid cycle and the electron 
transport chain[27,28]. Iron metabolic disorder may induce irreversible damage to cellular 
homeostasis. There is a growing consensus that patients with ALD are frequently 
characterized by serum iron elevation and hepatic iron overload and it was estimated 
that significant pathological iron deposition could be detected in approximately 50% of 
ALD patients[29]. Excessive alcohol exposure promotes iron absorption and a 
subsequent increase in ferritin. Actually, ethanol by itself can directly induce ferritin 
synthesis and suppress IL-6-mediated hepcidin production[30,31]. The increased iron 
content and ferritin expression subsequently contribute to disease progression[32,33]. 
Specifically, it has been widely reported that ferritin could interfere with hepatic 
stellate cells (HSC) and disturb the balance between extracellular matrix deposition 
and degradation, which can significantly increase the risk of liver fibrosis[34,35]. On the 
other hand, there are also studies implying that iron itself could activate HSC and 
promote the gene expression of type I collagen, which is a clinical indicator of liver 
fibrosis, providing solid evidence that iron overload could promote the development 
of liver fibrosis[36].
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Table 1 Micronutrients imbalance in patients with alcoholic liver disease

Micronutrient Metabolic 
status Effects Potential mechanisms Ref.

Zinc Deficiency Intracellular signaling transduction, 
inflammatory response, ROS production, 
immunoregulation

Decreases tight-junction proteins, increases the risk of intestinal 
barrier dysfunction; Inhibition of oxidative stress; Disturbs dendritic 
cells’ ability to respond to LPS; Activates apoptosis

[15,17,
24]

Iron Overload Controls the transportation of oxygen; 
DNA biosynthesis; ATP synthesis

Activates HSC, promoting liver fibrosis; Induces ferroptosis and 
mitochondrial dysfunction; Provokes oxidative damage through the 
Fenton reaction; influences myelination and neurotransmitters

[34-37,
43,45]

Copper Deficiency/ 
overload

The precise function of bone marrow and 
the central nervous system; A cofactor of 
many antioxidases

Interacts with other trace elements, and functions as a cofactor of 
antioxidases responsible for antioxidant defense

[48-51]

Selenium Deficiency Antioxidant property Increases the enzyme activity of glutathione peroxidase and protects 
against oxidative injury; participates in autophagy, caspase-
involved apoptosis, and NF-kB-implicated inflammation regulation

[52,55-
58]

Magnesium Deficiency Participates in enzymatic reactions, 
neurotransmission, glycolysis, and 
mitochondrial function

Perturbs the extrusion of cellular magnesium in a Na+-dependent 
and Na+-independent manner

[66-68]

Vitamin D Deficiency Anti-fibrosis, anti-tumor, and anti-
inflammation; Immunomodulation

Not yet fully understood [73,74]

Vitamin E Deficiency Antioxidative properties; protects against 
hepatocyte necrosis and maintains 
mitochondrial integrity

Diminishes alcohol-induced oxidative damage, and improves 
antioxidant defense; Regulates the EGFR-AKT and EGFR-STAT3 
pathways

[84,88-
90]

ALD: Alcoholic liver disease; ROS: Reactive oxygen species; DNA: Deoxyribonucleic acid; HSC: Hepatic stellate cells.

Additionally, studies have demonstrated that iron overload could result in 
ferroptosis via ROS production and lipid peroxidation. Ferroptosis is a form of iron-
dependent oxidative cell death that is morphologically, biochemically, and genetically 
different from autophagy and apoptosis. In addition, an excessive iron-induced ROS 
burst could lead to mitochondrial dysfunction, which is a typical characteristic of 
ferroptosis[37]. Inhibition of ferroptosis can relieve ethanol-induced liver injury[38-40]. 
Therefore, preventing the abnormal accumulation of iron and even ferroptosis would 
be a potential candidate for the design of novel therapeutic strategies for patients with 
ALD.

