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Abstract
Portal hypertension and bleeding from gastroesophageal varices is the major 
cause of morbidity and mortality in patients with cirrhosis. Portal hypertension is 
initiated by increased intrahepatic vascular resistance and a hyperdynamic 
circulatory state. The latter is characterized by a high cardiac output, increased 
total blood volume and splanchnic vasodilatation, resulting in increased 
mesenteric blood flow. Pharmacological manipulation of cirrhotic portal 
hypertension targets both the splanchnic and hepatic vascular beds. Drugs such as 
angiotensin converting enzyme inhibitors and angiotensin II type receptor 1 
blockers, which target the components of the classical renin angiotensin system 
(RAS), are expected to reduce intrahepatic vascular tone by reducing extracellular 
matrix deposition and vasoactivity of contractile cells and thereby improve portal 
hypertension. However, these drugs have been shown to produce significant off-
target effects such as systemic hypotension and renal failure. Therefore, the 
current pharmacological mainstay in clinical practice to prevent variceal bleeding 
and improving patient survival by reducing portal pressure is non-selective -
blockers (NSBBs). These NSBBs work by reducing cardiac output and splanchnic 
vasodilatation but most patients do not achieve an optimal therapeutic response 
and a significant proportion of patients are unable to tolerate these drugs. 
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Although statins, used alone or in combination with NSBBs, have been shown to 
improve portal pressure and overall mortality in cirrhotic patients, further 
randomized clinical trials are warranted involving larger patient populations with 
clear clinical end points. On the other hand, recent findings from studies that have 
investigated the potential use of the blockers of the components of the alternate 
RAS provided compelling evidence that could lead to the development of drugs 
targeting the splanchnic vascular bed to inhibit splanchnic vasodilatation in portal 
hypertension. This review outlines the mechanisms related to the pathogenesis of 
portal hypertension and attempts to provide an update on currently available 
therapeutic approaches in the management of portal hypertension with special 
emphasis on how the alternate RAS could be manipulated in our search for 
development of safe, specific and effective novel therapies to treat portal 
hypertension in cirrhosis.

Key Words: Portal hypertension; Cirrhosis; Intrahepatic vascular resistance; Hyperdynamic 
circulatory state; Splanchnic vasodilatation; Portal blood flow; Non-selective beta-
blockers; Alternate renin angiotensin system
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Core Tip: Cirrhosis is a major cause of death and affects over 300 million people 
worldwide. Portal hypertension is a life-threatening complication of cirrhosis, 
characterized by splanchnic vasodilatation, the formation of varices and variceal 
bleeding, which account for much of the mortality and morbidity in cirrhotic patients. 
Current “gold standard” clinical treatment is non-selective -blockers; however, their 
efficacy and tolerability are suboptimal. Recent findings from the author’s laboratory 
and others suggest that the alternate renin angiotensin system is a potential target to 
design and develop novel therapeutics to inhibit splanchnic vasodilatation in cirrhotic 
portal hypertension.

Citation: Gunarathne LS, Rajapaksha H, Shackel N, Angus PW, Herath CB. Cirrhotic portal 
hypertension: From pathophysiology to novel therapeutics. World J Gastroenterol 2020; 
26(40): 6111-6140
URL: https://www.wjgnet.com/1007-9327/full/v26/i40/6111.htm
DOI: https://dx.doi.org/10.3748/wjg.v26.i40.6111

INTRODUCTION
Cirrhosis and its complications are responsible for a large number of deaths 
worldwide annually. The Global Burden of Disease study in 2017 reported over 1.32 
million cirrhosis-related deaths globally, which was approximately 2.4% of all deaths 
worldwide[1]. Almost 90% of the patients with cirrhosis eventually develop portal 
hypertension and this condition is a prequel to the majority of deaths in cirrhotic 
patients[2]. Portal hypertension can also develop in the absence of liver cirrhosis and 
this is termed non-cirrhotic portal hypertension[3].

The majority of complications that occur in patients with decompensated cirrhosis 
including the development of gastro-esophageal varices, ascites, spontaneous bacterial 
peritonitis (SBP), hepato-renal syndrome (HRS), hepato-pulmonary syndrome (HPS), 
hyper-splenism, and even hepato-cellular carcinoma, are related to the evolution of 
portal hypertension[4-7]. Discussion on these complications other than portal 
hypertension and variceal bleeding is beyond the scope of this review and the reader is 
referred to excellent reviews published elsewhere[8-12]. Gastroesophageal varices are the 
most clinically significant outcome, contributing to 25%-50% of mortality in patients 
because of their tendency for rupture and haemorrhage[2,13,14].

During the past few decades, many advances have been made in the understanding 
of the pathophysiology of portal hypertension in cirrhosis. Initially it was suggested 
that portal hypertension is simply a consequence of the distortion of normal tissue 
architecture and function in the cirrhotic liver[15,16]. However, it was subsequently 
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shown that increased portal inflow caused by splanchnic vasodilatation also plays an 
important role[15,17,18].

These advances in understanding have led to the development of new therapeutic 
strategies. However, these new treatment options, including the use of non-selective -
blockers (NSBBs), are not effective in all patients highlighting the importance of 
developing novel therapies that can precisely target portal hypertension in cirrhosis. 
Recent research suggests that the renin angiotensin system (RAS) is an important 
physiological system that contributes to portal hypertension and it is therefore a 
potential target for future pharmacotherapies[19-21]. Supporting this, many studies have 
shown that drugs which modulate the RAS reduce portal pressure in cirrhotic animal 
models and human patients with portal hypertension[22-26].

This review outlines the pathophysiological mechanisms related to the development 
of portal hypertension in cirrhosis and current therapeutic approaches in the 
management of this condition. Based on the evidence from recent advances in RAS 
research, in particular work on the role of the “alternate axis” of the RAS, in this 
review we specifically emphasize the contribution of the RAS to the pathogenesis of 
cirrhotic portal hypertension and how this system may be manipulated to treat this 
condition.

PATHOPHYSIOLOGY OF PORTAL HYPERTENSION
Changes in the pressure along a blood vessel (ΔP) result from the interaction of blood 
flow (Q) and the resistance (R) opposed to that flow. Accordingly, changes in the 
vascular resistance and/or blood flow will translate into the changes in the pressure. 
The same physical properties can be used to determine the factors contributing to 
portal hypertension. In the portal circulation, Q represents the portal venous inflow 
and R represents the portal vascular resistance opposed to that flow. The development 
of cirrhotic portal hypertension is a cumulative effect of increased portal venous 
resistance to the incoming venous flow due to anatomical and functional changes in 
the intrahepatic circulation and increased portal venous flow as a result of splanchnic 
vasodilatation and increased cardiac output[27,28].

