
World Journal of
Gastroenterology

ISSN 1007-9327 (print)
ISSN 2219-2840 (online)

World J Gastroenterol  2020 September 21; 26(35): 5223-5386

Published by Baishideng Publishing Group Inc



WJG https://www.wjgnet.com I September 21, 2020 Volume 26 Issue 35

World Journal of 

GastroenterologyW J G
Contents Weekly Volume 26 Number 35 September 21, 2020

REVIEW

Stress granules in colorectal cancer: Current knowledge and potential therapeutic applications5223

Legrand N, Dixon DA, Sobolewski C

MINIREVIEWS

Is artificial intelligence the final answer to missed polyps in colonoscopy?5248

Lui TKL, Leung WK

Artificial intelligence-assisted esophageal cancer management: Now and future5256

Zhang YH, Guo LJ, Yuan XL, Hu B

ORIGINAL ARTICLE

Basic Study

New approach of medicinal herbs and sulfasalazine mixture on ulcerative colitis induced by dextran 
sodium sulfate

5272

Shin MR, Park HJ, Seo BI, Roh SS

Immune infiltration-associated serum amyloid A1 predicts favorable prognosis for hepatocellular 
carcinoma

5287

Zhang W, Kong HF, Gao XD, Dong Z, Lu Y, Huang JG, Li H, Yang YP

Retrospective Cohort Study

Epidemiology of perforating peptic ulcer: A population-based retrospective study over 40 years5302

Dadfar A, Edna TH

Retrospective Study

Investigation of immune escape-associated mutations of hepatitis B virus in patients harboring hepatitis B 
virus drug-resistance mutations

5314

Huang BX, Liu Y, Fan ZP, Si LL, Chen RJ, Wang J, Luo D, Wang FS, Xu DP, Liu XG

RBBP4 promotes colon cancer malignant progression via regulating Wnt/β-catenin pathway5328

Li YD, Lv Z, Zhu WF

Observational Study

Updated bone mineral density status in Saudi patients with inflammatory bowel disease5343

Ewid M, Al Mutiri N, Al Omar K, Shamsan AN, Rathore AA, Saquib N, Salaas A, Al Sarraj O, Nasri Y, Attal A, Tawfiq A, 
Sherif H

Clinical features of cardiac nodularity-like appearance induced by Helicobacter pylori infection5354

Nishizawa T, Sakitani K, Suzuki H, Yoshida S, Kataoka Y, Nakai Y, Ebinuma H, Kanai T, Toyoshima O, Koike K



WJG https://www.wjgnet.com II September 21, 2020 Volume 26 Issue 35

World Journal of Gastroenterology
Contents

Weekly Volume 26 Number 35 September 21, 2020

SYSTEMATIC REVIEWS

Systematic review of the prevalence and development of osteoporosis or low bone mineral density and its 
risk factors in patients with inflammatory bowel disease

5362

Kärnsund S, Lo B, Bendtsen F, Holm J, Burisch J

CASE REPORT

Gastrointestinal tract injuries after thermal ablative therapies for hepatocellular carcinoma: A case report 
and review of the literature

5375

Rogger TM, Michielan A, Sferrazza S, Pravadelli C, Moser L, Agugiaro F, Vettori G, Seligmann S, Merola E, Maida M, 
Ciarleglio FA, Brolese A, de Pretis G



WJG https://www.wjgnet.com III September 21, 2020 Volume 26 Issue 35

World Journal of Gastroenterology
Contents

Weekly Volume 26 Number 35 September 21, 2020

ABOUT COVER

Editorial board of World Journal of Gastroenterology, Dr. Somashekar Krishna is an Associate Professor of Medicine 
in the Gastroenterology Division of the Ohio State University Wexner Medical Center in Columbus, OH, United 
States. He trained in advanced endoscopy at the University of Texas MD Anderson Cancer Center (Houston). Dr. 
Krishna has served on the American Society of Gastrointestinal Endoscopy Research Committee and the 
Gastrointestinal Endoscopy journal editorial board. He is a fellow of the ACG, AGA, and ASGE. Throughout his 
career, Dr. Krishna has published more than 125 peer-reviewed publications on his research, which encompass 
studies of advances in early and accurate detection of precancerous pancreatic lesions using novel endoscopic 
technologies, innovation in endoscopic ultrasound and novel imaging, endoscopy-guided ablation of pancreatic 
lesions, and large-database analyses and clinical outcomes with focus on acute pancreatitis. (L-Editor: Filipodia)

AIMS AND SCOPE

The primary aim of World Journal of Gastroenterology (WJG, World J Gastroenterol) is to provide scholars and readers 
from various fields of gastroenterology and hepatology with a platform to publish high-quality basic and clinical 
research articles and communicate their research findings online. WJG mainly publishes articles reporting research 
results and findings obtained in the field of gastroenterology and hepatology and covering a wide range of topics 
including gastroenterology, hepatology, gastrointestinal endoscopy, gastrointestinal surgery, gastrointestinal 
oncology, and pediatric gastroenterology.

INDEXING/ABSTRACTING

The WJG is now indexed in Current Contents®/Clinical Medicine, Science Citation Index Expanded (also known as 
SciSearch®), Journal Citation Reports®, Index Medicus, MEDLINE, PubMed, PubMed Central, and Scopus. The 2020 
edition of Journal Citation Report® cites the 2019 impact factor (IF) for WJG as 3.665; IF without journal self cites: 
3.534; 5-year IF: 4.048; Ranking: 35 among 88 journals in gastroenterology and hepatology; and Quartile category: 
Q2. 

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Yu-Jie Ma; Production Department Director: Xiang Li; Editorial Office Director: Ze-Mao Gong.

NAME OF JOURNAL INSTRUCTIONS TO AUTHORS

World Journal of Gastroenterology https://www.wjgnet.com/bpg/gerinfo/204

ISSN GUIDELINES FOR ETHICS DOCUMENTS

ISSN 1007-9327 (print) ISSN 2219-2840 (online) https://www.wjgnet.com/bpg/GerInfo/287

LAUNCH DATE GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH

October 1, 1995 https://www.wjgnet.com/bpg/gerinfo/240

FREQUENCY PUBLICATION ETHICS

Weekly https://www.wjgnet.com/bpg/GerInfo/288

EDITORS-IN-CHIEF PUBLICATION MISCONDUCT

Andrzej S Tarnawski, Subrata Ghosh https://www.wjgnet.com/bpg/gerinfo/208

EDITORIAL BOARD MEMBERS ARTICLE PROCESSING CHARGE

http://www.wjgnet.com/1007-9327/editorialboard.htm https://www.wjgnet.com/bpg/gerinfo/242

PUBLICATION DATE STEPS FOR SUBMITTING MANUSCRIPTS

September 21, 2020 https://www.wjgnet.com/bpg/GerInfo/239

COPYRIGHT ONLINE SUBMISSION

© 2020 Baishideng Publishing Group Inc https://www.f6publishing.com

© 2020 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA

E-mail: bpgoffice@wjgnet.com  https://www.wjgnet.com

https://www.wjgnet.com/bpg/gerinfo/204
https://www.wjgnet.com/bpg/GerInfo/287
https://www.wjgnet.com/bpg/gerinfo/240
https://www.wjgnet.com/bpg/GerInfo/288
https://www.wjgnet.com/bpg/gerinfo/208
http://www.wjgnet.com/1007-9327/editorialboard.htm
https://www.wjgnet.com/bpg/gerinfo/242
https://www.wjgnet.com/bpg/GerInfo/239
https://www.f6publishing.com
mailto:bpgoffice@wjgnet.com
https://www.wjgnet.com


WJG https://www.wjgnet.com 5256 September 21, 2020 Volume 26 Issue 35

World Journal of 

GastroenterologyW J G
Submit a Manuscript: https://www.f6publishing.com World J Gastroenterol 2020 September 21; 26(35): 5256-5271

DOI: 10.3748/wjg.v26.i35.5256 ISSN 1007-9327 (print) ISSN 2219-2840 (online)

MINIREVIEWS

Artificial intelligence-assisted esophageal cancer management: Now 
and future

Yu-Hang Zhang, Lin-Jie Guo, Xiang-Lei Yuan, Bing Hu

ORCID number: Yu-Hang Zhang 
0000-0003-2268-6149; Lin-Jie Guo 
0000-0002-0852-3186; Xiang-Lei 
Yuan 0000-0003-2281-5094; Bing Hu 
0000-0002-9898-8656.

Author contributions: Zhang YH 
reviewed literatures and drafted 
the manuscript; Guo LJ provided 
critical comments and revision; 
Yuan XL did part of the literature 
review; Hu B provided critical 
comments regarding artificial 
intelligence and revision.

Supported by Sichuan Science and 
Technology Department Key R and 
D Projects, No. 2019YFS0257; and 
Chengdu Technological Innovation 
R and D Projects, No. 2018-YFYF-
00033-GX.

Conflict-of-interest statement: All 
authors declare no conflict of 
interests.

Open-Access: This article is an 
open-access article that was 
selected by an in-house editor and 
fully peer-reviewed by external 
reviewers. It is distributed in 
accordance with the Creative 
Commons Attribution 
NonCommercial (CC BY-NC 4.0) 
license, which permits others to 
distribute, remix, adapt, build 
upon this work non-commercially, 
and license their derivative works 
on different terms, provided the 
original work is properly cited and 

Yu-Hang Zhang, Lin-Jie Guo, Xiang-Lei Yuan, Bing Hu, Department of Gastroenterology and 
Hepatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, 
China

Corresponding author: Bing Hu, MD, Chief Doctor, Professor, Department of Gastroenterology 
and Hepatology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Wuhou 
District, Chengdu 610041, Sichuan Province, China. hubingnj@163.com

Abstract
Esophageal cancer poses diagnostic, therapeutic and economic burdens in high-
risk regions. Artificial intelligence (AI) has been developed for diagnosis and 
outcome prediction using various features, including clinicopathologic, 
radiologic, and genetic variables, which can achieve inspiring results. One of the 
most recent tasks of AI is to use state-of-the-art deep learning technique to detect 
both early esophageal squamous cell carcinoma and esophageal adenocarcinoma 
in Barrett’s esophagus. In this review, we aim to provide a comprehensive 
overview of the ways in which AI may help physicians diagnose advanced cancer 
and make clinical decisions based on predicted outcomes, and combine the 
endoscopic images to detect precancerous lesions or early cancer. Pertinent 
studies conducted in recent two years have surged in numbers, with large 
datasets and external validation from multi-centers, and have partly achieved 
intriguing results of expert’s performance of AI in real time. Improved pre-trained 
computer-aided diagnosis algorithms in the future studies with larger training 
and external validation datasets, aiming at real-time video processing, are 
imperative to produce a diagnostic efficacy similar to or even superior to 
experienced endoscopists. Meanwhile, supervised randomized controlled trials in 
real clinical practice are highly essential for a solid conclusion, which meets 
patient-centered satisfaction. Notably, ethical and legal issues regarding the black-
box nature of computer algorithms should be addressed, for both clinicians and 
regulators.

Key Words: Artificial intelligence; Computer-aided diagnosis; Deep learning; Esophageal 
squamous cell cancer; Barrett’s esophagus; Endoscopy

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

https://www.f6publishing.com
https://dx.doi.org/10.3748/wjg.v26.i35.5256
http://orcid.org/0000-0003-2268-6149
http://orcid.org/0000-0003-2268-6149
http://orcid.org/0000-0002-0852-3186
http://orcid.org/0000-0002-0852-3186
http://orcid.org/0000-0003-2281-5094
http://orcid.org/0000-0003-2281-5094
http://orcid.org/0000-0002-9898-8656
http://orcid.org/0000-0002-9898-8656
mailto:hubingnj@163.com


Zhang YH et al. Artificial intelligence in esophageal cancer

WJG https://www.wjgnet.com 5257 September 21, 2020 Volume 26 Issue 35

the use is non-commercial. See: htt
p://creativecommons.org/licenses
/by-nc/4.0/

Manuscript source: Invited 
manuscript

Received: May 25, 2020 
Peer-review started: May 25, 2020 
First decision: July 29, 2020 
Revised: July 29, 2020 
Accepted: August 12, 2020 
Article in press: August 12, 2020 
Published online: September 21, 
2020

P-Reviewer: Jennane R, Kravtsov 
V, Yoshida H 
S-Editor: Yan JP 
L-Editor: MedE-Ma JY 
P-Editor: Ma YJ

Core Tip: Deep-learning-based artificial intelligence (AI) is a breakthrough technology that 
has been widely explored in diagnosis, treatment and prediction of esophageal cancer. 
Recent studies have dealt with limitations of previous researches, including small sample 
size, selection bias, lack of external validation and algorithm efficiency. Favorable 
outcomes that are comparable to experienced endoscopists have been achieved with 
satisfactory robustness, indicating a real-time potential. Future randomized controlled 
trials are needed to further address these issues concerning AI to provide an ultimate 
patient-centered satisfaction, in an interpretable, ethical and legal manner.
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INTRODUCTION
Esophageal cancer (EC) is one of the top ten leading prevalent malignancies 
worldwide, ranking the seventh in incidence and the sixth in mortality in 2018[1]. The 
major histological types are squamous cell carcinoma (SCC), which is predominant 
worldwide, and adenocarcinoma (AC) which is more prevalent in Caucasian 
people[2-4]. Data collected from 12 countries have indicated that AC will possibly 
experience a dramatic increase in incidence up to 2030, while the incidence of SCC will 
continuously decrease[5]. It is estimated that EC causes absolute years of life lost 
reduction of 7.8 (95%CI: 2.3-12.7)[6]. Although EC is not the most common cause of 
admission or readmission to hospital[7], it certainly imposes economic burdens. A 
cohort study conducted in the United Kingdom showed that the mean net costs of care 
per 30 patient-days of AC were $1016, $669, and $8678 for the initial phase, continuing 
care phase and terminal phase, respectively[8]. The cost grows with an increase of 
tumor node metastasis (TNM) staging at first diagnosis[8].