Accumulating research has unfolded the association between iron and immune 
function. Excessive iron is associated with the likelihood of activating the transcription 
factor NF-kB and upregulating the expression of pro-inflammatory cytokines. In 
addition, considering the close relationship between iron and bacterial multiplication 
as well as virulence, iron overload could behave as a deleterious factor of 
infections[41,42]. Apart from the above-mentioned mechanisms, iron-induced oxidative 
stress is another extensively investigated biological process. During oxidative stress, 
iron can produce oxygen free radicals via the Fenton reaction. Then, oxygen free 
radicals receive electrons transferred from lipids, resulting in decomposition of the 
cytoplasmic membrane, and damage to intracellular organelles, a process known as 
lipid peroxidation. Moreover, as demonstrated in some investigations, oxidative stress 
could also trigger collagen expression in HSC, and further contribute to the 
development of liver fibrosis[43].

Some recent studies have also established the relationship between iron overload 
and cognitive or behavioral deficits in patients with ALD. Generally, these patients 
demonstrated greatly overlapped behavioral, cognitive, physiological, and social 
problems[44]. Putatively, studies suggested that iron brought about these phenotypic 
dysfunctions by exerting influences on the brain systems. Specifically, iron can 
influence myelination as well as the synthesis and metabolism of neurotransmitters[45]. 
Moreover, chronic excessive alcohol induced-abnormal iron deposition in brain areas 
including the basal ganglia and dentate nucleus may act as a contributor to this 
phenomenon[46].

Copper imbalance
Copper is an extracellular element responsible for the precise function of bone marrow 
and the central nervous system, and it also functions as a cofactor of many 
antioxidases[47]. Consequently, copper metabolic disorder may induce dysfunction in 
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the corresponding organ. Compared with the two trace elements (i.e., iron and Zn) 
mentioned above, investigations focusing on revealing the relationship between 
copper metabolism and the potential pathophysiology of ALD are relatively limited. 
Findings derived from these studies were also far from conclusive and sometimes even 
inconsistent. For example, results from the study by Shibazaki et al[48] showed that 
people with excessive alcohol consumption tended to exhibit a significant copper 
deficiency, which concurs with prior evidence showing copper metabolism 
perturbations in patients with ALD[48]. In contrast, another study found that copper 
levels in patients with ALD were elevated or unchanged as compared with healthy 
controls[49]. Unfortunately, most of these available studies only reported the differences 
in copper levels between patients and healthy controls from the perspective of 
statistical analysis, with the mechanistic insights into the involvement of copper 
imbalance in the pathogenesis of ALD significantly unexplored. This may be partially 
ascribed to the fact that copper has a complex interaction with other trace elements, 
especially iron and Zn. Specifically, hyperzincemia can suppress copper absorption, 
and copper deficiency usually has a synergistic effect with Zn reduction in impairing 
normal functioning of the central nervous system in patients addicted to alcohol[50]. In 
addition, copper deficiency can dampen iron transport by suppressing the activity of 
hephaestin, a copper-containing ferroxidase necessary for iron efflux from 
enterocytes[51]. These three metals function as cofactors of antioxidases that are 
responsible for antioxidant defense, which is critical in preventing oxidative damage 
in patients with ALD. Taken together, further investigations to elucidate the specific 
metabolic pattern of copper in patients with ALD are warranted.

Serum selenium deficiency
Selenium is an important component of antioxidant-glutathione peroxidase and thus it 
has been broadly used in the clinic due to its antioxidant property. Abnormal 
metabolism of selenium has been reported in a growing body of research, which 
suggested that low selenium level is a common feature of patients with ALD[52]. 
Selenium metabolic disorder may lead to liver dysfunction[52,53]. However, the 
involvement of selenium depletion in the pathogenesis of ALD has not been fully 
defined. Substantial efforts have hitherto been devoted to revealing the potential 
mechanisms. For example, a study suggested that selenium was capable of alleviating 
liver histopathological features including hepatocyte injury, abnormal accumulation of 
liver fat and liver neutrophils infiltration, and can reduce elevated ALT levels after 
selenium supplementation in in vivo experiments[54]. Putatively, the protective effects of 
selenium predominantly may lie in its ability to increase the level or the enzyme 
activity of glutathione peroxidase and thus affords marked protection against 
oxidative injury. Other studies have implied that the participation of selenium in 
autophagy, caspase-involved apoptosis, and NF-kB-implicated inflammation 
regulation may be another protective mechanism[55-57]. Despite the above findings, 
some investigations derived inconsistent results suggesting that chronic excessive 
alcohol intake might have no significant effect on serum selenium levels[58], even 
though it may not be that common. Therefore, further investigation is still urgently 
required to determine the metabolism of selenium in patients with ALD.