INCREASED INTRAHEPATIC VASCULAR RESISTANCE
Increased hepatic vascular resistance in the cirrhotic liver is a result of both the fixed 
obstruction created by hepatic structural changes, and alteration of hepatic vascular 
tone. Vascular obliteration by the formation of scar tissue and regenerative nodules in 
the cirrhotic liver during tissue remodelling and scarring contributes to approximately 
70% of the increase in hepatic resistance[29,30]. Activated hepatic stellate cells (HSCs) 
responsible for excessive production of extracellular matrix (ECM) promote scar tissue 
formation, thereby replacing the functional liver tissue with fibrous matrix[19,31,32]. The 
remaining 30% increase in hepatic resistance is governed by the contraction of 
activated HSCs and vascular smooth muscle cells (VSMCs) which is modulated by a 
range of vasoconstrictors[24,25]. The level of angiotensin II (Ang II), a potent 
vasoconstrictor peptide of the RAS, is elevated in the cirrhotic liver, augmenting HSC 
proliferation and sinusoidal vasoconstriction via increased expression of Ang II type 1 
receptor (AT1R) on HSCs[33-35]. Herath and colleagues[24] have shown that the 
upregulated AT1R in the cirrhotic rat liver responded to Ang II with an increased 
vasoconstrictive response compared to perfused control livers. As liver disease 
progresses, the activated HSCs augment the production of another potent 
vasoconstrictor peptide, endothelin-1 (ET-1). The HSCs become an autocrine target to 
ET-1 and acting via endothelin receptors, ETRA and ETRB2, and increases HSC 
proliferation and contraction, thereby increasing hepatic vascular tone and 
resistance[36,37]. Moreover, cyclooxygenase -derived prostaglandins (prostaglandin H2) 
and thromboxane A2, and lipoxygenase-derived leukotrienes are also over-produced 
in the cirrhotic livers modulating hepatic vascular tone[38,39].

The elevated intrahepatic vascular tone is further affected by endothelial 
dysfunction which is characterised by a reduced intrahepatic bioavailability of 
vasodilators such as nitric oxide (NO), together with an increased release of 
vasoconstrictors[29,39,40]. Reduced activity of endothelial nitric oxide synthases (eNOS) is 
responsible for decreased hepatic NO production and impaired intrahepatic 
vasodilatation[41,42]. Reduced eNOS activity is mainly due to the binding of eNOS to the 
inhibitory protein caveolin-1 in venous and sinusoidal endothelial cells of the cirrhotic 
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liver[43]. However, the contribution of many other factors has also been described, such 
as dysregulation of eNOS phosphorylation due to abnormal signaling by the regulator 
protein kinase B, reduced expression of eNOS activator G-protein coupled receptor 
kinase interactor-1, deficiency of eNOS co-factor tetrahydrobiopterin and activation of 
RhoA/Rho-kinase[44-47].

INCREASED SPLANCHNIC BLOOD FLOW
As outlined above, splanchnic vasodilation leading to increased portal blood flow also 
contributes to the pathogenesis of portal hypertension. In contrast to the presence of 
endothelial dysfunction to vasodilators in hepatic vasculature, in cirrhotic splanchnic 
vessels, vasodilatation is promoted by local over-production of vasodilators, which, 
along with intrinsic vascular hypocontractility allow increased blood flow through the 
splanchnic vessels.

Hyperactive splanchnic vascular endothelial cells over-produce NO in response to 
different stimuli such as shear stress, inflammatory cytokines and vascular endothelial 
growth factors (VEGF)[39,40,48,49]. The main isomer responsible for splanchnic vascular 
over-production of NO is eNOS. When released from the endothelial cells, NO diffuses 
into VSMCs, where it directly stimulates membrane-bound soluble guanylate cyclase 
to release cyclic guanosine monophosphate (cGMP) from guanosine triphosphate. 
Subsequently, cGMP induces K+ efflux increasing intracellular Ca2+ concentration and 
activates cGMP dependent protein kinase to dephosphorylate myosin light chain 
kinase, inducing vasodilatation[38,40] (Figure 1). Vasodilatory molecules such as 
angiotensin-(1-7) [Ang-(1-7)][22], endogenous cannabinoids (ECs) and carbon monoxide 
(CO)[50] have been shown to regulate the vasodilatory pathways via eNOS/NO 
dependent mechanisms.

Several lines of research evidence support the augmented role of eNOS in increased 
NO over-production in the splanchnic vascular bed in cirrhosis. It has been reported 
that there is an elevated eNOS activity and nitrite levels in portal circulation of human 
cirrhotic patients undergoing liver transplantation[51]. In agreement with this, elevated 
eNOS expression and activity has been reported in the splanchnic vessels of portal 
hypertensive rats[52-55]. A number of in-vivo and in-vitro studies have shown that eNOS 
inhibition with non-selective NOS inhibitor (iNOS), N(G)-nitro-L-arginine methyl 
ester, reduced vascular hypocontractility and plasma volume, and increased perfusion 
pressure in portal hypertensive rats[25,56-59], providing evidence for the importance of 
eNOS/NO system in splanchnic and systemic vasodilatation in cirrhosis. Supporting 
this, denudation of vessels to remove the endothelium ameliorated vascular 
hypocontractility, suggesting that over-production of NO is endothelium 
dependent[60,61].

However, NOS/NO is not the only system involved in altering splanchnic 
hemodynamics in cirrhosis. This fact is proven by the studies in which inhibition of 
NO or denudation of cirrhotic rat vessels failed to completely normalize the splanchnic 
vascular hypocontractility[56,58,62,63]. Moreover, eNOS and/or iNOS gene knockout mice 
still developed hyperdynamic circulation after the induction of portal hypertension[64]. 
This suggests that in addition to NO, other paracrine/autocrine vasodilators such as 
prostaglandin I2 (PGI2), endothelium-derived hyperpolarizing factor(s) (EDHFs) 
including epoxyeicosatrienoic acids, hydrogen sulphide (H2S), CO, and ECs may 
contribute to the pathogenesis of hyperdynamic circulation and splanchnic 
vasodilatation in cirrhosis[40,65]. It is shown that molecules such as PGI2

[66-68] and ECs[69] 
activate adenyl cyclase to increase cyclic adenosine monophosphate (cAMP) release in 
response to mechanical/humoral stimuli, thereby inducing the relaxation of VSMCs. 
The vasodilatory mechanism of H2S has been shown to be regulated via opening of K+-
ATP channels[70]. In the absence of NO, EDHFs also act as prominent vasodilatory 
molecules, to induce vasodilatation via arachidonic acid metabolism and activation of 
K+ channels in the VSMCs[40,71,72]. Whilst both eNOS/NO system and EDHFs may 
participate in vasodilatory responses in the same vasculature, evidence also points to 
the possibility that the contribution of each system may depend on the size of the 
vessels[73]. This was based on the observations that different regions of rat superior 
mesenteric artery responded differently to acetylcholine-induced endothelium-
dependent relaxation, and in comparison with large conduit vessels such as the aorta, 
it has been shown that the contribution of NO was most prominent in the aorta with 
highest expression of eNOS, whereas that of EDHF was most prominent in the distal 
mesenteric arteries accompanying the least eNOS expression[73-75].