Apparently, EC is a serious health threat, imposing economic burden on both high-
income and low-income countries. Therefore, early diagnosis and evidence-based 
expert opinions on selecting the optimal treatment modality are crucial for reducing 
such burden. Although various diagnostic methodologies [including endoscopic 
ultrasonography (EUS), chromoendoscopy, optical coherence tomography (OCT), 
high-resolution microendoscopy (HRM), confocal laser endomicroscopy (CLE), 
volumetric laser endomicroscopy (VLE), and positron emission tomography (PET)], 
serous and genetic predictors have been developed to improve diagnostic accuracy 
and predict outcomes, inter-observer variabilities in interpreting images and heavy 
workloads limit their clinical efficiency[9-11]. A practical tool that can improve accuracy 
and reduce workload is in urgent need for clinical practice.

Artificial intelligence (AI), which mimics human mind’s cognitive behavior, has 
been an emerging hot spot globally in various disciplines. Numerous models have 
been attempted for machine learning (ML), and the terminologies can be referred in 
the previous studies[12,13]. ML models are trained by datasets to extract and transform 
features, thereby achieving the goal of classification and prediction by self-
learning[13-15]. In gastroenterology, AI-based technologies, which are characterized by 
deep learning (DL) as state-of-the-art machine learning algorithms, have been mainly 
developed to identify dysplasia in Barrett’s esophagus (BE), SCC, gastric cancers, and 
Helicobacter pylori in upper gastrointestinal (UGI) tract[16], and to diagnose polyps, 
inflammatory bowel diseases, celiac disease, and gastrointestinal (GI) bleeding in 
lower GI tract[17]. Various models have been developed and studied to detect 
anatomical structure, discriminate dysplasia, and predict therapeutic and survival 
outcomes of EC. The ultimate goal of AI is to assist physicians and patients to make a 
superior data-based diagnosis or decision. In the following sections, we will (1) 
provide an overview of AI applications in diagnosis and prediction of advanced 
cancer; (2) specify computer-aided diagnosis (CAD) for early detection of esophageal 
SCC (ESCC) and esophageal adenocarcinoma (EAC) based on optical imaging; and (3) 
outline limitations of the existing studies and future perspectives. We searched 
PubMed database using terms “esophageal cancer” and “artificial intelligence” for 
papers published up to March 1, 2020, and initially obtained 172 studies. After 
exclusion of 128 items, 44 research articles that provided detailed data were included 
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in the review and discussion (Figure 1).

IMPLICATIONS FOR DIAGNOSIS AND THERAPEUTIC DECISIONS
EC is highly malignant, and the 5-year survival rate of late-stage EC is less than 
25%[18]. Radical therapies, including surgery, chemotherapy, radiotherapy or their 
combination are highly essential to improve survival outcome. Accurate diagnosis, 
precise staging, optimal modality selection, as well as responsiveness and survival 
outcome prediction are necessary in making true clinical decisions. However, these 
decisions are made mainly based on the current guidelines and expertise in clinical 
practice. AI technologies have been therefore developed to enhance the reliability of 
those decisions in an individualized manner.

Diagnosis
One of the important roles of AI is to detect malignant lesions. In 1996, Liu et al[19] 
proposed a tree-based algorithm called PREDICTOR, to classify patients with 
dyspeptic symptoms into EC, which achieved a discriminating accuracy of 61.3%, with 
sensitivity (SEN) and specificity (SPE) of 94.9% and 39.8%, respectively. In 2002, a 
probabilistic network-based decision-support system was developed, which could 
correctly predict the cancer stage of 85% of tested data in reasonable time[20]. In the 
same year, a robust classifier, artificial neural network (ANN), imitating neural 
network of the human brain, was adopted to distinguish BE from EC[21]. The ANN was 
trained using 160 genes selected by significance analysis of microarrays (SAM) from 
cDNA microarray data of esophageal lesions. This ANN outperformed cluster analysis 
by correctly diagnosing all the tested samples. Kan et al[22] also combined ANN with 
SAM-extracted 60 gene clones to accurately predict lymph node metastasis in 86% of 
all SCC cases, with SEN and SPE of 88% and 82%, respectively, better than clustering 
or predictive scoring. Kan et al[22] suggested that AI was a potential tool to detect 
lymph node metastasis when the SEN of coherence tomography (CT), EUS, and PET is 
insufficient[23,24]. Since tumor risk factors have complex nonlinear correlations, a fuzzy 
neural network, trained on hybridization of chaotic optimization algorithm and error 
back propagation (EBP), was able to correctly diagnose 87.36% of ESCC and 70.53% of 
dysplasia[25]. This fuzzy-logic based model outperformed traditional statistics, such as 
multivariate logistic regression model that was previously described by Etemadi 
et al[26].

While symptoms are not quite reliable and gene analysis or PET scans are 
expensive, a simpler noninvasive detection method may be more practical. Li et al[27] 
combined support vector machine (SVM), a traditional classifier, with surface-
enhanced Raman spectroscopy in order to distinguish serum spectra of EC patients 
from healthy controls. Eventually, a combination of SVM with principle component 
analysis (PCA) on the basis of radial basis function (RBF), namely RBF PCA-SVM 
algorithm, exhibited the greatest efficacy among others with accuracy, SEN, and SPE 
of 85.2%, 83.3% and 86.7%, respectively.

Outcome prediction
Another significant role of AI is to predict prognosis of EC based on various 
demographic, clinicopathologic, hematologic, radiologic, and genetic variables. 
Surgery and neoadjuvant chemotherapy, radiotherapy or chemoradiotherapy are 
important definitive modalities for advanced EC. Selecting the optimal strategy with 
superior predictive outcome is of vital importance.

Traditionally, TNM staging system is used as a predictor. However, a previous 
study showed that it was not very accurate[28]. Hence, multiple computational 
algorithms were developed to assist more reliable predictions. In 2005, Sato et al[29] 
trained an ANN to predict survival outcome. They found that the best predictive 
accuracy was obtained, with 65 clinicopathologic, genetic and biologic variables for 1-
year survival and 60 variables for 5-year survival. The area under ROC curve (AUC), 
SEN, and SPE were 0.883, 78.1%, 84.7% and 0.884, 80.7%, 86.5%, respectively. Similar 
results with higher SEN and SPE could be achieved in another ANN model to predict 
the 1- and 3-year post-operative survival of EC and esophagogastric junction cancer[30]. 
These two ANNs both outperformed TNM staging system[29,30].

In addition to ANN, other models were also proposed to solve certain problems. A 
prognostic scoring system, using serum C-reactive protein and albumin 
concentrations, was fused with expertise by fuzzy logic[31]. The proposed model could 
perform 1-year survival prediction with an AUC of 0.773. Another hierarchical 
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Figure 1  Flow chart of study selection and logic arrangement of review. BE: Barrett’s esophagus; EAC: Esophageal adenocarcinoma; OCT: Optical 
coherence tomography; ESCC: Esophageal squamous cell carcinoma.

forward selection (HFS), a wrapper feature selection method, was developed to solve 
the problem of small sample size[32]. In this SVM-validated model, clinical and PET 
features were learned to predict disease-free survival. The results unveiled that HFS 
achieved the highest accuracy of 94%, with robustness of 96%. Robustness could be 
further increased to 98%, if HFS was incorporated prior knowledge (pHFS).

Treatment decision
Based on the condition and prognosis of patient, an individualized treatment strategy 
is needed. For instance, when chemotherapy is prescribed for a patient, what is the 
optimal medication with appropriate dosage and period? Generally, clinicians make 
decisions according to their own experience, guidelines or consensus. However, those 
recommendations are often fixed and human errors are sometimes inevitable. A group 
of Iranian experts attempted to train a multilayer neural network with particle swarm 
optimization and EBP algorithms, in order to determine the dosage of 
chemotherapy[33]. Encouraging results showed that accuracy of particle swarm 
optimization and EBP was both 77.3%. Zahedi et al[33] were positive about its future 
application as a supplementary decision-making system.

While the majority of decisions are made before treatment, is it possible to make 
real-time treatment decisions? The answer is YES. Maktabi et al[34] tested a relatively 
new hyperspectral imaging system. They found that SVM was able to detect cancerous 
tissue with 63% SEN and 69% SPE within 1s. It is promising that hyperspectral 
imaging may assist surgeons in identifying tumor borders intra-operatively in real 
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time.

Treatment response
A good treatment response is crucial for consequential therapeutic decision and 
predicting outcome[35]. Endeavors have been made to select candidate factors that 
correlate with responsiveness to treatment. However, it is often extremely laborious to 
testify these numerous variables in clinical trials. AI technologies are potential 
powerful tools for this selection.

One indicator is the genetic biomarker. In 2010, Warnecke-Eberz et al[36] reported 
their usage of ANN to predict histopathologic responsiveness of treatment-naïve 
patients to neoadjuvant chemoradiotherapy by analyzing 17 genes using the TaqMan 
low-density arrays. Their results were promising, with 85.4% accuracy, 80% SEN, and 
90.5% SPE. Radiology is another important indicator to assess tumor regression after 
treatment. One rationale for this exploration is that tumor heterogeneity exists within 
radiologic images[37]. The standardized uptake values of 18F-fluorodeoxyglucose in PET 
imaging were reported to have predictive potential[38]. However, this predictive power 
is limited[39] due to some confounding factors, such as intra-observer variations. 
Ypsilantis et al[40] adopted a three-slice convolutional neural network that could extract 
features from pre-treatment PET scans automatically to predict response to 
chemotherapy. It achieved a moderate accuracy of 73.4%, with SEN and SPE of 80.7% 
and 81.6%, respectively, which outperformed other ML algorithms trained on 
handcrafted PET scan features. Recently, CT radiomics three months after 
chemoradiotherapy were combined with dosimetric features of gross tumor volume 
and organs at risk to identify non-responders. Jin et al[41] found that these combinative 
features trained by the model of extreme gradient boosting plus PCA achieved an 
accuracy of 70.8%, with AUC of 0.541.

While tumor regression is an important indicator to assess responsiveness, post-
treatment distant metastasis is also vital to evaluate responsiveness, which is 
correlated with survival outcome. In order to predict post-operative distant metastasis 
of ESCC, further SVM models incorporated with clinicopathological and 
immunohistological variables were established[42]. Finally, the SVM model with four 
clinicopathological features and nine immunomarkers had better performance, with 
accuracy, SEN, SPE, positive predictive value, and negative predictive value of 78.7%, 
56.6%, 97.7%, 95.6%, and 72.3%, respectively. Another least squares SVM model was 
also proposed to predict post-operative lymph node metastasis in patients who 
received chemotherapy preoperatively, by exploiting preoperative CT radiomics[43]. 
Tumor length, thickness, CT value, long axis and short axis size of the largest regional 
lymph node were analyzed. The model reached an AUC of 0.887.

In addition to its diagnostic and predictive value, AI has learned to identify 
meaningful alterations in molecular and genetic level. In 2017, Lin et al[44] compared the 
serum chemical elements concentrations between ESCC patient and healthy controls, 
and found that nearly half of the elements were different between the two groups. 
They then trained several classifiers to perform the discrimination, with Random 
Forest being the best (98.38% accuracy) and SVM the second (96.56% accuracy). Later, 
Mourikis et al[45] developed a robust sysSVM algorithm to identify 952 genes that 
promoted EAC development, using 34 biological features of known cancer genes. They 
called these rare and highly individualized genes ”helper” genes, which function 
alongside known drivers.

AI may be a feasible option to help determine an optimal treatment strategy. This 
was previously evidenced by a study of 13 365 EACs from 33 cancer centers 
worldwide, which incorporated random forest algorithm, and found that the predicted 
survival of AI-generated therapy was superior to actual human decisions[46]. However, 
most of the above-mentioned ML algorithms described were developed for the sake of 
advanced cancer. Diagnosing EC in an early stage contributes to a far better outcome 
when treatment is undertaken appropriately. This is highly dependent on the 
development of optical imaging technologies that can directly visualize the 
morphology of esophageal lesions.