Hypomagnesemia
Magnesium is the second most abundant intracellular cation after potassium, and 
mitochondria, endoplasmic reticulum, and cytosol constitute the top three cellular 
pools that are rich in Mg2+[59]. Consequently, serum magnesium levels may not reflect 
the real storage. Magnesium participates in diverse biological processes, including 
enzymatic reactions, neurotransmission, glycolysis, and mitochondrial function[60,61]. 
Growing evidence suggests that magnesium metabolic disorder is common in patients 
with severe malnutrition, diabetes, hypertension, and ALD[62,63]. Importantly, 
hypomagnesemia is also a significant electrolyte abnormality in critically ill patients, 
and these patients have higher mortality than patients with normomagnesemia[64]. 
With regard to excessive alcohol exposed populations, convergent findings suggest 
that magnesium deficiency is a common feature[65]. It was reported that alcohol could 
decrease whole tissue magnesium by approximately 14%, of which liver magnesium 
accounted for 5%-10%. In addition, hepatocytes from ethanol-treated rats exhibited a 
25% reduction in cellular magnesium compared with the control group[66]. Alcohol 
may induce magnesium disturbance by perturbing the extrusion of cellular 
magnesium in a Na+-dependent and Na+-independent manner. In addition, there was 
also a distinct decline in ATP content. All these pieces of evidence indicate that chronic 
alcohol consumption could considerably impair Mg2+ homeostasis and transport of 
liver cells after prolonged exposure to alcohol. The inability of liver cells to reserve 
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Mg2+ might, at least in part, explain the reduction in tissue Mg2+ content after 
prolonged exposure to alcohol. In particular, alcohol treated-cells became insensitive 
to catecholamine-induced magnesium accumulation, which to some extent prevented 
hepatocytes from restoring cellular magnesium[66,67].

VITAMIN METABOLISM IN ALD
Vitamin D deficiency
Existing work in liver diseases concerning vitamin metabolism has mostly focused on 
vitamin D. In past years, vitamin D has been well documented due to its classical 
effects on bones and calcium metabolic homeostasis. Results from recent functional 
and mechanical studies demonstrate that vitamin D could also behave as a regulatory 
factor modulating many other biological functions such as cell proliferation, apoptosis, 
cell cycle, differentiation, and immunomodulation. Additionally, the effects of vitamin 
D in anti-fibrosis, anti-tumor, and anti-inflammation have also been systematically 
investigated.

It was estimated that approximately one billion people worldwide are vitamin D 
insufficient[68]. Accumulating research has indicated that people with a lower 
concentration of vitamin D always have a higher body mass index and are 
predisposed to being diagnosed with hypertension and many cancer types[69,70]. 
Decreased vitamin D concentration is one of the most consistent observations in 
patients with chronic disease, especially those with severe liver disease. An enormous 
number of studies have indicated that vitamin D could modulate the biological 
function of HSC, which can effectively attenuate liver fibrosis. Specifically, Potter 
et al[71] observed that the vitamin D receptor could combine with a proximal Sp1.1 site 
and a newly identified distal site on the collagen promoter, through which vitamin D 
could suppress TGFβ1-induced type I collagen formation in HSC[71].

It was estimated that 96% of alcoholic patients have repressed levels of serum 
vitamin D, and 86.1% were deficient and 60.4% were severely deficient. In addition, 
among alcoholic patients, a severe deficiency of vitamin D was quite common in those 
with alcoholic steatohepatitis[72]. This concurs with prior evidence that decreased 
serum vitamin D was associated with increased susceptibility to ethanol-induced liver 
damage, which was manifested by abnormal serum AST, steatosis, and liver cirrhosis. 
Typically, Trépo et al[73] reported that severe vitamin D deficiency was significantly 
associated with a poor prognosis and complications of portal hypertension[73]. This 
study also found that vitamin D treatment or supplementation could suppress the 
expression of the pro-inflammatory cytokine TNFα, which further confirmed the role 
of vitamin D in immunomodulation. Moreover, the results of a prospective study 
among patients with alcoholic liver cirrhosis found that oral vitamin D 
supplementation decreased the Child-Pugh score and ameliorated liver damage[74]. 
Collectively, these data highlight the possibility that vitamin D may serve as a 
diagnostic biomarker and a potent agent in the management of ALD. However, the 
specific role of vitamin D in the pathogenesis, disease progression, and other 
complications during the course of ALD is not yet fully understood. Therefore, there is 
a pressing need for further studies to elucidate the precise mechanisms underlying 
vitamin D and alcohol-induced hepatotoxicity, which can facilitate clinical applications 
and improve the diagnosis, prevention, and treatment of ALD.