It should be noted that this vasodilated hyperdynamic circulatory state of cirrhosis 
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Figure 1 Proposed downstream signalling pathways of endothelium-dependent vasodilatation in splanchnic vasculature. Nitric oxide (NO) is 
a key mediator of mesenteric vasodilatation in cirrhosis. G protein-coupled receptor-mediated activation of G-proteins augments the production and activation of a 
number of vasodilatory pathways including endothelial nitric oxide synthase/nitric oxide (eNOS/NO), vasodilating prostacyclins, and metabolites of arachidonic acid 
(AA) metabolism which act as endothelium-derived hyperpolarizing factors such as epoxyeicosatrienoic acids (EETs) in vascular endothelial cells. The eNOS 
converts L-arginine to produce NO which diffuses into the vascular smooth muscle cells (VSMCs). In VSMCs, NO which activates membrane-bound guanylyl cyclase 
enzyme to release cyclic guanosine monophosphate from guanosine triphosphate, mediates vasodilatation by increasing K+ efflux via large-conductance and 
intermediate-conductance calcium-activated potassium channels and by decreasing Ca2+ influx via voltage-gated calcium channels, and by dephosphorylation of 
myosin light chain. In addition to NO, vasodilators such as prostaglandin I2, derived from AA by the action of cyclooxygenase enzyme which activates membrane-
bound adenylyl cyclase enzyme to release cyclic adenosine monophosphate from adenosine triphosphate, causes vasodilatation by increasing K+ efflux and 
dephosphorylation of myosin light chain. The EETs deriving from AA by the action of endothelial epoxygenases such as cytochrome P450 directly act on Ca2+ and K+

 channels, causing hyperpolarization of VSMC membrane and subsequent vasodilatation. NO: Nitric oxide; GPCR: G protein-coupled receptor; eNOS/NO: Endothelial 
nitric oxide synthase/nitric oxide; AA: Arachidonic acid; EDHFs: Endothelium-derived hyperpolarizing factors; EETs: Epoxyeicosatrienoic acids; VECs: Vascular 
endothelial cells; VSMCs: Vascular smooth muscle cells; cGMP: Cyclic guanosine monophosphate; GTP: Guanosine triphosphate; BKCa2+: Large-conductance; IKCa2+: 
Intermediate-conductance; VGCCs: Voltage-gated calcium channels; PGI2: Prostaglandin I2; COX: Cyclooxygenase; cAMP: Cyclic adenosine monophosphate; ATP: 
Adenosine triphosphate; CYP450: Cytochrome P450.

persists despite the activation of powerful vasoconstrictor systems in the systemic 
circulation such as the RAS, endothelin system and sympathetic tone. It appears that 
this resistance to the vasoconstrictor agents is likely due to the presence of an intrinsic 
vascular hypo-responsiveness of the splanchnic/systemic vessels[28,30,76]. A number of 
human and animal studies have demonstrated a splanchnic vascular hypo-
responsiveness to various vasoconstrictors including ET-1, Ang II,  adrenoceptor 
agonists, neuropeptide Y and vasopressin in cirrhosis. Supporting this, a reduced level 
of portal ET-1 was found to be accompanied by an increased expression of the 
vasodilatory ETB receptor in both mesenteric vascular endothelial and smooth muscle 
cells of cirrhotic rats[77]. A marked increase in norepinephrine concentrations has been 
detected in portal circulation of cirrhotic humans and rats, however it is proposed that 
the sustained sympathetic over-activation with norepinephrine may lead to vascular 
desensitization, thereby aggravating splanchnic vasodilatation in cirrhosis[78,79]. 
Similarly, Ang II plasma concentration is also elevated in cirrhosis[80], however it is 
speculated that the binding of receptor desensitizing proteins such as arrestin-2 and 
GRK2 to the AT1R may be responsible for vascular hyporeactivity to Ang II[81]. It has 
also been suggested that despite the attenuated reactivity to vasoconstrictors, 
expression and affinity of some receptors to their endogenous vasoconstrictors are not 
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altered, and therefore, alterations in downstream signal transduction pathways is 
likely to be primarily responsible for this vascular hypo-reactivity[81-83]. However, this 
phenomenon of hypo-contractility of cirrhotic splanchnic vessels was questioned by a 
recent study published by our laboratory, demonstrating that pressor response of 
splanchnic vessels obtained from liver transplant recipients to Ang II was similar to 
that of control splanchnic vessels[84]. Taken together, these results imply more work is 
needed to clarify splanchnic vascular hypo-responsiveness to various vasoconstrictors 
in portal hypertension.

FORMATION OF PORTOSYSTEMIC COLLATERALS
The development of a venous vascular network of porto-systemic collaterals also 
accompanies the development of portal hypertension in cirrhosis. Formation of 
collaterals by activation of angiogenesis is modulated by several growth factors such 
as VEGF, placental growth factor, pigment epithelial derived factor and platelet 
derived growth factor (PDGF)[29,38,49,85]. Blocking VEGF and PDGF receptors with 
sorafenib administration for one month has been shown to reduce the extent of 
collateralization and portal pressure in cirrhotic rats[86,87], and reduced portal venous 
flow in patients with hepatocellular carcinoma[88]. Some studies also suggested that up-
regulated NO in splanchnic vasculature may also play a role in collateral formation[48]. 
Nicotinamide adenine dinucleotide phosphate oxidase has also been shown to play an 
important role in portal hypertension by modulating splanchnic angiogenesis and the 
formation of portosystemic collaterals[89].

CLINICAL DIAGNOSIS OF PORTAL HYPERTENSION
Portal hypertension is defined as a sustained increase in the pressure gradient between 
portal and systemic circulation. The most common parameter used to measure portal 
pressure is the hepatic venous pressure gradient (HVPG), the pressure gradient 
between the portal vein (PV) and inferior vena cava (IVC)[12]. In healthy individuals, 
the normal HVPG is 1-5 mmHg. In compensated cirrhosis, a HVPG between 6-10 
mmHg portends mild subclinical portal hypertension, whilst clinically significant 
complications of portal hypertension develop when it exceeds 10 mmHg. 
Decompensated cirrhosis is characterised by an HVPG above 12 mmHg, which is 
manifested by the development of porto-systemic shunting, variceal rupture and 
bleeding[90,91]. Moreover, it has been reported that the probability of survival in 
cirrhotic patients with HVPG above 16 mmHg was below 70% of those patients who 
have an HVPG below this level and that this poor survival rate was related to Child-
Pugh class[92]. The HVPG is a quantitative assessment but there are other indicators of 
PHT including the presence of varices on endoscopy, physical exam findings of 
splenomegaly, ascites and caput medusa as well as classical imaging findings on 
ultrasound, computer tomography and magnetic resonance imaging studies.

Portal pressure can be measured in experimental animals by direct cannulation of 
the PV or its tributary, the superior mesenteric vein. However, this is not feasible in 
the clinical setting and therefore, HVPG measurement has been adopted as the most 
common method for the monitoring of portal pressure. In this technique, a French 
balloon tipped catheter is inserted into the right internal jugular vein and advanced 
through right atrium and IVC into the hepatic vein (HV) under fluoroscopic guidance. 
Free hepatic vein pressure (HVP) is measured when the tip of the catheter is free in the 
HV. The balloon is then inflated occluding flow and creating a proximal static column 
of blood, which transmits the pressure from the hepatic sinusoids to the catheter. To 
obtain accurate and reliable pressure measurements, the readings are permanently 
traced and at least 3 pressure readings are obtained after HV occlusion to calculate the 
wedged hepatic venous pressure (WHVP)[93]. HVPG is the difference between WHVP 
and the HVP, and is a measure of sinusoidal pressure which is closely correlated with 
portal pressure[94]. In the normal liver, the HVPG is slightly lower than portal pressure, 
owing to pressure equilibrium through the interconnected sinusoids. However, in the 
cirrhotic liver the static column of blood created by occluding the hepatic vein cannot 
be decompressed at the sinusoidal level due to the disrupted connections between 
sinusoids, therefore, the HVPG gives a good approximation of the portal pressure in 
cirrhosis[90,93,94]. However, it should be noted that HVPG is a measure of sinusoidal 
pressure and does not accurately assess pre-sinusoidal portal hypertension that occurs 
in pre-cirrhotic primary biliary cholangitis.
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ARTIFICIAL INTELLIGENCE IN PREDICTING CLINICALLY SIGNIFICANT 
PORTAL HYPERTENSION
Although HVPG is considered to be the gold standard in the measurement of portal 
pressure, this technique is an invasive and its reliability depends on the experience of 
the physician performing the procedure. Therefore, methods to evaluate the severity of 
liver fibrosis and stiffness such as liver transient elastography, ultrasound 
elastography, doppler and contrast-enhanced ultrasonography and serum tests, have 
been developed and validated as tools for the prediction of the presence of clinically 
significant portal hypertension and gastroesophageal varices using the assessment of 
cirrhosis extent as a predictor of the extent of portal hypertension[95,96].