MORPHOLOGY-BASED CAD
In recent decades, endoscopic optical imaging techniques have been rapidly advanced, 
which provide endoscopists a fine inspection of the morphology of esophageal 
mucosa, micro-vessels, and even cells. In lieu of white light imaging (WLI) and 
magnifying endoscopy (ME), emerging OCT, CLE, VLE, and HRM techniques have 
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been developed to diagnose BE[47-49]. Meanwhile, the diagnosis of SCC more relies on 
chromoendoscopy and intra-epithelial papillary capillary loop (IPCL) observed under 
narrow band imaging (NBI) plus ME[50]. Although these modalities have yielded 
preferable diagnostic value, the interpretation of these images need expert’s 
experience (inter- and intra-observer variability[51]), and processing large dataset is 
laborious and time consuming. Researchers in medicine and information engineering 
have collaborated to develop different AI models for this purpose.

BE versus dysplasia or EAC
The current screening and surveillance recommendation for BE is endoscopic 
examination plus random biopsy[52] , which is limited by sampling error. AI models 
trained with various endoscopic modalities and pathologies aimed to overcome these 
shortcomings (Table 1).

Endoscopy: In 2009, German experts developed a content-based image retrieval 
framework[53]. In this frame, novel color-texture features were combined with an 
interactive feedback loop. The algorithm could correctly recognize 95% of normal 
mucosa and 70% of BE from 390 training images, with a moderate inter-rater reliability 
of 0.71. The authors thought that the CAD system might be incorporated to the 
endoscopic system to help lesser experienced clinicians. In 2013, van der Sommen 
et al[54] tried an SVM algorithm, which could automatically identify and locate 
irregularities of esophagus on high-definition endoscopy with an accuracy of 95.9% 
and AUC of 0.99, taking a first step towards CAD. Later, these authors used a CAD 
system to automatically recognize region of interest (ROI) in dysplastic BE[55]. The 
SVM-based classification yielded a SEN and SPE of 83% for per-image level, and 86% 
and 87%, for the patient level, respectively. However, the f-score of the system, which 
indicates the similarity with the gold standard, was lower than experts.

In order to improve the outcome, Horie et al[56] were the first who adopted a deep 
CNN (Single Shot MultiBox Detector, SSD) model to detect EC from WLI and NBI 
images in 2018. Only 8 EACs were used in that study. The diagnostic accuracy for EAC 
was 90%, and SEN for WLI and NBI at patient level was both equal to 88%. The system 
processed one image in only 0.02 s, which is promising for a real-time job. This ability 
of SSD to detect EAC was assessed in another study, which outperformed their 
proposed regional-based CNN (R-CNN), Fast R-CNN and Faster R-CNN in both 
precision and speed, which achieved F-measure, SEN, and SPE of 0.94, 96% and 92%, 
respectively[57]. The authors stated that SSD worked faster due to its single forward 
pass network nature. CNN was then validated in a more recent study to detect early 
dysplastic BE[58]. The system was pretrained on ImageNet, and was then trained with 
1853 images and tested with 458 images. The CNN accurately detected 95.4% of the 
dysplasia, with 96.4% SEN and 94.2% SPE. One highlight for this study is that it 
studied WLI and NBI images, as well as images with standard focus and near focus. 
Another highlight is its ability to deal with real-time videos.

Except for the above-mentioned CNNs, another CNN built upon residual net 
(ResNet) was introduced. Ebigbo et al[59] tested this system in two databases, Augsburg 
and Medical Image Computing and Computer-Assisted Intervention, with SEN both 
being over 90%. Later, de Groof et al[60] used a custom-made hybrid ResNet/U-Net 
which was pretrained on GastroNet to distinguish non-dysplastic BE from dysplasia. 
The system was trained using state-of-the-art ML techniques (transfer learning and 
ensemble learning) and validated in a sequential five datasets, with accuracy of 89% 
and 88% for two external validation datasets, which were slightly superior to the 
model pre-trained with ImageNet in its supplementary ablation experiment.

Endomicroscopy: In 2017, Hong et al[61] reported their experience in adopting CNN as 
a classifier to distinguish intestinal metaplasia (IM), gastric metaplasia (GM) and 
neoplasia (NPL) of BE using endomicroscopic images. The total accuracy was 80.77%. 
It performed well for IM and NPL. However, it could not identify GM in the tested 
samples. VLE is an advanced imaging techinique that can provide a 3-mm deep scan 
of the esophagus in full circumference, which is commercially available (Nvision 
VLETM Imaging System). In the same year, Swager et al[62] reported the first attempt of 
using CAD to detect NPL by adopting histology-correlated ex-vivo VLE. The authors 
used eight separate ML algorithms that were trained with clinically inspired features. 
They found that “layering and signal decay statistics” feature performed the best, with 
AUC, SEN, and SPE of 0.95, 90%, and 93%, respectively. Similar results were obtained 
by van der Sommen et al[63], with a maximum AUC of 0.93 in identifying early EAC in 
BE. Notably, the authors discovered that scanning depth of 0.5-1 mm was the most 
appropriate range for classifying tissue categories.
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Table 1 Computer-aided endoscopic diagnosis for dysplastic Barrett’s esophagus

Ref. Year Study design Lesions Diagnostic 
method AI technology Dataset 

capacity Validation Outcomes Compared to 
expert Processing speed

Münzenmayer 
et al[53]

2009 Retrospective BE WLI Color-texture analysis 
in a CBIR framework

390 images with 
482 ROIs

LOO (N-fold 
cross-validation)

Accuracy: BE/CC/EP 
70%/74%/95%

NA NA

van der Sommen 
et al[55]

2016 Retrospective HGD, early 
EAC

WLI SVM 100 images LOO Per-image SEN/SPE: 83%/83%; 
Per-patient SEN/SPE: 86%/87%

Inferior NA

Horie et al[56] 2019 Retrospective EAC WLI; NBI CNN-SSD 8 patients Caffe DL 
framework

Accuracy: 90%; Per-image SEN: 
WLI/NBI: 69%/71%; Per-case 
SEN: WLI/NBI: 88%/88%

NA 0.02 s/image

Ghatwary et al[57] 2019 Retrospective EAC WLI VGG’16-based; R-
CNN; Fast R-CNN; 
Faster R-CNN; SSD

100 images (train 
50, test 50)

5-fold cross-
validation and 
LOO

F-measure: 0.94 (SSD); SEN/SPE: 
96%/92% (SSD)

NA 0.1-0.2 s/image

Hashimoto et al[58] 2020 Retrospective HGD, early 
EAC

WLI and NBI with 
both standard and 
near focus

CNN 1835 images NA Per-image accuracy: 95.4%; Per-
image SEN/SPE: 96.4%/94.2%; 
98.6%/88.8% (WLI); 92.4%/99.2% 
(NBI)

NA GPU gtx 1070: 0.014 
s/frame; YOLO v2: 
0.022 s/frame

Ebigbo et al[59] 2019 Retrospective Early EAC WLI; NBI CNN-ResNet 248 images LOO SEN/SPE of Augsburg database: 
97%/88% (WLI); 94%/80% (NBI); 
SEN/SPE of MICCAI database: 
92%/100%

Superior NA

de Groof et al[60] 2019 Retrospective Early 
dysplastic BE

WLI ResNet-UNet hybrid 1704 images 
(train 1544, 
validation 160)

4-fold cross-
validation 
(external 
validation)

Accuracy/SEN/SPE: 
89%/90%/88% (dataset 4); 
88%/93%/83% (dataset 5)

NA (superior to 
non-expert)

Classification: 0.111 
s/image; 
Segmentation: 0.124 
s/image

Swager et al[62] 2017 Retrospective HGD, early 
EAC

VLE SVM, DA, Adaboost, 
RF, kNN, NB, LR, 
LogReg

60 images LOO AUC: 0.95; SEN/SPE: 90%/93% Superior NA

van der Sommen 
et al[63]

2018 Retrospective HGD, early 
EAC

VLE SVM, RF; AdaBoost; 
CNN, kNN; DA, 
LogReg

60 frames LOO AUC: 0.90-0.93 Superior 24 ms/full dataset for 
clinically-inspired 
features

Struyvenberg 
et al[65]

2020 Prospective HGD, early 
EAC

VLE PCA-CAD 3060 frames NA AUC of Multi-frame: 0.91; AUC of 
Single-frame: 0.83

NA 0.001 s/frame; 
1.5s/full VLE scan

van der Putten 
et al[66]

2020 Prospective HGD, early 
EAC

VLE Multi-step PDE-CNN 
on an A-line basis

In-vivo: 140 
images (train 
111, test 29)

4-fold cross-
validation

AUC: 0.93; F1 score: 87.4% NA 50000 A-lines/s

Shin et al[67] 2016 Retrospective HGD, EAC HRM Two-class LDA-based 
automated sequential 
classification 
algorithm

230 sites (train 
77, validation 
153)

NA Accuracy: 84.9%; SEN/SPE: 
88%/85%

NA 52 s/image
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Qi et al[68] 2006 Retrospective Dysplastic BE OCT PCA 106 images LOO Accuracy: 83%; SEN/SPE: 
82%/74%

NA NA

AdaBoost: Adaptive boost; AUC: Area under ROC curve; BE: Barrett’s esophagus; CAD: Computer-aided diagnosis; CBIR: Content-based image retrieval; CC: Mucosa of cardia; CNN: Convolutional neural network; DA: Discriminant 
analysis; EAC: Esophageal adenocarcinoma; EP: Epithelium; HGD: High-grade dysplasia; HRM: High-resolution microendoscopy; Knn: K-nearest neighbor; LDA: Linear discriminant analysis; LogReg: Logistic regression; LOO: Leave-one-
out cross-validation; LR: Linear regression; NA: Not available; NB: Naïve bayes; NBI: Narrow band imaging; OCT: Optical coherence tomography; PCA: Principle component analysis; PDE: Principle dimension encoding; R-CNN: 
Regional-based CNN; RF: Random forest; SEN: Sensitivity; SPE: Specificity; SSD: Single shot multibox detector; SVM: Support vector machine; VLE: Volumetric laser endomicroscopy; WLI: White light imaging.

Since VLE produces an overwhelming number of images in a short time, a real-time 
CAD system is more helpful in actual clinical practice. In 2019, Trindade et al[64] 
reported a video case illustrating an intelligent real-time image segmentation system 
which employed three established features to dynamically enhance abnormal VLE 
images with color in endoscopic procedure. They are now undergoing a multicenter 
RCT (NCT03814824) to further validate this CAD system. While most studies use 
single frame to include ROI, a recent study tried to add neighboring VLE images to 
pathology-correlated ROI[65]. Hopefully, the so-called multi-frame analysis combing 
PCA improved the performance of single-frame analysis, from an AUC of 0.83 to 0.91. 
Meanwhile, the novel CAD system needs only 1.3 ms to automatically differentiate 
non-dysplastic BE from dysplasia in one image, and this is also a promising result for a 
real-time setting.

While previous studies employed ex-vivo scan images, the following study 
conducted by van der Putten et al[66] used in-vivo histology-correlated images. In 
addition, they used principle dimension encoding (PDE) to encode images into score 
vector. They combined this PDE with traditional ML algorithms, e.g., random forest 
and SVM, to classify the degree of dysplasia (high-grade dysplasia vs early EAC). They 
obtained an AUC of 0.93 and F1 score of 87.4%, which outperformed some traditional 
DL classifiers, such as Squeezenet and Inception.

Another kind of endomicroscopic technique is HRM. Shin et al[67] designed an 
automated imaging processing algorithm extracting epithelium morphology and BE 
glandular architecture features, and a classification algorithm, which distinguished 
NPL from dysplasia in BE with an accuracy, SEN and SPE of 84.9%, 88%, and 85% in 
validation dataset, respectively. This quantitative CAD is cost-effective and may be 
applied in clinical settings after improvement of image acquisition quality and 
processing speed.

OCT: OCT is also a noninvasive imaging technique that can detect BE, dysplasia and 
early EAC, in compensation to routine endoscopy. In 2006, Qi et al[68] attempted to 
extract image features using center-symmetric auto-correlation method and a PCA-
based CAD algorithm was used for classification. A total of 106 pathology-paired 
images were included for training, which ended up with an accuracy of 83%, SEN of 
82% and SPE of 74% to distinguish non-dysplastic BE from dysplasia. In general, the 
accuracy of OCT in identifying dysplasia is not satisfactory, which limits its 
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application[69].
In addition to endoscopic images, pathologic morphology has also been studied. 

Sabo et al[70] employed an ANN-validated computerized nuclear morphometry 
(pseudostratification, pleomorphism, chromatin texture, symmetry and orientation) 
model to discriminate the degree of dysplasia in BE. The model was able to 
differentiate non-dysplastic BE from low-grade dysplasia with an accuracy of 89%, and 
low-grade dysplasia from high-grade dysplasia with an accuracy of 86%.