Vitamin E inadequacy
As a nonenzymatic antioxidant, vitamin E has been intensively investigated due to its 
antioxidative properties. Dietary sources of vitamin E predominately include 
vegetables, nuts, olive oil, and lean meats. The endogenous metabolites of vitamin E 
consist of multiple isomers, among which α-tocopherol is the most important 
biological active form[75]. Through suppression of oxidative and inflammatory 
reactions, vitamin E alleviated the progression of atherosclerosis in low-density 
lipoprotein receptor-deficient mice fed with a high-fat diet[76]. Moreover, vitamin E has 
beneficial effects on the prevention of cancers and diabetes due to its antioxidative 
effects[77]. Chronic vitamin E deficiency could increase the risk of damage in response 
to oxidative stress. A recent study observed that a moderate intake of vitamin E 
changed the composition of gut microbiota and altered intestinal microbiota involved 
in the pathogenesis of ALD[78]. In a clinical trial of patients with nonalcoholic 
steatohepatitis and advanced fibrosis, Vilar-Gomez et al[79] found that vitamin E 
supplementation improved patients’ clinical outcomes including reducing the risk of 
death or liver transplant and the probability of hepatic decompensation[79]. Moreover, 
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for other chronic liver diseases such as steatocholestasis and drug-induced liver injury, 
vitamin E also protected against hepatocyte necrosis and maintained mitochondrial 
integrity[80,81]. Notably, apart from the effects of anti-inflammation and antioxidative 
properties, some studies have also highlighted that vitamin E is involved in signal 
transduction and gene expression. Specifically, it is postulated that vitamin E achieves 
its anti-inflammation, anti-tumor, and anti-apoptosis effects partly by regulating the 
expression of related genes (e.g., P53, NF-kB, cyclin D1)[82].

It is widely accepted that vitamin E deficiency is common in patients with ALD[83]. 
Malnutrition, along with impaired transport by lipoproteins may be the primary 
causes of vitamin E deficiency[84]. Clinical administration of vitamin E increased the 
plasma α-tocopherol but did not improve the parameters of liver function and clinical 
outcomes such as motility and one-year survival. However, vitamin E decreased the 
expression of hyaluronic acid, an indicator correlated with hepatic fibrosis[85,86]. Studies 
in an animal model showed that vitamin E could diminish alcohol-induced oxidative 
damage by removing ROS, reducing lipid peroxidation, and improving antioxidant 
defense[87], which is in harmony with findings from the study by Yao et al[88]. Treatment 
with vitamin E, especially together with tannic acid, relieved histologic damage, 
reduced collagen, and glycogen deposition in addition to its hepatoprotective role in 
decreasing the levels of serum hepatic damage markers (e.g., ALT, AST). The 
hepatoprotective effects may be the result of vitamin E’s antioxidative property and its 
suppression of the inflammatory response as well as cell apoptosis through regulation 
of the EGFR-AKT and EGFR-STAT3 pathways[89].

CHALLENGES AND FUTURE DIRECTIONS
The studies surveyed above open interesting cues to systematically explore the 
benefits of micronutrients-based therapeutic interventions in the cure of alcohol-
induced liver injury. However, some important issues should be discussed. Here, we 
elaborate on some representative challenges that have emerged from the reviewed 
studies, and present some promising future directions as follows:

Sample size
Most of the studies discussed in this review included a limited number of subjects. 
Although small studies have multiple practical advantages, such as being timesaving 
in the enrollment of subjects, and high flexibility in data analyses[90], results from these 
small samples are usually attached to low statistical power[78], and are more likely to 
generate false-positive results. In this regard, these biomedical findings may only 
demonstrate statistically significant effects but have no clinical utility. Consequently, 
future investigators should perform analyses following larger studies involving more 
subjects.