Recent studies have focused on integrating artificial intelligence in the diagnosis of 
liver disease and portal hypertension. Such studies use computer-based programs to 
determine whether there is a correlation between different diagnostic markers and 
clinical outcomes. These computer programs use non-linear statistical analyses in 
order to establish a relationship between different input and output variables. A recent 
study using artificial neural networks (ANNs) compared the diagnostic performance 
of seven input variables (transient elastography and six serum tests) in predicting the 
presence of cirrhosis, clinically significant portal hypertension and oesophageal varices 
in patients[95]. This study revealed that liver stiffness measured by transient 
elastography could be used to detect portal hypertension and varices with > 80% 
accuracy via ANNs. Another study showed the effectiveness of a data mining software 
in establishing the relationships between various input variables, including clinical 
parameters, serum markers, liver ultrasonography and transient elastography, 
compared with portal pressure measured by HVPG[97]. This software used different 
classification meta-algorithms on selected datasets to show that there is a relationship 
between the above input variables and measured portal hypertension, suggesting this 
meta-algorithm analysis could be used as a substitute for the measurement of portal 
pressure by HVPG. Whilst these methods work well in advanced cirrhosis with 
established portal hypertension, they perform less well in earlier stages of liver 
disease.

CLINICAL MANIFESTATIONS OF PORTAL HYPERTENSION
Most events that occur during the evolution of chronic liver disease are the 
consequences of portal hypertension. Clinical manifestations of decompensated 
cirrhosis including the formation of varices and variceal bleeding, ascites, HRS and 
HPS have been directly related to the development of a hyperdynamic circulation, 
splanchnic vasodilatation and portal hypertension in cirrhosis. It should be noted that 
in 2016, HRS types 1 and 2 were reclassified as HRS-AKI and HRS-NAKI respectively, 
with the difference between the two dependent upon the trajectory of the creatinine 
rise above baseline[98,99]. The development of decompensation events is associated with 
a reduction in the median survival of a patient to less than 2 years, from 12 years in a 
cirrhotic patient without these complications[91].

The hyperdynamic circulation in cirrhosis is characterized by systemic and 
splanchnic vasodilatation, plasma volume expansion and increased cardiac index. 
Splanchnic vasodilatation results in an excessive blood volume in the splanchnic 
vascular compartment, leading to a reduction in effective arterial blood volume. 
Subsequently, endogenous neuro-hormonal systems such as the RAS and sympathetic 
nervous system are activated in an attempt to restore normal blood volume via 
increasing sodium and water retention and by promoting vasoconstriction and 
increased cardiac output[11] (Figure 2). However, in decompensated cirrhosis, these 
compensatory mechanisms are ineffective due to the intrinsic splanchnic vascular 
hypocontractility. Patients with advanced cirrhosis may also develop cirrhotic 
cardiomyopathy which limits the ability of the heart to increase cardiac output[26].

GASTROESOPHAGEAL VARICES
Development of gastroesophageal varices and associated massive upper 
gastrointestinal bleeding is the leading cause of death in cirrhotic patients. Varices are 
dilated collateral venous communications formed between portal and systemic 
circulations, mainly in the upper gastrointestinal region. Varices can divert 90% or 
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Figure 2 Pathophysiology of the complications in decompensated cirrhosis. Splanchnic vasodilatation and subsequent reduction of effective arterial 
blood volume (EABV) triggers the activation of homeostatic mechanisms such as the renin angiotensin system and sympathetic nervous system to promote sodium 
and water retention and vasoconstriction. Increased hydrostatic pressure and increased capillary permeability in splanchnic vessels cause leaking of excess fluid into 
peritoneal cavity and the onset of ascites. The renal vasculature is hyper-responsive to the activated circulating vasoconstrictor systems, creating a deficit in renal 
perfusion and glomerular filtration rate which in turn leads to the development of hepatorenal syndrome. In decompensated cirrhosis, the compensatory mechanisms 
to restore EABV are ineffective due to the intrinsic splanchnic vascular hypocontractility and cardiomyopathy. EABV: Effective arterial blood volume; RAS: Renin 
angiotensin system; SNS: Sympathetic nervous system; GFR: Glomerular filtration rate; HRS: Hepatorenal syndrome.

more of the elevated portal flow back into heart. Eventually they remodel and 
progressively enlarge to accommodate increasing blood flow producing a risk of 
rupture and bleeding[12].

In cirrhotic patients, the collateral circulation begins to develop when HVPG rises 
above 10 mmHg. When HVPG is elevated above 12 mmHg, there is a significant risk 
of variceal rupture and bleeding[90,91]. By far the most clinically significant and relevant 
of these are the gastroesophageal varices, although they can also occur within 
stomach, rectum, omentum and elsewhere in the gastrointestinal tract. 
Gastroesophageal varices are more prone to bleed because of the lack of external tissue 
support and high trans-luminal pressure gradient due to negative oesophageal 
luminal pressure during inspiration[100,101].

Upon diagnosis of cirrhosis, varices are detected in about 30% and 60% of 
compensated and decompensated patients, respectively[102-104]. Patients without varices 
develop them at a rate of 8% per year. Long term follow-up studies revealed up to 90% 
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of the cirrhotic patients will eventually develop varices. There is a 10%-30% risk for 
variceal rupture within the first year of diagnosis[105]. Despite the advances in the 
management of variceal bleeding in the past few decades, average 6-wk in-hospital 
mortality of first variceal bleeding still approaches 20%[100,106,107].

PHARMACOTHERAPIES TARGETING PORTAL HYPERTENSION IN 
CIRRHOSIS
Over the past few decades, a number of advances have been made in the development 
of novel treatment strategies to treat portal hypertension and its complications such as 
variceal bleeding. These therapies aim at reducing the risk of bleeding from varices by 
dropping the HVPG at least by 20% from baseline pressure or to less than 12 mmHg. 
However, the effectiveness of the currently available drugs including NSBBs in the 
treatment of variceal bleeding is limited, therefore there is an ongoing need for 
investigation and development of new therapies.

THERAPIES TARGETING SPLANCHNIC VASODILATATION
NSBBs
In 1981, the NSBBs were first introduced as a treatment for recurrent gastrointestinal 
bleeding in patients with cirrhosis[108]. Later, they were shown to be similarly effective 
in primary prophylaxis for variceal bleeding[109]. Since then, the effectiveness of NSBBs 
as first line pharmacotherapy in variceal bleeding has been documented by many 
clinical trials[110-114]. NSBBs lower HVPG by two principal mechanisms; firstly, by 
reducing cardiac output which leads to a subsequent reduction in splanchnic blood 
flow (cardiac 1-adrenergic blockade) and secondly by increasing splanchnic vascular 
resistance by allowing unopposed vasoconstrictive alpha-adrenergic activity thereby 
reducing portal blood flow (splanchnic 2-adrenergic blockade)[26,115-117].