ESCC
ESCC is the dominant histological type of esophageal cancer worldwide. Diagnosing 
early cancer mainly depends on endoscopic screening, which also produces a large 
number of images that needs special training to interpret. AI technologies have also 
been explored globally to address this issue (Table 2).

Endoscopy: In 2016, Liu et al[71] designed an algorithm called joint diagonalization 
principle component analysis, which correctly detected 90.75% of EC with an AUC of 
0.9471. To improve the performance of CAD system, Horie et al[56] did the first attempt 
to use DL to diagnose ESCC with a large number of endoscopic images. The CNN had 
a diagnostic accuracy of 99% for ESCC, 99% for superficial cancer, and 92% for 
advanced one. The SEN of CNN was 97% for per-patient level and 77% for per-image 
level. Later in 2019, Cai et al[72] proposed a novel CAD system called deep neural 
network (DNN). They used only standard WLI images to train the model. The DNN-
CAD model could detect 91.4% of early ESCC, higher than senior endoscopists. By 
using this model, the average diagnostic performance of endoscopists improved 
satisfactorily, in terms of accuracy, SEN, and SPE. However, these studies excluded 
magnified images.

Later, Ohmori et al[73] evaluated both ME and non-ME images [including WLI and 
NBI/blue laser imaging (BLI)] using a CNN based on SSD to recognize SCC. The 
accuracy for ME, non-ME + WLI, and non-ME + NBI/BLI was 77%, 81%, and 77%, 
respectively, all with high SEN and moderate SPE. The result was similar to 
experienced endoscopists tested in this study. Zhao et al[74] conducted another study 
and evaluated ME + NBI images by employing a double-labeling fully convolutional 
network. This system used ROI-label and segmentation-label to delineate IPCLs based 
on the AB classification by the Japan Esophageal Society[75]. The study showed that 
senior observers had significant higher diagnostic accuracy than mid-level and junior 
ones. The model reached a diagnostic accuracy of 89.2% and 93% in lesion and pixel 
level, respectively, for distinguishing type A, B1 and B2 IPCLs, which was similar to 
that of senior group. Specifically, the model had a higher sensitivity for type A IPCL 
than clinicians (71.5% vs 28.2%-64.9%), which might avoid unnecessary radical 
treatment. Instead of identifying IPCL patterns, the study conducted by Nakagawa 
et al[76] aimed to predict invasion depths. The authors developed two separate SSD-
based CNNs for ME and non-ME images. The ability of the system to correctly 
distinguish EP/submucosal (SM) 1 cancers from SM2/SM3 cancers was 91%, 92.9%, 
and 89.7% for the ME+ non-ME, non-ME and ME images, respectively. Regrading M 
and SM cancers, the differentiating accuracy was 89.7%, 90.3%, and 92.3% for the total, 
non-ME, and ME, respectively. The performance of this CAD model was also 
comparable to experts, but much faster.

A processing speed over 30 images/s is necessary for dynamic video analysis[56]. 
Although Horie et al[56], Ohmori et al[73] and Nakagawa et al[76] reported that their 
systems could process one image in 0.02, 0.027, and 0.033 s, respectively, they have not 
tested the systems in real-time videos. After Cai et al[72] had validated the efficacy of 
their DNN-CAD model, they split the video into images and then assembled them, 
enabling the model to delineate early cancer in real time. Everson et al[77] validated 
another CNN investigating IPCLs using sequential still images in real time of 0.026 to 
0.037 s per image. The CNN could differentiate type A from type B IPCLs with a mean 
accuracy of 93.3%. Last year, Luo et al[78] reported a multicenter, comparative study, 
exploiting 1 036 496 endoscopic images to construct a gastrointestinal artificial 
intelligence diagnostic system (GRAIDS) based on the concept of DeepLab’s V3+. The 
GRAIDS yielded a diagnostic accuracy of UGI cancer ranging from 91.5% to 97.7% for 
internal, external, and prospective validation datasets, with favorable sensitivities, 
which were similar to experts and superior to non-experts. They also incorporated the 
CAD model to endoscopic videos in real time, with the highest speed of 0.008 s per 
image and latency less than 0.04 s. However, they did not report their outcome in 
distinct histology. Recently, Guo et al[79] specially developed a CNN-CAD system built 
on SegNet architecture, aiming at real-time application in clinical settings. In this 
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Table 2 Computer-aided endoscopic diagnosis for early esophageal squamous cell cancer

Ref. Year Study design Lesions Diagnostic 
method AI technology Dataset capacity Validation Outcomes Compared to 

expert
Processing 
speed

Liu et al[71] 2016 Retrospective Early ESCC WLI JDPCA + CCV 400 images 10-fold cross-
validation

Accuracy: 90.75%; AUC: 0.9471; 
SEN/SPE: 93.33%/89.2%

NA NA

Horie et al[56] 2019 Retrospective ESCC WLI; NBI CNN-SSD 41 pts (train 8428 
images; test 1118 images 
without histology 
distinction)

Caffe DL framework Accuracy: 99%; Per-image SEN: 
72%/86% ( WLI/NBI, respectively); 
Per-case SEN: 79%/89% ( WLI/NBI, 
respectively)

NA 0.02 s/image

Cai et al[72] 2019 Retrospective Early ESCC WLI DNN 2615 images (train 2428, 
test 187)

NA Accuracy: 91.4%; SEN/SPE: 
97.8%/85.4%

Superior NA

Zhao et al[74] 2019 Retrospective Early ESCC ME + NBI Double labeling 
FNN

1350 images with 1383 
lesions

3-fold cross-validation Accuracy/SEN/SPE at lesion level: 
89.2%/87%/84.1%; Accuracy at pixel 
level: 93%

Comparable NA

Ohmori 
et al[73]

2020 Retrospective Superficial ESCC ME + NBI/BLI; Non-
ME + WLI/NBI/BLI

CNN 23289 images (train 
22562, test 727)

Accuracy/SEN/SPE: 
77%/100%/63% (Non-ME + 
NBI/BLI); 81%/90%76% ( Non-ME + 
WLI); 77%/98%/56% ( ME)

Comparable 0.028 s/image

Nakagawa 
et al[76]

2019 Retrospective ESCC (EP-
SM1/SM2+SM3)

ME; Non-ME CNN-SSD 15252 images (train 
14338, test 914)

Caffe DL framework Accuracy/SEN/SPE: 
91%/90.1%/95.8%

Comparable 0.033 s/image

Everson 
et al[77]

2019 Retrospective ESCC IPCLs (type 
A/type B)

ME + NBI CNN 7046 images 5-fold cross-
validation+eCAM

Accuracy/SEN/SPE: 
93.3%/89.3%/98%

NA 0.026-0.037 
s/image

Guo et al[79] 2020 Retrospective Early ESCC NBI (ME + non-ME) CNN-SegNet 13144 images (train 
6473, validation 6671), 
80 videos (47 lesions, 33 
normal esophagus)

NA Per-image SEN/SPE: 
98.04%/95.03%; Per-frame SEN/SPE: 
91.5%/99.9%

NA < 0.04 s/frame; 
Latency <0.1 s

Shin et al[82] 2015 Retrospective HGD, ESCC HRM Two-class LDA 375 sites of images (train 
104, test 104, validation 
167)

NA AUC: 0.95; SEN/SPE: 84%/95% NA 3.5 s/image

Quang et al[83] 2016 Retrospective ESCC HRM A fully 
automated 
algorithm

375 biopsied sites from 
Shin et al[82] (train 104, 
test 104, validation 167)

NA AUC: 0.937; SEN/SPE: 95%/91% NA Average 5 s for 
computing

BLI: Blue laser imaging; CCV: Color coherence vector; DL: Deep learning; CNN: Convolutional neural network; DNN: Deep neural network; eCAM: Explicit class activation map; EP: Epithelium; ESCC: Esophageal squamous cell cancer; 
FNN: Fuzzy neural network; HGD: High-grade dysplasia; HRM: High-resolution microendoscopy; IPCLs: Intra-papillary capillary loops; JDPCA: Joint diagonalisation principal component analysis; LDA: Linear discriminant analysis; ME: 
Magnifying endoscopy; NA: Not available; NBI: Narrow band imaging; SEN: Sensitivity; SM: Submucosa; SPE: Specificity; SSD: Single shot multibox detector; WLI: White light imaging.

study, 13144 NBI (ME + non-ME) images and 80 video clips were employed. In the 
image dataset, the SEN, SPE, and AUC were 98.04%, 95.03% and 0.989, respectively. 
For the video dataset, the SEN of per frame for non-ME and ME was 60.8% and 96.1%, 
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respectively; the SEN of per lesion for non-ME and ME was both 100%. When they 
analyzed 33 original videos of full-range normal esophagus, they acquired a SPE of 
99.95% and 90.9% for per-frame and per-case analysis, respectively. The ability of this 
model to process each frame with a maximum time of 0.04 s and latency less than 0.1 s 
set a good example for future model optimization for real-time applications[80].

Endomicroscopy: In 2007, Kodashima et al[81] used ImageJ software to label the border 
of nuclei under endo-cytologic images from 10 ESCC patients. They found that the 
computer-labelled nuclei area of ESCC was significantly different from that of normal 
tissues, which demonstrated the diagnostic possibility of computer. HRM is another 
low-cost tool that can illustrate the esophageal epithelium in cellular level, which 
compensates the low specificity of iodine staining and is also more cost-effective 
compared with CLE. In 2015, Shin et al[82] developed a 2-class linear classification 
algorithm using nuclei-related features to identify neoplastic squamous mucosa (HGD 
+ cancer). It resulted in an AUC, SEN, and SPE of 0.95, 87%, 97% and 0.93, 84%, 95% 
for the test and validation datasets, respectively. However, the application of this 
system for real-time practice needs acceleration of analyzing speed. To solve this 
problem and reduce the cost of equipment, a smaller, tablet-interfaced HRM with real-
time algorithm was developed by Quang et al[83]. The algorithm was able to 
automatically identify SCC with an AUC, SEN, and SPE of 0.937, 95%, and 91%, 
respectively, which is comparable to the result achieved by the first generation bulky 
laptop-interfaced HRM[82] or the combination of Lugol chromoendoscopy and HRM[84].

STUDY LIMITATIONS AND FUTURE PERSPECTIVES
Limitations
The exciting and promising findings of various CAD models have been summarized in 
detail above. Researches are ongoing worldwide because none of the studies were 
perfect. The limitations and problems are driving forces for evolution and innovation. 
We hereby discuss several major drawbacks that limit the strength of the studies.

Firstly, the most mentioned drawback is insufficient training sample size. The 
number of endoscopic images that the majority of studies employed ranged from 248 
to about 7000 (Tables 1 and 2). The limited number of training data, lack of imaging 
variability, and single-center nature are likely to cause overfitting[85], which attenuates 
the ability of AI models to perform well in unused datasets and leads to unstable 
results[12,55]. To overcome this problem, various regularization methods have been 
developed, such as segmenting the image or using cross validation with 5 folds or 
even 10 folds to augment the datasets. Recently, the size of datasets has been greatly 
enlarged in several studies[56,73,79], the largest of which included over one million UGI 
images from six centers[78]. Therefore, further multicenter studies including large 
dataset with different kinds of images (i.e., WLI, NBI, ME and non-ME) harvested by 
different endoscopic systems for SCC and AC are likely to produce results with 
robustness and external generalizability. In addition, different AI algorithms tested in 
prospective external dataset need to be developed to increase the diversity of AI 
technology[13].

Secondly, selection bias is another contributor to limited generalizability. Most of 
the previous studies were retrospective and used only high-quality images. 
Suboptimal quality images with mucus, blur, or blood. were excluded. Additionally, 
unbalanced distribution of lesion types (SCC vs AC, type B1 vs B2 and B3 IPCLs), 
different numbers of images for each patient, and non-uniform processing method for 
different lesions all might cause bias in the result. Further prospective RCTs will be 
required in the future.

Thirdly, almost all of the studies employed still images to train AI model. Not until 
recently did the researchers validate the efficacy in dealing with endoscopic videos in 
a real-time manner. Future video-based researches are needed to narrow the gap 
between study and clinical practice.

Future perspectives
Gold standard: Consensus-based ground truth for lesions is preferred over a single 
expert’s annotation. The committees of expert endoscopists and pathologists from 
different countries need to be formed to improve the precision of annotation. In 
addition, the AI should play a role in helping endoscopists recognize lesions and 
target biopsies for gold standard pathological examination, rather than replacing our 
“job”.
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Hardware upgrade: Computers equipped with powerful GPU are needed to perform 
more sophisticated algorithms and process large volume of graphical data, in order to 
achieve the goal of real-time recognition.

Pre-training database: ImageNet and GastroNet have been introduced, which store 
mass datasets of manually labeled images. These databases should be constantly 
enriched, since CAD models with prior knowledge are prone to have better 
discriminative ability[60].