Study design
There is a pyramid of evidence, which represents a general hierarchy of multiple 
clinical study designs. The top of the pyramid is the double-blind, randomized, 
controlled studies, and such investigations without the use of surrogate endpoints are 
always most rigorous and reliable to evaluate the effects of a specific intervention[91]. 
However, many of the clinical studies discussed in the current review enrolled 
patients with liver diseases from a single clinic and were carried out in a non-
randomized manner. In contrast to the randomized controlled trials, the non-
randomized controlled investigations cannot invariably eliminate bias in the studies 
efficiently, which may silently affect the results and fool the investigators[92]. As such, 
the results may be confusing and misleading. Additionally, some of the important 
studies were conducted in mice that are innately different from humans. Animal 
research is at the base of the pyramid with the lowest forms of evidence, thereby 
limiting its wider application in clinical settings. For example, although various 
independent animal studies reported that vitamin E administration alleviated liver 
damage, supplementation of vitamin E to ALD patients had no significant influence on 
clinical status[86]. Therefore, we encourage future studies assessing the impact of 
micronutrients on ALD to be designed as randomized controlled trials.

Sample heterogeneity across studies
To minimize the imbalance of sample properties between two groups being compared, 
it is necessary to ensure that the two populations are propensity matched on the 
irrelevant variables (e.g., age, gender, body mass index) except the one of interest. 
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However, we cannot guard against the possibility that there are some unrecognized 
confounders that may contribute to the imbalance between groups, and further affect 
the results[79]. This may also be one of the reasons that inconsistent results were 
sometimes derived from existing studies, especially when group comparisons were 
conducted in small samples.

On the other hand, there is also heterogeneity in the variable of interest per se 
between studies. To explore the effect of a specific micronutrient, various treatment 
doses for various durations were administered across reported studies, as there is no 
definite “golden standard” for them, especially for exploratory studies at an early-
stage. Despite the fact that the confounding variables have been largely balanced, the 
findings might also be inconsistent across different trials. A case in point was whether 
vitamin E replacement benefits ALD patients. A clinical study by de la Maza et al[86] 
observed that supplementation with 500 IU vitamin E for one year had no significant 
effect on hepatic laboratory parameters and mortality[86]. However, Mezey et al[85] found 
that vitamin E could decrease serum hyaluronic acid, a biomarker of liver fibrosis, 
when ALD patients were given 1000 IU vitamin E for three months[85]. These findings, 
to some extent, might fail to help investigators to reach a firm decision in clinical 
practice. Of note, excessive drug (which was intended to serve as a therapy) exposure 
has a detrimental effect, which might also mislead researchers. For example, a meta-
analysis by Miller et al[93] discovered that high-dosage vitamin E (≥ 400 IU/d) showed 
an increased risk of all-cause mortality[93]. Therefore, many efforts are required to 
extensively control potential confounders.

Machine learning methods
Among the reviewed studies, univariate analytical techniques were the most widely 
applied methods in the investigation of micronutrient imbalance in alcoholic-induced 
liver diseases. Such investigations maintain a focus on group-level comparison to 
examine whether significant group differences exist in a specific micronutrient 
between patients with liver disease and healthy controls. Although these studies have 
advanced our understanding of the mechanisms underlying ALD, the biggest 
disadvantage of them is that they do not have the ability to provide individualized 
guidelines. In recent years, machine learning-based methods have attracted substantial 
attention from multiple research fields, which can build a multivariate predictive 
model by employing cross-validation strategies to ensure generalization[94]. However, 
the application of machine learning models in the investigation of micronutrients in 
ALD is relatively limited. Futures studies can capitalize on the strengths of machine 
learning to better reveal the role of micronutrients in the pathology of ALD.

CONCLUSION
In this review, we summarized studies investigating micronutrients imbalance in 
patients with ALD, with a focus on zinc, iron, copper, selenium, magnesium, vitamin 
D and vitamin E. Overall, zinc, selenium, vitamin D and vitamin E uniformly 
exhibited a deficiency, and iron demonstrated an elevated trend. While, for copper, 
both an elevation and deficiency were observed from existing studies, which requires 
further investigation. In conclusion, this review helps delineate the imbalance of 
micronutrients in ALD, thus shedding light on the underlying mechanism, and 
offering possibilities for clinical intervention.
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