American Association for the Study of Liver Disease guidelines, British Society of 
Gastroenterology guidelines and the Baveno VI consensus recommend the use of 
NSBBs in both primary and secondary prophylaxis of variceal bleeding[118-120], and their 
effectiveness has been demonstrated by a number of clinical trials. In patients with 
existing small varices, NSBBs slowed the progression of small varices into large varices 
(11% and 37%, NSBB vs placebo control, respectively) and decreased the incidence of 
first variceal hemorrhage (12% and 22%, NSBB vs placebo control, respectively)[121]. In 
patients with medium or large varices and at a high risk of bleeding, they reduced the 
risk of bleeding to 14% from 30% in control subjects[122]. The effectiveness of NSBBs in 
secondary prophylaxis has been shown by studies which demonstrated that at one 
year of treatment with propranolol, the drug reduced recurrent bleeding of cirrhotic 
patients with gastrointestinal bleeding[108,111]. However, NSBBs are not similarly 
effective in preventing the development of new varices in early cirrhotic patients with 
mild subclinical portal hypertension[117]. Moreover, these drugs are contraindicated in 
patients at the time of acute variceal bleeding due to their systemic hypotensive and 
cardiac side effects[123].

Despite their proven clinical effectiveness, traditional NSBBs such as propranolol 
and nadolol are contraindicated or poorly tolerated in up to 15%-20% of patients and 
up to 60% of patients do not achieve any therapeutically useful fall in HVPG with 
these NSBBs[105,124,125]. NSBBs produce a number of cardiac and non-cardiac adverse 
effects, such as headaches, fatigue, asthma and shortness of breath, which led to the 
discontinuation of treatment in about 15% of the patients in clinical trials[126,127].

The 1-adrenergic effects of NSBBs in reducing cardiac output has detrimental side 
effects in patients with advanced cirrhosis. In end stage cirrhotic patients with 
refractory ascites and/or SBP, NSBBs blunt the ability to maintain an adequate 
systemic arterial blood pressure, and defective renal perfusion may lead to the 
development of HRS[128,129], and in end stage cirrhosis NSBBs have been associated with 
increased mortality[130].The use of NSBBs is also contraindicated in around 15% of the 
cirrhotic patients who have asthma, chronic obstructive pulmonary diseases poor 
cardiac function or low blood pressure[91].

The traditional and most widely used NSBBs in clinical practice are propranolol and 
nadolol. Many clinical trials suggest that both drugs have a similar effectiveness in 
primary prophylaxis of variceal bleeding. However, some studies showed that the side 
effects produced by nadolol (9%-13%) were lower compared to those of propranolol 
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(12%-31%), although direct comparison between the two groups has not been 
performed[131]. Moreover, compared to propranolol, nadolol has a longer half-life in the 
circulation attributed to its low lipid solubility and hepatic metabolism, thus patients 
can be dosed less frequently[132].

Similar to propranolol, the NSBB timolol is effective in reducing HVPG, particularly 
in early cirrhosis (12% and 13% reduction in timolol and propranolol, 
respectively)[133,134]. Other NSBBs used as antihypertensive drugs including sotalol, 
pindolol and penbutalol may also be effective in the treatment of portal hypertension; 
however, the efficacy of these drugs has not yet been tested in patients with 
oesophageal varices.

The NSBB, carvedilol, has been shown to be more effective than propranolol in 
reducing portal pressure[135]. In one clinical trial, carvedilol and propranolol resulted in 
a HVPG reduction of more than 20% from baseline values, or to less than 12 mmHg, in 
64% and 14% of cirrhotic patients, respectively[136]. In addition to its potent -blocker 
activity on reducing splanchnic vasodilatation, the effectiveness of carvedilol is likely 
due to its potential anti-1 adrenergic activity, which is about one-tenth of its -blocker 
activity, thus reducing intrahepatic vascular resistance[137]. Thus, whilst carvedilol 
decreases cardiac output with concomitant increase in splanchnic resistance by 
blocking the  receptors, its anti-1 receptor activity helps decrease hepatic vascular tone 
and hepatic resistance[138]. Moreover, carvedilol is also known to have antioxidant, 
antifibrotic and anti-inflammatory properties, which might potentially benefit patients 
with advanced cirrhosis[132]. However, the vasodilating anti-1 effect of carvedilol has 
potential to enhance systemic hypotension, leading to a reduction in renal perfusion 
and therefore, its clinical application is limited, especially in cirrhotic patients with 
refractory ascites and in patients with advanced, decompensated cirrhosis[136,139]. 
However, labetalol, another NSBB with similar anti-1 adrenergic activity failed to 
reduce HVPG in patients with cirrhosis[140]. Although individual studies demonstrated 
that carvedilol may be more effective than traditional NSBBs such as propranolol in 
preventing variceal bleeding in cirrhotic patients, a recent meta-analysis which 
systematically analysed ten randomized clinical trials using carvedilol, propranolol 
and nadolol, concluded that carvedilol is not as effective as traditional NSBBs in 
reducing mortality, variceal bleeding and serious adverse events[141]. Thus, the authors 
concluded that additional evidence is required from adequately powered, long-term, 
double-blind, randomised clinical trials, evaluating both clinical and haemodynamic 
outcomes. Importantly, in the United Kingdom, there are adequately powered 
randomized clinical trials in progress comparing the effectiveness of carvedilol vs 
placebo[142] and carvedilol vs endoscopic variceal ligation therapy[143] in cirrhotic 
patients and the outcomes of these studies are yet to be published. These are the first 
trials investigating the effectiveness of carvedilol on variceal bleeding in cirrhotic 
patients.

Selective 1 receptor blockers such as atenolol and metoprolol also reduce HVPG in 
cirrhotic patients. The reduction of HVPG achieved with these selective blockers is 
related to their 1 receptor blockade-mediated effect on cardiac index, which contrasts 
with the cumulative cardiac (1) and splanchnic (2) effects of NSBBs such as 
propranolol. It was reported that the efficacy of atenolol in reducing HVPG and 
variceal bleeding was less and not sustained in cirrhotic patients compared to 
propranolol[144,145]. Similarly, treatment with metoprolol also was associated with higher 
rate of recurrent bleeding[146]. Based on these findings and also due to their profound 
cardiac side effects, selective 1 receptor blockers are not therefore recommended in the 
prophylaxis of variceal hemorrhage[125].

OTHER THERAPIES TARGETING SPLANCHNIC VASODILATATION
Splanchnic vasoconstrictors such as vasopressin, somatostatin and their analogues are 
used alone or in combination with endoscopic therapy to treat patients with acute 
variceal bleeding[118].

Similar to NSBBs, vasopressin reduces portal pressure by producing splanchnic 
vasoconstriction and thereby decreasing portal venous blood flow. However, due to its 
potent vasoconstrictive ability vasopressin has been shown to produce multiple side 
effects in the heart and systemic circulation including hypertension, ventricular 
arrhythmias, cardiac and peripheral ischemia, and bowel ischemia[131]. Combination 
therapy of vasodilator nitroglycerine has been shown to counteract the cardiac side 
effects of vasopressin in cirrhotic patients and experimental animals[147]. The synthetic 
vasopressin analogue terlipressin which is selective for the V1 vasopressin receptor 
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has significantly fewer side effects and therefore, it is recommended for patients with 
acute variceal bleeding[148,149]. However, terlipressin is not available in some countries 
including the United States and Canada.