Cost-effect analysis: When a novel diagnostic method is introduced to clinical 
practice, whether it is cost-effective is an important issue. A recent multi-center add-on 
analysis revealed that AI is able to reduce cost of colonoscopic management of 
polyps[86]. Since medical cost is one of the major concerns for both patients and 
government, it is necessary to assess whether AI can improve diagnostic performance 
of EC while reducing cost of unnecessary examinations and radical therapies. Future 
studies concerning medical cost and reimbursement should be conducted in different 
countries with different healthcare and insurance systems to address this issue.

Ethics and legality: Believe it or not to believe it, it is a real question. While we have 
taken a giant leap of AI technology in medicine which has the potential to improve the 
performance of clinicians with different experience and reduce error, the black-box[87] 
nature of the ML algorithms truly brings doubts[88]. Can we trust the results of AI, since 
they lack explainability? What should we do with these computer-generated results? 
Are they certified to be legal evidence? Challenges for legislation, regulation, 
insurance and clinical practice are inevitable. Supervised RCTs and AI participation in 
clinical workflow are needed to provide solid evidence that AI is acceptable within the 
range of legal and ethical concerns[89]. Nevertheless, trends of AI are irreversible. The 
ultimate role of AI in medicine might be a supervised task performer[90].

CONCLUSION
In this manuscript, we provided a comprehensive review of AI technology in 
diagnosis, treatment decision and outcome prediction for EC. We searched only 
PubMed database for clinical researches and applications. Issues regarding computer 
science and image processing are not our topics. The CAD systems have evolved from 
traditional ML algorithms to neural network-based DL, and from still image analysis 
to real-time video processing. AI can improve non-expert’s performance while correct 
erroneous classification by experts[78]. Researches with larger datasets and more 
reliable CAD models are being conducted worldwide. It is promising that AI may 
facilitate early cancer screening, surveillance and treatment in high-risk regions. 
However, it is noteworthy that patient’s consent and satisfaction are of first priority.

REFERENCES
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: 
GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J 
Clin 2018; 68: 394-424 [PMID: 30207593 DOI: 10.3322/caac.21492]

1     

Pennathur A, Gibson MK, Jobe BA, Luketich JD. Oesophageal carcinoma. Lancet 2013; 381: 400-412 
[PMID: 23374478 DOI: 10.1016/S0140-6736(12)60643-6]

2     

Simard EP, Ward EM, Siegel R, Jemal A. Cancers with increasing incidence trends in the United States: 
1999 through 2008. CA Cancer J Clin 2012; 62: 118-128 [PMID: 22281605 DOI: 10.3322/caac.20141]

3     

Arnold M, Soerjomataram I, Ferlay J, Forman D. Global incidence of oesophageal cancer by histological 
subtype in 2012. Gut 2015; 64: 381-387 [PMID: 25320104 DOI: 10.1136/gutjnl-2014-308124]

4     

Arnold M, Laversanne M, Brown LM, Devesa SS, Bray F. Predicting the Future Burden of Esophageal 
Cancer by Histological Subtype: International Trends in Incidence up to 2030. Am J Gastroenterol 2017; 
112: 1247-1255 [PMID: 28585555 DOI: 10.1038/ajg.2017.155]

5     

Global Burden of Disease Cancer Collaboration, Fitzmaurice C, Allen C, Barber RM, Barregard L, 
Bhutta ZA, Brenner H, Dicker DJ, Chimed-Orchir O, Dandona R, Dandona L, Fleming T, Forouzanfar MH, 
Hancock J, Hay RJ, Hunter-Merrill R, Huynh C, Hosgood HD, Johnson CO, Jonas JB, Khubchandani J, 
Kumar GA, Kutz M, Lan Q, Larson HJ, Liang X, Lim SS, Lopez AD, MacIntyre MF, Marczak L, Marquez 
N, Mokdad AH, Pinho C, Pourmalek F, Salomon JA, Sanabria JR, Sandar L, Sartorius B, Schwartz SM, 
Shackelford KA, Shibuya K, Stanaway J, Steiner C, Sun J, Takahashi K, Vollset SE, Vos T, Wagner JA, 
Wang H, Westerman R, Zeeb H, Zoeckler L, Abd-Allah F, Ahmed MB, Alabed S, Alam NK, Aldhahri SF, 
Alem G, Alemayohu MA, Ali R, Al-Raddadi R, Amare A, Amoako Y, Artaman A, Asayesh H, Atnafu N, 
Awasthi A, Saleem HB, Barac A, Bedi N, Bensenor I, Berhane A, Bernabé E, Betsu B, Binagwaho A, 

6     

http://www.ncbi.nlm.nih.gov/pubmed/30207593
https://dx.doi.org/10.3322/caac.21492
http://www.ncbi.nlm.nih.gov/pubmed/23374478
https://dx.doi.org/10.1016/S0140-6736(12)60643-6
http://www.ncbi.nlm.nih.gov/pubmed/22281605
https://dx.doi.org/10.3322/caac.20141
http://www.ncbi.nlm.nih.gov/pubmed/25320104
https://dx.doi.org/10.1136/gutjnl-2014-308124
http://www.ncbi.nlm.nih.gov/pubmed/28585555
https://dx.doi.org/10.1038/ajg.2017.155


Zhang YH et al. Artificial intelligence in esophageal cancer

WJG https://www.wjgnet.com 5268 September 21, 2020 Volume 26 Issue 35

Boneya D, Campos-Nonato I, Castañeda-Orjuela C, Catalá-López F, Chiang P, Chibueze C, Chitheer A, 
Choi JY, Cowie B, Damtew S, das Neves J, Dey S, Dharmaratne S, Dhillon P, Ding E, Driscoll T, Ekwueme 
D, Endries AY, Farvid M, Farzadfar F, Fernandes J, Fischer F, G/Hiwot TT, Gebru A, Gopalani S, Hailu A, 
Horino M, Horita N, Husseini A, Huybrechts I, Inoue M, Islami F, Jakovljevic M, James S, Javanbakht M, 
Jee SH, Kasaeian A, Kedir MS, Khader YS, Khang YH, Kim D, Leigh J, Linn S, Lunevicius R, El Razek 
HMA, Malekzadeh R, Malta DC, Marcenes W, Markos D, Melaku YA, Meles KG, Mendoza W, Mengiste 
DT, Meretoja TJ, Miller TR, Mohammad KA, Mohammadi A, Mohammed S, Moradi-Lakeh M, Nagel G, 
Nand D, Le Nguyen Q, Nolte S, Ogbo FA, Oladimeji KE, Oren E, Pa M, Park EK, Pereira DM, Plass D, 
Qorbani M, Radfar A, Rafay A, Rahman M, Rana SM, Søreide K, Satpathy M, Sawhney M, Sepanlou SG, 
Shaikh MA, She J, Shiue I, Shore HR, Shrime MG, So S, Soneji S, Stathopoulou V, Stroumpoulis K, Sufiyan 
MB, Sykes BL, Tabarés-Seisdedos R, Tadese F, Tedla BA, Tessema GA, Thakur JS, Tran BX, Ukwaja KN, 
Uzochukwu BSC, Vlassov VV, Weiderpass E, Wubshet Terefe M, Yebyo HG, Yimam HH, Yonemoto N, 
Younis MZ, Yu C, Zaidi Z, Zaki MES, Zenebe ZM, Murray CJL, Naghavi M. Global, Regional, and 
National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-
Adjusted Life-years for 32 Cancer Groups, 1990 to 2015: A Systematic Analysis for the Global Burden of 
Disease Study. JAMA Oncol 2017; 3: 524-548 [PMID: 27918777 DOI: 10.1001/jamaoncol.2016.5688]
Peery AF, Crockett SD, Murphy CC, Lund JL, Dellon ES, Williams JL, Jensen ET, Shaheen NJ, Barritt AS, 
Lieber SR, Kochar B, Barnes EL, Fan YC, Pate V, Galanko J, Baron TH, Sandler RS. Burden and Cost of 
Gastrointestinal, Liver, and Pancreatic Diseases in the United States: Update 2018. Gastroenterology 2019; 
156: 254-272.e11 [PMID: 30315778 DOI: 10.1053/j.gastro.2018.08.063]

7     

Thein HH, Jembere N, Thavorn K, Chan KKW, Coyte PC, de Oliveira C, Hur C, Earle CC. Estimates and 
predictors of health care costs of esophageal adenocarcinoma: a population-based cohort study. BMC Cancer 
2018; 18: 694 [PMID: 29945563 DOI: 10.1186/s12885-018-4620-2]

8     

Schreurs LM, Busz DM, Paardekooper GM, Beukema JC, Jager PL, Van der Jagt EJ, van Dam GM, Groen 
H, Plukker JT, Langendijk JA. Impact of 18-fluorodeoxyglucose positron emission tomography on computed 
tomography defined target volumes in radiation treatment planning of esophageal cancer: reduction in 
geographic misses with equal inter-observer variability: PET/CT improves esophageal target definition. Dis 
Esophagus 2010; 23: 493-501 [PMID: 20113320 DOI: 10.1111/j.1442-2050.2009.01044.x]

9     

Liu J, Li M, Li Z, Zuo XL, Li CQ, Dong YY, Zhou CJ, Li YQ. Learning curve and interobserver agreement 
of confocal laser endomicroscopy for detecting precancerous or early-stage esophageal squamous cancer. 
PLoS One 2014; 9: e99089 [PMID: 24897112 DOI: 10.1371/journal.pone.0099089]

10     

Worrell SG, Boys JA, Chandrasoma P, Vallone JG, Dunst CM, Johnson CS, Lada MJ, Louie BE, Watson 
TJ, DeMeester SR. Inter-Observer Variability in the Interpretation of Endoscopic Mucosal Resection 
Specimens of Esophageal Adenocarcinoma: Interpretation of ER specimens. J Gastrointest Surg 2016; 20: 
140-4; discussion 144-5 [PMID: 26503261 DOI: 10.1007/s11605-015-3009-7]

11     

Yang YJ, Bang CS. Application of artificial intelligence in gastroenterology. World J Gastroenterol 2019; 
25: 1666-1683 [PMID: 31011253 DOI: 10.3748/wjg.v25.i14.1666]

12     

Ruffle JK, Farmer AD, Aziz Q. Artificial Intelligence-Assisted Gastroenterology- Promises and Pitfalls. Am 
J Gastroenterol 2019; 114: 422-428 [PMID: 30315284 DOI: 10.1038/s41395-018-0268-4]

13     

Min JK, Kwak MS, Cha JM. Overview of Deep Learning in Gastrointestinal Endoscopy. Gut Liver 2019; 
13: 388-393 [PMID: 30630221 DOI: 10.5009/gnl18384]

14     

Deo RC. Machine Learning in Medicine. Circulation 2015; 132: 1920-1930 [PMID: 26572668 DOI: 
10.1161/CIRCULATIONAHA.115.001593]

15     

Mori Y, Kudo SE, Mohmed HEN, Misawa M, Ogata N, Itoh H, Oda M, Mori K. Artificial intelligence and 
upper gastrointestinal endoscopy: Current status and future perspective. Dig Endosc 2019; 31: 378-388 
[PMID: 30549317 DOI: 10.1111/den.13317]

16     

Le Berre C, Sandborn WJ, Aridhi S, Devignes MD, Fournier L, Smaïl-Tabbone M, Danese S, Peyrin-
Biroulet L. Application of Artificial Intelligence to Gastroenterology and Hepatology. Gastroenterology 
2020; 158: 76-94.e2 [PMID: 31593701 DOI: 10.1053/j.gastro.2019.08.058]

17     

Domper Arnal MJ, Ferrández Arenas Á, Lanas Arbeloa Á. Esophageal cancer: Risk factors, screening and 
endoscopic treatment in Western and Eastern countries. World J Gastroenterol 2015; 21: 7933-7943 [PMID: 
26185366 DOI: 10.3748/wjg.v21.i26.7933]

18     

Liu WZ, White AP, Hallissey MT, Fielding JW. Machine learning techniques in early screening for gastric 
and oesophageal cancer. Artif Intell Med 1996; 8: 327-341 [PMID: 8870963 DOI: 
10.1016/0933-3657(95)00039-9]

19     

van der Gaag LC, Renooij S, Witteman CL, Aleman BM, Taal BG. Probabilities for a probabilistic 
network: a case study in oesophageal cancer. Artif Intell Med 2002; 25: 123-148 [PMID: 12031603 DOI: 
10.1016/s0933-3657(02)00012-x]

20     

Xu Y, Selaru FM, Yin J, Zou TT, Shustova V, Mori Y, Sato F, Liu TC, Olaru A, Wang S, Kimos MC, Perry 
K, Desai K, Greenwald BD, Krasna MJ, Shibata D, Abraham JM, Meltzer SJ. Artificial neural networks and 
gene filtering distinguish between global gene expression profiles of Barrett's esophagus and esophageal 
cancer. Cancer Res 2002; 62: 3493-3497 [PMID: 12067993]

21     

Kan T, Shimada Y, Sato F, Ito T, Kondo K, Watanabe G, Maeda M, Yamasaki S, Meltzer SJ, Imamura M. 
Prediction of lymph node metastasis with use of artificial neural networks based on gene expression profiles 
in esophageal squamous cell carcinoma. Ann Surg Oncol 2004; 11: 1070-1078 [PMID: 15545505 DOI: 
10.1245/aso.2004.03.007]

22     

Fukuda M, Hirata K, Natori H. Endoscopic ultrasonography of the esophagus. World J Surg 2000; 24: 216-
226 [PMID: 10633149 DOI: 10.1007/s002689910035]

23     

Himeno S, Yasuda S, Shimada H, Tajima T, Makuuchi H. Evaluation of esophageal cancer by positron 
emission tomography. Jpn J Clin Oncol 2002; 32: 340-346 [PMID: 12417599 DOI: 10.1093/jjco/hyf073]

24     

Moghtadaei M, Hashemi Golpayegani MR, Malekzadeh R. A variable structure fuzzy neural network model 
of squamous dysplasia and esophageal squamous cell carcinoma based on a global chaotic optimization 
algorithm. J Theor Biol 2013; 318: 164-172 [PMID: 23174279 DOI: 10.1016/j.jtbi.2012.11.013]

25     

Etemadi A, Abnet CC, Golozar A, Malekzadeh R, Dawsey SM. Modeling the risk of esophageal squamous 26     

http://www.ncbi.nlm.nih.gov/pubmed/27918777
https://dx.doi.org/10.1001/jamaoncol.2016.5688
http://www.ncbi.nlm.nih.gov/pubmed/30315778
https://dx.doi.org/10.1053/j.gastro.2018.08.063
http://www.ncbi.nlm.nih.gov/pubmed/29945563
https://dx.doi.org/10.1186/s12885-018-4620-2
http://www.ncbi.nlm.nih.gov/pubmed/20113320
https://dx.doi.org/10.1111/j.1442-2050.2009.01044.x
http://www.ncbi.nlm.nih.gov/pubmed/24897112
https://dx.doi.org/10.1371/journal.pone.0099089
http://www.ncbi.nlm.nih.gov/pubmed/26503261
https://dx.doi.org/10.1007/s11605-015-3009-7
http://www.ncbi.nlm.nih.gov/pubmed/31011253
https://dx.doi.org/10.3748/wjg.v25.i14.1666
http://www.ncbi.nlm.nih.gov/pubmed/30315284
https://dx.doi.org/10.1038/s41395-018-0268-4
http://www.ncbi.nlm.nih.gov/pubmed/30630221
https://dx.doi.org/10.5009/gnl18384
http://www.ncbi.nlm.nih.gov/pubmed/26572668
https://dx.doi.org/10.1161/CIRCULATIONAHA.115.001593
http://www.ncbi.nlm.nih.gov/pubmed/30549317
https://dx.doi.org/10.1111/den.13317
http://www.ncbi.nlm.nih.gov/pubmed/31593701
https://dx.doi.org/10.1053/j.gastro.2019.08.058
http://www.ncbi.nlm.nih.gov/pubmed/26185366
https://dx.doi.org/10.3748/wjg.v21.i26.7933
http://www.ncbi.nlm.nih.gov/pubmed/8870963
https://dx.doi.org/10.1016/0933-3657(95)00039-9
http://www.ncbi.nlm.nih.gov/pubmed/12031603
https://dx.doi.org/10.1016/s0933-3657(02)00012-x
http://www.ncbi.nlm.nih.gov/pubmed/12067993
http://www.ncbi.nlm.nih.gov/pubmed/15545505
https://dx.doi.org/10.1245/aso.2004.03.007
http://www.ncbi.nlm.nih.gov/pubmed/10633149
https://dx.doi.org/10.1007/s002689910035
http://www.ncbi.nlm.nih.gov/pubmed/12417599
https://dx.doi.org/10.1093/jjco/hyf073
http://www.ncbi.nlm.nih.gov/pubmed/23174279
https://dx.doi.org/10.1016/j.jtbi.2012.11.013


Zhang YH et al. Artificial intelligence in esophageal cancer

WJG https://www.wjgnet.com 5269 September 21, 2020 Volume 26 Issue 35

cell carcinoma and squamous dysplasia in a high risk area in Iran. Arch Iran Med 2012; 15: 18-21 [PMID: 
22208438]
Li SX, Zeng QY, Li LF, Zhang YJ, Wan MM, Liu ZM, Xiong HL, Guo ZY, Liu SH. Study of support vector 
machine and serum surface-enhanced Raman spectroscopy for noninvasive esophageal cancer detection. J 
Biomed Opt 2013; 18: 27008 [PMID: 23389685 DOI: 10.1117/1.JBO.18.2.027008]

27     

Rice TW, Apperson-Hansen C, DiPaola LM, Semple ME, Lerut TE, Orringer MB, Chen LQ, Hofstetter WL, 
Smithers BM, Rusch VW, Wijnhoven BP, Chen KN, Davies AR, D'Journo XB, Kesler KA, Luketich JD, 
Ferguson MK, Räsänen JV, van Hillegersberg R, Fang W, Durand L, Allum WH, Cecconello I, Cerfolio RJ, 
Pera M, Griffin SM, Burger R, Liu JF, Allen MS, Law S, Watson TJ, Darling GE, Scott WJ, Duranceau A, 
Denlinger CE, Schipper PH, Ishwaran H, Blackstone EH. Worldwide Esophageal Cancer Collaboration: 
clinical staging data. Dis Esophagus 2016; 29: 707-714 [PMID: 27731549 DOI: 10.1111/dote.12493]

28     

Sato F, Shimada Y, Selaru FM, Shibata D, Maeda M, Watanabe G, Mori Y, Stass SA, Imamura M, Meltzer 
SJ. Prediction of survival in patients with esophageal carcinoma using artificial neural networks. Cancer 
2005; 103: 1596-1605 [PMID: 15751017 DOI: 10.1002/cncr.20938]

29     

Mofidi R, Deans C, Duff MD, de Beaux AC, Paterson Brown S. Prediction of survival from carcinoma of 
oesophagus and oesophago-gastric junction following surgical resection using an artificial neural network. 
Eur J Surg Oncol 2006; 32: 533-539 [PMID: 16618533 DOI: 10.1016/j.ejso.2006.02.020]

30     

Wang CY, Lee TF, Fang CH, Chou JH. Fuzzy logic-based prognostic score for outcome prediction in 
esophageal cancer. IEEE Trans Inf Technol Biomed 2012; 16: 1224-1230 [PMID: 22875252 DOI: 
10.1109/TITB.2012.2211374]

31     

Mi H, Petitjean C, Dubray B, Vera P, Ruan S. Robust feature selection to predict tumor treatment outcome. 
Artif Intell Med 2015; 64: 195-204 [PMID: 26303106 DOI: 10.1016/j.artmed.2015.07.002]

32     

Zahedi H, Mehrshad N, Anvari K. Intelligent modelling of oesophageal cancer treatment and its use to 
determine the dose of chemotherapy drug. J Med Eng Technol 2012; 36: 261-266 [PMID: 22671958 DOI: 
10.3109/03091902.2012.682112]

33     

Maktabi M, Köhler H, Ivanova M, Jansen-Winkeln B, Takoh J, Niebisch S, Rabe SM, Neumuth T, Gockel 
I, Chalopin C. Tissue classification of oncologic esophageal resectates based on hyperspectral data. Int J 
Comput Assist Radiol Surg 2019; 14: 1651-1661 [PMID: 31222672 DOI: 10.1007/s11548-019-02016-x]

34     

Huang FL, Yu SJ. Esophageal cancer: Risk factors, genetic association, and treatment. Asian J Surg 2018; 
41: 210-215 [PMID: 27986415 DOI: 10.1016/j.asjsur.2016.10.005]

35     

Warnecke-Eberz U, Metzger R, Bollschweiler E, Baldus SE, Mueller RP, Dienes HP, Hoelscher AH, 
Schneider PM. TaqMan low-density arrays and analysis by artificial neuronal networks predict response to 
neoadjuvant chemoradiation in esophageal cancer. Pharmacogenomics 2010; 11: 55-64 [PMID: 20017672 
DOI: 10.2217/pgs.09.137]

36     

Ganeshan B, Skogen K, Pressney I, Coutroubis D, Miles K. Tumour heterogeneity in oesophageal cancer 
assessed by CT texture analysis: preliminary evidence of an association with tumour metabolism, stage, and 
survival. Clin Radiol 2012; 67: 157-164 [PMID: 21943720 DOI: 10.1016/j.crad.2011.08.012]

37     

Javeri H, Xiao L, Rohren E, Komaki R, Hofstetter W, Lee JH, Maru D, Bhutani MS, Swisher SG, Wang X, 
Ajani JA. Influence of the baseline 18F-fluoro-2-deoxy-D-glucose positron emission tomography results on 
survival and pathologic response in patients with gastroesophageal cancer undergoing chemoradiation. 
Cancer 2009; 115: 624-630 [PMID: 19130466 DOI: 10.1002/cncr.24056]

38     

Schollaert P, Crott R, Bertrand C, D'Hondt L, Borght TV, Krug B. A systematic review of the predictive 
value of (18)FDG-PET in esophageal and esophagogastric junction cancer after neoadjuvant chemoradiation 
on the survival outcome stratification. J Gastrointest Surg 2014; 18: 894-905 [PMID: 24638928 DOI: 
10.1007/s11605-014-2488-2]

39     

Ypsilantis PP, Siddique M, Sohn HM, Davies A, Cook G, Goh V, Montana G. Predicting Response to 
Neoadjuvant Chemotherapy with PET Imaging Using Convolutional Neural Networks. PLoS One 2015; 10: 
e0137036 [PMID: 26355298 DOI: 10.1371/journal.pone.0137036]

40     

Jin X, Zheng X, Chen D, Jin J, Zhu G, Deng X, Han C, Gong C, Zhou Y, Liu C, Xie C. Prediction of 
response after chemoradiation for esophageal cancer using a combination of dosimetry and CT radiomics. 
Eur Radiol 2019; 29: 6080-6088 [PMID: 31028447 DOI: 10.1007/s00330-019-06193-w]

41     

Yang HX, Feng W, Wei JC, Zeng TS, Li ZD, Zhang LJ, Lin P, Luo RZ, He JH, Fu JH. Support vector 
machine-based nomogram predicts postoperative distant metastasis for patients with oesophageal squamous 
cell carcinoma. Br J Cancer 2013; 109: 1109-1116 [PMID: 23942069 DOI: 10.1038/bjc.2013.379]

42     

Wang ZL, Zhou ZG, Chen Y, Li XT, Sun YS. Support Vector Machines Model of Computed Tomography 
for Assessing Lymph Node Metastasis in Esophageal Cancer with Neoadjuvant Chemotherapy. J Comput 
Assist Tomogr 2017; 41: 455-460 [PMID: 27879527 DOI: 10.1097/RCT.0000000000000555]

43     

Lin T, Liu T, Lin Y, Zhang C, Yan L, Chen Z, He Z, Wang J. Serum levels of chemical elements in 
esophageal squamous cell carcinoma in Anyang, China: a case-control study based on machine learning 
methods. BMJ Open 2017; 7: e015443 [PMID: 28947442 DOI: 10.1136/bmjopen-2016-015443]

44     

Mourikis TP, Benedetti L, Foxall E, Temelkovski D, Nulsen J, Perner J, Cereda M, Lagergren J, Howell M, 
Yau C, Fitzgerald RC, Scaffidi P; Oesophageal Cancer Clinical and Molecular Stratification (OCCAMS) 
Consortium, Ciccarelli FD. Patient-specific cancer genes contribute to recurrently perturbed pathways and 
establish therapeutic vulnerabilities in esophageal adenocarcinoma. Nat Commun 2019; 10: 3101 [PMID: 
31308377 DOI: 10.1038/s41467-019-10898-3]

45     

Rice TW, Lu M, Ishwaran H, Blackstone EH; Worldwide Esophageal Cancer Collaboration Investigators. 
Precision Surgical Therapy for Adenocarcinoma of the Esophagus and Esophagogastric Junction. J Thorac 
Oncol 2019; 14: 2164-2175 [PMID: 31442498 DOI: 10.1016/j.jtho.2019.08.004]

46     

Goetz M.   Enhanced Imaging of the Esophagus: Confocal Laser Endomicroscopy. In: Pleskow DK, Erim T. 
Barrett's Esophagus. Boston: Academic Press, 2016: 123-132

47     

Gora MJ, Tearney GJ.   Enhanced Imaging of the Esophagus: Optical Coherence Tomography. In: Pleskow 
DK, Erim T. Barrett's Esophagus. Boston: Academic Press, 2016: 105-122