Treatment with somatostatin and its analogues such as octreotide and vapreotide is 
also recommended for the treatment of acute variceal haemorrhage[150]. Among these, 
only octreotide is readily available in many countries including the United States. 
Although these drugs were previously shown to promote splanchnic vasoconstriction 
via inhibiting the release of vasodilatory peptide glucagon, it is now known that the 
local adrenergic 1 receptor-mediated vasoconstrictive effects of somatostatins are 
responsible for counteracting the splanchnic vasodilatation. A recent meta-analysis 
showed that the efficacy of somatostatin/octreotide on variceal re-bleeding was 
similar to that of vasopressin/terlipressin[151]. In current guidelines, however, they are 
recommended for acute variceal bleeding[152], although they may have side-effects such 
as tachyphylaxis, bradycardia and hypertension[153,154].

THERAPIES TARGETING INCREASED INTRAHEPATIC VASCULAR TONE
Reduction of intrahepatic and/or porto-collateral resistance using vasodilatory agents 
such as nitrates could also be an ideal therapeutic approach in the treatment of portal 
hypertension in cirrhosis. These agents such as isosorbide-5-mononitrate (ISMN), are 
ineffective when given as monotherapy but when given as a combined treatment with 
an NSSB improve the efficacy of NSBBs in the reduction of HVPG, and may be very 
useful in secondary prophylaxis for variceal bleeding[155] The combined treatment, has 
been shown to be effective for those patients who are non-responders to standard 
NSBB treatment alone[121,156].

Selective 1 adrenergic receptor blockers such as prazosin are another experimental 
therapy for the modification of intrahepatic vascular tone. A study in 12 patients with 
oesophageal varices demonstrated that short-term and long-term administration of 
prazosin reduced HVPG by 25% and 19% of the baseline, respectively[157]. However, 
prazosin produced long term deleterious side effects in cirrhotic patients by promoting 
peripheral vasodilatation and enhancing sodium and water retention, leading to the 
development of ascites. A study comparing the effects of combination therapy of 
propranolol with ISMN or prazosin showed that propranolol plus prazosin treatment 
reduced HVPG in cirrhotic patients more than propranolol plus ISMN treatment[158]. 
However, systemic hypotension was more evident with combination therapy of 
prazosin compared to ISMN.

Statins are another category of therapy that has been widely studied in the 
modulation of intrahepatic resistance and vascular tone. These drugs have been shown 
to selectively enhance eNOS activity in cirrhotic livers, promoting the production of 
NO in hepatic sinusoidal endothelial cells, thus they appear to behave as “true liver-
selective vasodilators” in cirrhosis[47,159,160]. In the cirrhotic liver, statins also reduce the 
contraction and proliferation of myofibroblastic HSCs by blocking RhoA-dependent 
non-canonical hedgehog pathway[161]. In addition, statins have been shown to reduce 
neoangiogenesis and collateral flow by blunting the non-canonical hedgehog 
signalling pathway in experimental cirrhosis[161].

A number of clinical studies have highlighted the potential importance of the use of 
statins such as simvastatin and atorvastatin in the treatment of portal hypertension in 
cirrhosis. Recently, a systematic review and meta-analysis summarized the results of 
13 studies that used statins in patients with chronic liver disease, to show that these 
drugs significantly reduce the progression of chronic liver disease into decompensated 
cirrhosis by 46%, patient mortality by 46%, and the risk of variceal bleeding and 
progression of portal hypertension by 26% in cirrhotic patients[162]. An important 
multicenter double blind randomized controlled trial demonstrated that the treatment 
with simvastatin significantly reduced of HVPG (by 8.3%) in cirrhotic patients with 
portal hypertension, without inducing arterial hypotension, supporting the argument 
that these drugs are ‘true liver-selective vasodilators’[163]. Simvastatin also produced an 
additive effect on reducing HVPG in the patients receiving NSBB treatment (by 11%), 
possibly related to increased bioavailability of NO in the hepatic sinusoidal 
circulation[116]. In another recent clinical trial, addition of simvastatin to the NSBB 
treatment decreased overall mortality in patients although it failed to reduce the rate 
of re-bleeding from varices[164]. Whilst this study showed that 3% of the patients treated 
with simvastatin developed severe adverse side effects such as rhabdomyolysis, a 
more recent clinical trial suggested that statins-associated risks appear to be dose-
related[165]. The above clinical evidence suggests that statins possess a clear potential for 
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the treatment of portal hypertension in cirrhotic patients, however, further 
randomized clinical trials are warranted involving larger patient populations with 
clear clinical end points.

A recent study in experimental animal models suggests that statins may have 
divergent effects in cirrhotic and non-cirrhotic portal hypertension. Uschner and 
colleagues[161] showed that in a non-cirrhotic portal hypertensive rat model, statins 
worsened the portosystemic shunt flow and portal hypertension, via increasing 
extrahepatic angiogenesis through the canonical hedgehog pathway, suggesting that 
in a clinical setting, the use of statins could possibly be limited to cirrhotic patients 
with portal hypertension.

Selective hepatic delivery of vasodilators such as NO has also been identified as an 
ideal strategy in the modification of intrahepatic vascular tone. Unexpectedly, delivery 
of liver specific NO donor NCX-100 failed to decrease HVPG in a phase II clinical 
trial[166]. In addition, antioxidants such as ascorbic acid, caffeine and dark chocolate are 
proposed as therapies that improve endothelial dysfunction in cirrhosis[167-169]. 
Experimental evidence also suggests that multikinase inhibitors such as sorafenib 
could be used to inhibit collateral formation and/or neoangiogenesis by blocking both 
VEGF and PDGF receptors. However, the challenge with this therapy is the inability of 
the drug to differentiate pathological neoangiogenesis from physiological neoan-
giogenesis such as the cyclic changes of female reproductive tract[86,87,170].

The selective 2 adrenergic receptor agonist clonidine is another potential therapy for 
the treatment of portal hypertension in cirrhosis. 2 receptor agonists diminish 
sympathetic activity and reduce cardiac output and increase portal venous tone, thus 
they are expected to reduce portal venous inflow. Studies have shown that clonidine 
reduced HVPG by > 10% from baseline in around 87% of alcoholic cirrhotic 
patients[171]. However, the usefulness of clonidine as a treatment for portal 
hypertension is limited by deleterious systemic and renal side effects[172].

THE RAS
The RAS has long been recognized as a simple enzymatic cascade responsible for the 
regulation of cardiovascular and fluid homeostasis. However, understanding of this 
system has dramatically changed over the last few decades. It is now known that 
besides its physiological role, the RAS also mediates complex regulatory functions 
involved in disease progression and wound healing[173,174].

The RAS is comprised of two axes that function interdependently (Figure 3). The 
“classical axis” of the RAS comprises angiotensin converting enzyme (ACE), the 
vasoconstrictive peptide Ang II and its receptor AT1R. ACE cleaves the biologically 
inactive decapeptide angiotensin I (Ang I) to the octapeptide Ang II. Ang II is a potent 
vasoconstrictor that acts via the AT1R in regulating blood pressure, and fluid and 
electrolyte homeostasis[53,175]. In addition to its vasoactive role, Ang II plays an 
important roles in the wound healing responses via cell proliferation, tissue 
inflammation and fibrogenesis[176-180].