48     

Falk GW, Wani S.  Chandrasekhara V, Elmunzer BJ, Khashab MA, Muthusamy VR.  Barrett's Esophagus: 
Diagnosis, Surveillance, and Medical Management. In: Chandrasekhara V, Elmunzer BJ, Khashab MA, 

49     

http://www.ncbi.nlm.nih.gov/pubmed/22208438
http://www.ncbi.nlm.nih.gov/pubmed/23389685
https://dx.doi.org/10.1117/1.JBO.18.2.027008
http://www.ncbi.nlm.nih.gov/pubmed/27731549
https://dx.doi.org/10.1111/dote.12493
http://www.ncbi.nlm.nih.gov/pubmed/15751017
https://dx.doi.org/10.1002/cncr.20938
http://www.ncbi.nlm.nih.gov/pubmed/16618533
https://dx.doi.org/10.1016/j.ejso.2006.02.020
http://www.ncbi.nlm.nih.gov/pubmed/22875252
https://dx.doi.org/10.1109/TITB.2012.2211374
http://www.ncbi.nlm.nih.gov/pubmed/26303106
https://dx.doi.org/10.1016/j.artmed.2015.07.002
http://www.ncbi.nlm.nih.gov/pubmed/22671958
https://dx.doi.org/10.3109/03091902.2012.682112
http://www.ncbi.nlm.nih.gov/pubmed/31222672
https://dx.doi.org/10.1007/s11548-019-02016-x
http://www.ncbi.nlm.nih.gov/pubmed/27986415
https://dx.doi.org/10.1016/j.asjsur.2016.10.005
http://www.ncbi.nlm.nih.gov/pubmed/20017672
https://dx.doi.org/10.2217/pgs.09.137
http://www.ncbi.nlm.nih.gov/pubmed/21943720
https://dx.doi.org/10.1016/j.crad.2011.08.012
http://www.ncbi.nlm.nih.gov/pubmed/19130466
https://dx.doi.org/10.1002/cncr.24056
http://www.ncbi.nlm.nih.gov/pubmed/24638928
https://dx.doi.org/10.1007/s11605-014-2488-2
http://www.ncbi.nlm.nih.gov/pubmed/26355298
https://dx.doi.org/10.1371/journal.pone.0137036
http://www.ncbi.nlm.nih.gov/pubmed/31028447
https://dx.doi.org/10.1007/s00330-019-06193-w
http://www.ncbi.nlm.nih.gov/pubmed/23942069
https://dx.doi.org/10.1038/bjc.2013.379
http://www.ncbi.nlm.nih.gov/pubmed/27879527
https://dx.doi.org/10.1097/RCT.0000000000000555
http://www.ncbi.nlm.nih.gov/pubmed/28947442
https://dx.doi.org/10.1136/bmjopen-2016-015443
http://www.ncbi.nlm.nih.gov/pubmed/31308377
https://dx.doi.org/10.1038/s41467-019-10898-3
http://www.ncbi.nlm.nih.gov/pubmed/31442498
https://dx.doi.org/10.1016/j.jtho.2019.08.004


Zhang YH et al. Artificial intelligence in esophageal cancer

WJG https://www.wjgnet.com 5270 September 21, 2020 Volume 26 Issue 35

Muthusamy VR. Clinical Gastrointestinal Endoscopy (Third Edition). Philadelphia: Content Repository 
Only, 2019: 279-90.e5
di Pietro M, Canto MI, Fitzgerald RC. Endoscopic Management of Early Adenocarcinoma and Squamous 
Cell Carcinoma of the Esophagus: Screening, Diagnosis, and Therapy. Gastroenterology 2018; 154: 421-436 
[PMID: 28778650 DOI: 10.1053/j.gastro.2017.07.041]

50     

de Lange T, Halvorsen P, Riegler M. Methodology to develop machine learning algorithms to improve 
performance in gastrointestinal endoscopy. World J Gastroenterol 2018; 24: 5057-5062 [PMID: 30568383 
DOI: 10.3748/wjg.v24.i45.5057]

51     

ASGE Standards of Practice Committee, Qumseya B, Sultan S, Bain P, Jamil L, Jacobson B, 
Anandasabapathy S, Agrawal D, Buxbaum JL, Fishman DS, Gurudu SR, Jue TL, Kripalani S, Lee JK, 
Khashab MA, Naveed M, Thosani NC, Yang J, DeWitt J, Wani S; ASGE Standards of Practice Committee 
Chair. ASGE guideline on screening and surveillance of Barrett's esophagus. Gastrointest Endosc 2019; 90: 
335-359.e2 [PMID: 31439127 DOI: 10.1016/j.gie.2019.05.012]

52     

Münzenmayer C, Kage A, Wittenberg T, Mühldorfer S. Computer-assisted diagnosis for precancerous 
lesions in the esophagus. Methods Inf Med 2009; 48: 324-330 [PMID: 19562230 DOI: 10.3414/ME9230]

53     

van der Sommen F, Aylward S, Zinger S, Schoon EJ, de With PHN.   Proceedings of SPIE - The 
International Society for Optical Engineering; 2013 Feb 8; Proc SPIE Medical Imaging (SPIE 8670) [DOI: 
10.1117/12.2001068]

54     

van der Sommen F, Zinger S, Curvers WL, Bisschops R, Pech O, Weusten BL, Bergman JJ, de With PH, 
Schoon EJ. Computer-aided detection of early neoplastic lesions in Barrett's esophagus. Endoscopy 2016; 48: 
617-624 [PMID: 27100718 DOI: 10.1055/s-0042-105284]

55     

Horie Y, Yoshio T, Aoyama K, Yoshimizu S, Horiuchi Y, Ishiyama A, Hirasawa T, Tsuchida T, Ozawa T, 
Ishihara S, Kumagai Y, Fujishiro M, Maetani I, Fujisaki J, Tada T. Diagnostic outcomes of esophageal 
cancer by artificial intelligence using convolutional neural networks. Gastrointest Endosc 2019; 89: 25-32 
[PMID: 30120958 DOI: 10.1016/j.gie.2018.07.037]

56     

Ghatwary N, Zolgharni M, Ye X. Early esophageal adenocarcinoma detection using deep learning methods. 
Int J Comput Assist Radiol Surg 2019; 14: 611-621 [PMID: 30666547 DOI: 10.1007/s11548-019-01914-4]

57     

Hashimoto R, Requa J, Dao T, Ninh A, Tran E, Mai D, Lugo M, El-Hage Chehade N, Chang KJ, Karnes 
WE, Samarasena JB. Artificial intelligence using convolutional neural networks for real-time detection of 
early esophageal neoplasia in Barrett's esophagus (with video). Gastrointest Endosc 2020; 91: 1264-1271.e1 
[PMID: 31930967 DOI: 10.1016/j.gie.2019.12.049]

58     

Ebigbo A, Mendel R, Probst A, Manzeneder J, Souza LA Jr, Papa JP, Palm C, Messmann H. Computer-
aided diagnosis using deep learning in the evaluation of early oesophageal adenocarcinoma. Gut 2019; 68: 
1143-1145 [PMID: 30510110 DOI: 10.1136/gutjnl-2018-317573]

59     

de Groof AJ, Struyvenberg MR, van der Putten J, van der Sommen F, Fockens KN, Curvers WL, Zinger S, 
Pouw RE, Coron E, Baldaque-Silva F, Pech O, Weusten B, Meining A, Neuhaus H, Bisschops R, Dent J, 
Schoon EJ, de With PH, Bergman JJ. Deep-Learning System Detects Neoplasia in Patients With Barrett's 
Esophagus With Higher Accuracy Than Endoscopists in a Multistep Training and Validation Study With 
Benchmarking. Gastroenterology 2020; 158: 915-929.e4 [PMID: 31759929 DOI: 
10.1053/j.gastro.2019.11.030]

60     

Hong J, Park BY, Park H. Convolutional neural network classifier for distinguishing Barrett's esophagus and 
neoplasia endomicroscopy images. Conf Proc IEEE Eng Med Biol Soc 2017; 2017: 2892-2895 [PMID: 
29060502 DOI: 10.1109/EMBC.2017.8037461]

61     

Swager AF, van der Sommen F, Klomp SR, Zinger S, Meijer SL, Schoon EJ, Bergman JJGHM, de With PH, 
Curvers WL. Computer-aided detection of early Barrett's neoplasia using volumetric laser endomicroscopy. 
Gastrointest Endosc 2017; 86: 839-846 [PMID: 28322771 DOI: 10.1016/j.gie.2017.03.011]

62     

van der Sommen F, Klomp SR, Swager AF, Zinger S, Curvers WL, Bergman JJGHM, Schoon EJ, de With 
PHN. Predictive features for early cancer detection in Barrett's esophagus using Volumetric Laser 
Endomicroscopy. Comput Med Imaging Graph 2018; 67: 9-20 [PMID: 29684663 DOI: 
10.1016/j.compmedimag.2018.02.007]

63     

Trindade AJ, McKinley MJ, Fan C, Leggett CL, Kahn A, Pleskow DK. Endoscopic Surveillance of Barrett's 
Esophagus Using Volumetric Laser Endomicroscopy With Artificial Intelligence Image Enhancement. 
Gastroenterology 2019; 157: 303-305 [PMID: 31078625 DOI: 10.1053/j.gastro.2019.04.048]

64     

Struyvenberg MR, van der Sommen F, Swager AF, de Groof AJ, Rikos A, Schoon EJ, Bergman JJ, de With 
PHN, Curvers WL. Improved Barrett's neoplasia detection using computer-assisted multiframe analysis of 
volumetric laser endomicroscopy. Dis Esophagus 2020; 33 [PMID: 31364700 DOI: 10.1093/dote/doz065]

65     

van der Putten J, Struyvenberg M, de Groof J, Scheeve T, Curvers W, Schoon E, Bergman JJGHM, de 
With PHN, van der Sommen F. Deep principal dimension encoding for the classification of early neoplasia in 
Barrett's Esophagus with volumetric laser endomicroscopy. Comput Med Imaging Graph 2020; 80: 101701 
[PMID: 32044547 DOI: 10.1016/j.compmedimag.2020.101701]

66     

Shin D, Lee MH, Polydorides AD, Pierce MC, Vila PM, Parikh ND, Rosen DG, Anandasabapathy S, 
Richards-Kortum RR. Quantitative analysis of high-resolution microendoscopic images for diagnosis of 
neoplasia in patients with Barrett's esophagus. Gastrointest Endosc 2016; 83: 107-114 [PMID: 26253018 
DOI: 10.1016/j.gie.2015.06.045]

67     

Qi X, Sivak MV, Isenberg G, Willis JE, Rollins AM. Computer-aided diagnosis of dysplasia in Barrett's 
esophagus using endoscopic optical coherence tomography. J Biomed Opt 2006; 11: 044010 [PMID: 
16965167 DOI: 10.1117/1.2337314]

68     

Kohli DR, Schubert ML, Zfass AM, Shah TU. Performance characteristics of optical coherence tomography 
in assessment of Barrett's esophagus and esophageal cancer: systematic review. Dis Esophagus 2017; 30: 1-8 
[PMID: 28881898 DOI: 10.1093/dote/dox049]

69     

Sabo E, Beck AH, Montgomery EA, Bhattacharya B, Meitner P, Wang JY, Resnick MB. Computerized 
morphometry as an aid in determining the grade of dysplasia and progression to adenocarcinoma in Barrett's 
esophagus. Lab Invest 2006; 86: 1261-1271 [PMID: 17075582 DOI: 10.1038/labinvest.3700481]