It is now known there is an “alternate axis” of the RAS comprising its active 
carboxypeptidase of angiotensin converting enzyme 2 (ACE2, a structural homologue 
of ACE), the effector heptapeptide Ang-(1-7) and its receptor Mas. ACE2 cleaves a 
single C-terminal residue from Ang II and Ang I to produce Ang-(1-7) and Ang-(1-9), 
respectively[181-183]. In comparison with ACE, the affinity of ACE2 for cleaving Ang I is 
low; however, ACE2 has more than 400-fold greater affinity to cleave Ang II to 
produce Ang-(1-7)[24,184-187]. Ang-(1-7) can also be formed from Ang I and Ang-(1-9) by 
the enzymatic action of neutral endopeptidase neprilysin and ACE, respectively[24,187,188].

In 1988, Schiavone and colleagues[189] published the first report of a biological action 
of Ang-(1-7) characterized in vitro, which was immediately followed by a report 
showing an in vivo action of the peptide[190]. Following these discoveries, a large body 
of research proved that it is an active peptide which has opposing effects to Ang II, 
including vasodilatation[25,191-194]. In addition, Ang-(1-7) also has anti-inflammatory, 
anti-fibrotic and anti-proliferative properties, thus attenuating disease progression, 
including chronic liver[80,195] cardiac[196-199] and renal[200-204] diseases. Available evidence 
suggests that the vasodilatory effects of Ang-(1-7) are regulated through increased 
production of NO[205-209] via activation of eNOS in endothelial cells[25,209,210]. It has been 
shown that Ang-(1-7) regulates Ser1177/Thr495 phosphorylation to increase eNOS 
activity and NO production via a P13K/Akt sensitive pathway[209]. It has also been 
shown that Ang-(1-7) mediates vasodilatation by potentiating bradykinin, the effector 
peptide of the kallikrein-kinin system, to release NO and vasodilatory prostacyclins. 
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Figure 3 Overview of the renin angiotensin system. The effects of the renin angiotensin system (RAS) are determined by the balance between its “classical 
axis” and the “alternate axis”. Classical axis comprises of angiotensin converting enzyme, angiotensin II, angiotensin II type 1 receptor (AT1R) and angiotensin II type 
2 receptor (AT2R), which mediate vasoconstrictive (AT1R) or vasodilatory (AT2R) functions, proinflammatory and profibrogenic pathways. The alternate axis 
comprises of angiotensin converting enzyme 2, angiotensin-(1-7) and the Mas receptor opposes the effects of the classical RAS[53]. Recent studies identified that the 
vasodilatory action of angiotensin-(1-7) is also mediated via the Mas-related G protein-coupled receptor-type D, which also mediates the action of alamandine. RAS: 
Renin angiotensin system; ACE: Angiotensin converting enzyme; ACE2: Angiotensin converting enzyme 2; AT1R: Angiotensin II type 1 receptor; AT2R: Angiotensin 
II type 2 receptor; MasR: Mas receptor; MrgD: Mas-related G protein-coupled receptor-type D.

This suggests that kallikrein-kinin system and eNOS both contribute to Ang-(1-7)-
mediated vasodilatation[205,208,211-213].

Identification of Ang-(1-7) as a functional peptide of the alternate RAS provided 
impetus to further investigate its mechanism of action. Evidence for the presence of a 
specific Ang-(1-7) receptor came in a study which showed that in vivo and in vitro 
functional responses to Ang (1-7) were abolished by the synthetic Ang-(1-7) analogue 
D-Ala7-Ang-(1-7) (A779), whereas the effect of Ang-II could not be blocked by 
A779[214]. Subsequently, radioligand binding studies in bovine aortic endothelial cells 
demonstrated that both A779, and a non-peptide Ang-(1-7) agonist AVE0991 
competed for binding with Ang-(1-7), which led to the speculation that Ang-(1-7) 
should have a specific receptor[215,216]. In 2003, Santos and colleagues[217] discovered the 
functional receptor for Ang-(1-7) and named it as the Mas receptor (MasR), which is a 
G protein-coupled receptor encoded by the Mas protooncogene. Specificity of MasR to 
Ang-(1-7) was demonstrated by Ang-(1-7) failing to bind to the kidneys of MasR 
knockout mice (MasR-KO), and Ang-(1-7) failing to exert a vasodilatory response in 
aortic rings isolated from these mice. Moreover, mesenteric arterial vessels isolated 
from MasR-KO mice showed a blunted vasodilatory response to acetylcholine, 
suggesting an endothelial dysfunction in Mas-KO mice, which confirmed the role of 
MasR in regulating the vascular tone[218,219]. Confirming the role of MasR in modulating 
vascular tone, Xu and colleagues[220] have shown that MasR deletion results in 
increased blood pressure and endothelial dysfunction. In other studies, MasR deletion 
altered ventricular function, vascular resistance and increased the profibrotic profile 
and Ca2+ regulation in cardiomyocytes, further implying the functional significance of 
the Ang-(1-7)/MasR axis[221,222].

However, more recent studies have speculated on the existence of a second receptor 
for Ang-(1-7) which appears to play a leading role in controlling vascular tone. Initial 
evidence for this came from a study which showed that vasodilatory effects of Ang-(1-
7) in rat aorta could not be blocked by MasR blocker A779, but were completely 
abolished by a synthetic Ang-(1-7) antagonist D-Pro7-Ang-(1-7) (D-Pro)[223]. 
Subsequently, work from our laboratory showed that in the cirrhotic perfused rat 
liver, the perfusion pressure reduction effect of Ang-(1-7) was blocked by D-Pro but 
not by A779, suggesting the existence of a receptor subpopulation other than MasR 
that is sensitive to D-Pro[25]. Lautner and colleagues[224] were able to characterize a novel 
receptor, which they identified as the Mas-related G protein-coupled receptor type-D 
(MrgD), that is activated upon binding to the newly discovered vasodilatory RAS 
peptide alamandine. Importantly, they found that the vasodilatory effects of 
alamandine were blocked by D-Pro, but not by A779. This confirmed previous reports 
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that COS cells over-expressed with either MasR or MrgD released arachidonic acid in 
response to Ang-(1-7) stimulation, suggesting that both the MasR and MrgD mediate 
Ang-(1-7) action by releasing arachidonic acid, a precursor molecule of prominent 
intracellular vasodilating signaling pathways[225] (Figure 1). More recently, another 
study strongly supported the concept that MrgD is a second receptor for Ang-(1-7) by 
showing that in the absence of either MasR or MrgD activation, mesangial cells failed 
to increase cAMP release in response to Ang-(1-7), and both A779 and D-Pro abolished 
cAMP release by HEK293 cells transfected with MasR or MrgD[226]. This study also 
showed that MrgD-KO mice had an impaired hemodynamic response to Ang-(1-7) 
administration. These findings collectively confirmed that MrgD is a functional 
receptor mediating the vasodilatory effects of Ang-(1-7).

THE RAS IN PORTAL HYPERTENSION
It is well known that the RAS is activated in cirrhosis and plays a major role in the 
development of portal hypertension[4,173,227,228] (Figure 4). In cirrhotic patients and 
animal models of cirrhosis, the components of both classical and alternate axes of the 
RAS are markedly upregulated[34,53,80]. Work from our laboratory and others showed 
that the components of the classical RAS, in particular ACE and Ang II are 
significantly elevated in the circulation and the liver of cirrhotic animals, contributing 
to liver fibrosis and increased intrahepatic vascular tone[25,35,229-231]. Consistent with this, 
blockade of the classical RAS has been shown to improve experimental liver fibrosis 
and intrahepatic vascular resistance[24,229,232-234]. Recent discoveries demonstrate that the 
components of the alternate RAS including ACE2 and Ang-(1-7) are also upregulated 
in the circulation and the liver of cirrhotic animals[35,80,230]. Importantly, these RAS 
components are also increased in the splanchnic vascular bed of cirrhotic animals and 
have been suggested to play a pivotal role in splanchnic vasodilatation and the 
development of portal hypertension[22,23]. Therefore, manipulation of the RAS, 
particularly the alternate RAS, may provide a novel approach to treat portal 
hypertension in cirrhosis.