70     

Liu DY, Gan T, Rao NN, Xing YW, Zheng J, Li S, Luo CS, Zhou ZJ, Wan YL. Identification of lesion 71     

http://www.ncbi.nlm.nih.gov/pubmed/28778650
https://dx.doi.org/10.1053/j.gastro.2017.07.041
http://www.ncbi.nlm.nih.gov/pubmed/30568383
https://dx.doi.org/10.3748/wjg.v24.i45.5057
http://www.ncbi.nlm.nih.gov/pubmed/31439127
https://dx.doi.org/10.1016/j.gie.2019.05.012
http://www.ncbi.nlm.nih.gov/pubmed/19562230
https://dx.doi.org/10.3414/ME9230
https://dx.doi.org/10.1117/12.2001068
http://www.ncbi.nlm.nih.gov/pubmed/27100718
https://dx.doi.org/10.1055/s-0042-105284
http://www.ncbi.nlm.nih.gov/pubmed/30120958
https://dx.doi.org/10.1016/j.gie.2018.07.037
http://www.ncbi.nlm.nih.gov/pubmed/30666547
https://dx.doi.org/10.1007/s11548-019-01914-4
http://www.ncbi.nlm.nih.gov/pubmed/31930967
https://dx.doi.org/10.1016/j.gie.2019.12.049
http://www.ncbi.nlm.nih.gov/pubmed/30510110
https://dx.doi.org/10.1136/gutjnl-2018-317573
http://www.ncbi.nlm.nih.gov/pubmed/31759929
https://dx.doi.org/10.1053/j.gastro.2019.11.030
http://www.ncbi.nlm.nih.gov/pubmed/29060502
https://dx.doi.org/10.1109/EMBC.2017.8037461
http://www.ncbi.nlm.nih.gov/pubmed/28322771
https://dx.doi.org/10.1016/j.gie.2017.03.011
http://www.ncbi.nlm.nih.gov/pubmed/29684663
https://dx.doi.org/10.1016/j.compmedimag.2018.02.007
http://www.ncbi.nlm.nih.gov/pubmed/31078625
https://dx.doi.org/10.1053/j.gastro.2019.04.048
http://www.ncbi.nlm.nih.gov/pubmed/31364700
https://dx.doi.org/10.1093/dote/doz065
http://www.ncbi.nlm.nih.gov/pubmed/32044547
https://dx.doi.org/10.1016/j.compmedimag.2020.101701
http://www.ncbi.nlm.nih.gov/pubmed/26253018
https://dx.doi.org/10.1016/j.gie.2015.06.045
http://www.ncbi.nlm.nih.gov/pubmed/16965167
https://dx.doi.org/10.1117/1.2337314
http://www.ncbi.nlm.nih.gov/pubmed/28881898
https://dx.doi.org/10.1093/dote/dox049
http://www.ncbi.nlm.nih.gov/pubmed/17075582
https://dx.doi.org/10.1038/labinvest.3700481


Zhang YH et al. Artificial intelligence in esophageal cancer

WJG https://www.wjgnet.com 5271 September 21, 2020 Volume 26 Issue 35

images from gastrointestinal endoscope based on feature extraction of combinational methods with and 
without learning process. Med Image Anal 2016; 32: 281-294 [PMID: 27236223 DOI: 
10.1016/j.media.2016.04.007]
Cai SL, Li B, Tan WM, Niu XJ, Yu HH, Yao LQ, Zhou PH, Yan B, Zhong YS. Using a deep learning 
system in endoscopy for screening of early esophageal squamous cell carcinoma (with video). Gastrointest 
Endosc 2019; 90: 745-753.e2 [PMID: 31302091 DOI: 10.1016/j.gie.2019.06.044]

72     

Ohmori M, Ishihara R, Aoyama K, Nakagawa K, Iwagami H, Matsuura N, Shichijo S, Yamamoto K, 
Nagaike K, Nakahara M, Inoue T, Aoi K, Okada H, Tada T. Endoscopic detection and differentiation of 
esophageal lesions using a deep neural network. Gastrointest Endosc 2020; 91: 301-309.e1 [PMID: 
31585124 DOI: 10.1016/j.gie.2019.09.034]

73     

Zhao YY, Xue DX, Wang YL, Zhang R, Sun B, Cai YP, Feng H, Cai Y, Xu JM. Computer-assisted 
diagnosis of early esophageal squamous cell carcinoma using narrow-band imaging magnifying endoscopy. 
Endoscopy 2019; 51: 333-341 [PMID: 30469155 DOI: 10.1055/a-0756-8754]

74     

Oyama T, Inoue H, Arima M, Momma K, Omori T, Ishihara R, Hirasawa D, Takeuchi M, Tomori A, Goda 
K. Prediction of the invasion depth of superficial squamous cell carcinoma based on microvessel 
morphology: magnifying endoscopic classification of the Japan Esophageal Society. Esophagus 2017; 14: 
105-112 [PMID: 28386209 DOI: 10.1007/s10388-016-0527-7]

75     

Nakagawa K, Ishihara R, Aoyama K, Ohmori M, Nakahira H, Matsuura N, Shichijo S, Nishida T, Yamada 
T, Yamaguchi S, Ogiyama H, Egawa S, Kishida O, Tada T. Classification for invasion depth of esophageal 
squamous cell carcinoma using a deep neural network compared with experienced endoscopists. Gastrointest 
Endosc 2019; 90: 407-414 [PMID: 31077698 DOI: 10.1016/j.gie.2019.04.245]

76     

Everson M, Herrera L, Li W, Luengo IM, Ahmad O, Banks M, Magee C, Alzoubaidi D, Hsu HM, Graham 
D, Vercauteren T, Lovat L, Ourselin S, Kashin S, Wang HP, Wang WL, Haidry RJ. Artificial intelligence for 
the real-time classification of intrapapillary capillary loop patterns in the endoscopic diagnosis of early 
oesophageal squamous cell carcinoma: A proof-of-concept study. United European Gastroenterol J 2019; 7: 
297-306 [PMID: 31080614 DOI: 10.1177/2050640618821800]

77     

Luo H, Xu G, Li C, He L, Luo L, Wang Z, Jing B, Deng Y, Jin Y, Li Y, Li B, Tan W, He C, Seeruttun SR, 
Wu Q, Huang J, Huang DW, Chen B, Lin SB, Chen QM, Yuan CM, Chen HX, Pu HY, Zhou F, He Y, Xu 
RH. Real-time artificial intelligence for detection of upper gastrointestinal cancer by endoscopy: a 
multicentre, case-control, diagnostic study. Lancet Oncol 2019; 20: 1645-1654 [PMID: 31591062 DOI: 
10.1016/S1470-2045(19)30637-0]

78     

Guo L, Xiao X, Wu C, Zeng X, Zhang Y, Du J, Bai S, Xie J, Zhang Z, Li Y, Wang X, Cheung O, Sharma M, 
Liu J, Hu B. Real-time automated diagnosis of precancerous lesions and early esophageal squamous cell 
carcinoma using a deep learning model (with videos). Gastrointest Endosc 2020; 91: 41-51 [PMID: 
31445040 DOI: 10.1016/j.gie.2019.08.018]

79     

Thakkar SJ, Kochhar GS. Artificial intelligence for real-time detection of early esophageal cancer: another 
set of eyes to better visualize. Gastrointest Endosc 2020; 91: 52-54 [PMID: 31865996 DOI: 
10.1016/j.gie.2019.09.036]

80     

Kodashima S, Fujishiro M, Takubo K, Kammori M, Nomura S, Kakushima N, Muraki Y, Goto O, Ono S, 
Kaminishi M, Omata M. Ex vivo pilot study using computed analysis of endo-cytoscopic images to 
differentiate normal and malignant squamous cell epithelia in the oesophagus. Dig Liver Dis 2007; 39: 762-
766 [PMID: 17611178 DOI: 10.1016/j.dld.2007.03.004]

81     

Shin D, Protano MA, Polydorides AD, Dawsey SM, Pierce MC, Kim MK, Schwarz RA, Quang T, Parikh N, 
Bhutani MS, Zhang F, Wang G, Xue L, Wang X, Xu H, Anandasabapathy S, Richards-Kortum RR. 
Quantitative analysis of high-resolution microendoscopic images for diagnosis of esophageal squamous cell 
carcinoma. Clin Gastroenterol Hepatol 2015; 13: 272-279.e2 [PMID: 25066838 DOI: 
10.1016/j.cgh.2014.07.030]

82     

Quang T, Schwarz RA, Dawsey SM, Tan MC, Patel K, Yu X, Wang G, Zhang F, Xu H, Anandasabapathy S, 
Richards-Kortum R. A tablet-interfaced high-resolution microendoscope with automated image interpretation 
for real-time evaluation of esophageal squamous cell neoplasia. Gastrointest Endosc 2016; 84: 834-841 
[PMID: 27036635 DOI: 10.1016/j.gie.2016.03.1472]

83     

Protano MA, Xu H, Wang G, Polydorides AD, Dawsey SM, Cui J, Xue L, Zhang F, Quang T, Pierce MC, 
Shin D, Schwarz RA, Bhutani MS, Lee M, Parikh N, Hur C, Xu W, Moshier E, Godbold J, Mitcham J, 
Hudson C, Richards-Kortum RR, Anandasabapathy S. Low-Cost High-Resolution Microendoscopy for the 
Detection of Esophageal Squamous Cell Neoplasia: An International Trial. Gastroenterology 2015; 149: 321-
329 [PMID: 25980753 DOI: 10.1053/j.gastro.2015.04.055]

84     

Mutasa S, Sun S, Ha R. Understanding artificial intelligence based radiology studies: What is overfitting? 
Clin Imaging 2020; 65: 96-99 [PMID: 32387803 DOI: 10.1016/j.clinimag.2020.04.025]

85     

Mori Y, Kudo SE, East JE, Rastogi A, Bretthauer M, Misawa M, Sekiguchi M, Matsuda T, Saito Y, 
Ikematsu H, Hotta K, Ohtsuka K, Kudo T, Mori K. Cost savings in colonoscopy with artificial intelligence-
aided polyp diagnosis: an add-on analysis of a clinical trial (with video). Gastrointest Endosc 2020 [PMID: 
32240683 DOI: 10.1016/j.gie.2020.03.3759]

86     

London AJ. Artificial Intelligence and Black-Box Medical Decisions: Accuracy versus Explainability. 
Hastings Cent Rep 2019; 49: 15-21 [PMID: 30790315 DOI: 10.1002/hast.973]

87     

Lawrence DR, Palacios-González C, Harris J. Artificial Intelligence. Camb Q Healthc Ethics 2016; 25: 250-
261 [PMID: 26957450 DOI: 10.1017/S0963180115000559]

88     

Yu KH, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nat Biomed Eng 2018; 2: 719-731 
[PMID: 31015651 DOI: 10.1038/s41551-018-0305-z]

89     

O'Sullivan S, Nevejans N, Allen C, Blyth A, Leonard S, Pagallo U, Holzinger K, Holzinger A, Sajid MI, 
Ashrafian H. Legal, regulatory, and ethical frameworks for development of standards in artificial intelligence 
(AI) and autonomous robotic surgery. Int J Med Robot 2019; 15: e1968 [PMID: 30397993 DOI: 
10.1002/rcs.1968]

90     

http://www.ncbi.nlm.nih.gov/pubmed/27236223
https://dx.doi.org/10.1016/j.media.2016.04.007
http://www.ncbi.nlm.nih.gov/pubmed/31302091
https://dx.doi.org/10.1016/j.gie.2019.06.044
http://www.ncbi.nlm.nih.gov/pubmed/31585124
https://dx.doi.org/10.1016/j.gie.2019.09.034
http://www.ncbi.nlm.nih.gov/pubmed/30469155
https://dx.doi.org/10.1055/a-0756-8754
http://www.ncbi.nlm.nih.gov/pubmed/28386209
https://dx.doi.org/10.1007/s10388-016-0527-7
http://www.ncbi.nlm.nih.gov/pubmed/31077698
https://dx.doi.org/10.1016/j.gie.2019.04.245
http://www.ncbi.nlm.nih.gov/pubmed/31080614
https://dx.doi.org/10.1177/2050640618821800
http://www.ncbi.nlm.nih.gov/pubmed/31591062
https://dx.doi.org/10.1016/S1470-2045(19)30637-0
http://www.ncbi.nlm.nih.gov/pubmed/31445040
https://dx.doi.org/10.1016/j.gie.2019.08.018
http://www.ncbi.nlm.nih.gov/pubmed/31865996
https://dx.doi.org/10.1016/j.gie.2019.09.036
http://www.ncbi.nlm.nih.gov/pubmed/17611178
https://dx.doi.org/10.1016/j.dld.2007.03.004
http://www.ncbi.nlm.nih.gov/pubmed/25066838
https://dx.doi.org/10.1016/j.cgh.2014.07.030
http://www.ncbi.nlm.nih.gov/pubmed/27036635
https://dx.doi.org/10.1016/j.gie.2016.03.1472
http://www.ncbi.nlm.nih.gov/pubmed/25980753
https://dx.doi.org/10.1053/j.gastro.2015.04.055
http://www.ncbi.nlm.nih.gov/pubmed/32387803
https://dx.doi.org/10.1016/j.clinimag.2020.04.025
http://www.ncbi.nlm.nih.gov/pubmed/32240683
https://dx.doi.org/10.1016/j.gie.2020.03.3759
http://www.ncbi.nlm.nih.gov/pubmed/30790315
https://dx.doi.org/10.1002/hast.973
http://www.ncbi.nlm.nih.gov/pubmed/26957450
https://dx.doi.org/10.1017/S0963180115000559
http://www.ncbi.nlm.nih.gov/pubmed/31015651
https://dx.doi.org/10.1038/s41551-018-0305-z
http://www.ncbi.nlm.nih.gov/pubmed/30397993
https://dx.doi.org/10.1002/rcs.1968


Published by Baishideng Publishing Group Inc 

7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA 

Telephone: +1-925-3991568 

E-mail: bpgoffice@wjgnet.com 

Help Desk: https://www.f6publishing.com/helpdesk 

https://www.wjgnet.com

© 2020 Baishideng Publishing Group Inc. All rights reserved.

mailto:bpgoffice@wjgnet.com
https://www.f6publishing.com/helpdesk
https://www.wjgnet.com