THE RAS AND INTRAHEPATIC VASCULAR RESISTANCE
In cirrhotic livers, Ang II levels are markedly increased, promoting HSC proliferation 
and ECM production[19,235], which increases intrahepatic resistance to the portal flow. 
Inhibition of Ang II action via ACE inhibitors (ACEi) and/or angiotensin receptor 
blockers (AT1R blockers) (ARBs), has therefore been shown not only to attenuate 
hepatic fibrosis but also to alleviate intrahepatic resistance in animal models of 
cirrhosis[229,236,237].

In addition, the activated contractile phenotype of HSCs express increased AT1R 
and contract in response to Ang II and thereby increase sinusoidal vasoconstriction, 
leading to increased intrahepatic vascular resistance[33,175]. Supporting this 
phenomenon, work from our laboratory showed that the vasoconstrictive response to 
Ang II administration is increased in the perfused cirrhotic rat liver preparation 
compared to that in healthy liver, presumably via the effects of Ang II on upregulated 
AT1R in VSMCs cells and sinusoidal myofibroblastic HSCs[24]. This study also 
demonstrated that hepatic production of Ang II is increased in cirrhosis, suggesting 
that locally produced Ang II contributes to increased intrahepatic vascular resistance 
and highlighting the importance of the hepatic RAS in the regulation of portal 
hypertension.

It has been suggested that increased local expression of the components of the 
alternate RAS may be effective in counteracting the detrimental effects of the classical 
RAS in the cirrhotic liver[53]. Supporting this concept, work published by our 
laboratory demonstrated that liver-specific sustained over-expression of ACE2 
ameliorated liver fibrosis and improved hepatic perfusion by reducing hepatic levels 
of profibrotic and vasoconstrictor peptide Ang II with concomitant increase in 
antifibrotic and vasodilator peptide Ang-(1-7)[238]. These findings supported earlier 
work published by our laboratory that infusion of Ang-(1-7) into cirrhotic rats 
significantly improved hepatic fibrosis by suppressing HSC activation, although portal 
pressure was not measured in this study[80]. Direct support for a vasodilatory action of 
Ang-(1-7) in the cirrhotic liver comes from work performed in our laboratory which 
showed that in situ perfused cirrhotic rat liver preparations pre-constricted with Ang II 
or methoxamine underwent a marked endothelium-dependent, and AT1R/AT2R 
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Figure 4 Renin angiotensin system-mediated pathophysiological changes in portal hypertension. In the cirrhotic liver, the “classical axis” of the 
renin angiotensin system (RAS) predominates. The vasoconstrictor octapeptide angiotensin II (Ang II), via the Ang II type 1 receptor in hepatic stellate cells (HSC) 
increases the deposition of extracellular matrix proteins, creating a fixed barrier to portal blood flow within the cirrhotic liver. In addition, Ang II also increases 
intrahepatic vascular tone by stimulating contraction of activated HSCs and vascular smooth muscle cells (VSMCs). Reduced release of vasodilating intracellular 
signalling molecules such as nitric oxide (NO) from vascular endothelial cells (VECs) by the action of endothelial NO synthase further impairs intrahepatic 
vasodilatation. In contrast, the “alternate axis” of the RAS predominates in the cirrhotic splanchnic vascular bed. The vasodilator heptapeptide angiotensin-(1-7), via 
its Mas receptor and, the Mas related G protein coupled receptor type-D, increases the release of NO from VECs to promote the relaxation of VSMCs causing 
splanchnic vasodilatation. This condition may be exacerbated by intrinsic vascular hypocontractility of mesenteric arteries to vasoconstrictors such as Ang II. Other 
than NO activity, release of other potent endothelium-derived hyperpolarizing factors such as epoxyeicosatrienoic acids derived from arachidonic acid of membrane 
phospholipids may play an important role in splanchnic vasodilatation by increasing K+ efflux through Ca2+-activated K+ channels in VSMCs. These lead to an 
increased portal blood flow, resulting in increased portal pressure. ACE: Angiotensin converting enzyme; ACE2: Angiotensin converting enzyme 2; Ang II: Angiotensin 
II; AT1R: Angiotensin II type 1 receptor; Ang-(1-7): Angiotensin-(1-7); MasR: Mas receptor; MrgD: Mas-related G protein-coupled receptor-type D; HSC: Hepatic 
stellate cells; VSMCs: Vascular smooth muscle cells; VECs: Vascular endothelial cells; ECM: Extracellular matrix; eNOS/NO: Endothelial nitric oxide synthase/nitric 
oxide; EDHFs: Endothelium-derived hyperpolarizing factors; EETs: Epoxyeicosatrienoic acids; AA: Arachidonic acid; KCa2+: Ca2+-activated K+ channels.

independent, vasodilatory response to the infusion of Ang-(1-7)[25]. Moreover, work by 
our laboratory also demonstrated that administration of Ang-(1-7) or the non-peptide 
MasR agonist AVE0991 reduced the activation of primary rat HSCs in culture whereas 
the MasR blocker A779 increased their activation, as reflected by increased -smooth 
muscle actin expression. In other words, the antifibrotic and vasodilatory effects that 
can be produced by components of the alternate RAS would be expected to improve 
portal hypertension by reducing intrahepatic vascular resistance.

THE RAS AND SPLANCHNIC VASCULAR RESISTANCE
In contrast to the effect of vasoactive molecules in the intrahepatic vasculature, the 
systemic and splanchnic vessels are hyporesponsive to circulatory vasoconstrictors 
including Ang II and thus, these vessels remain dilated in cirrhosis[239-241].

ACE2 and Ang-(1-7) production are increased in the splanchnic vasculature of 
cirrhotic rats and cirrhotic patients compared to healthy controls, suggesting a 
potential role of Ang-(1-7) in splanchnic vasodilatation in cirrhosis[22]. Interestingly, in 
the systemic circulation Ang-(1-7) levels are increased with the progression of liver 
disease but Ang II rises only after the establishment of portal hypertension[35,80,242]. In 
cirrhotic patients at liver transplant, the Ang-(1-7)/Ang II ratio is elevated in the 
splanchnic circulation compared to systemic circulation, and is negatively correlated 
with the systemic vascular resistance, suggesting that there is an augmented activity of 
local Ang-(1-7) in the splanchnic vascular compartment[242]. Functional evidence for 
this association comes from work published by our laboratory that infusion of Ang-(1-
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7) reduced splanchnic vascular resistance in cirrhotic rats to a much greater degree 
than in controls, suggesting that Ang-(1-7) is a key mediator of splanchnic 
vasodilatation in cirrhosis[22]. Consistent with enhanced Ang-(1-7) activity, MasR is also 
upregulated in both human and rat cirrhotic splanchnic vessels, and the MasR blocker 
A779 blocked the vasodilatory effects of Ang-(1-7) and greatly reduced splanchnic 
vasodilation in cirrhotic rats in vivo[22]. Moreover, we have recently demonstrated for 
the first time that in addition to MasR, the alternate receptor for Ang-(1-7), MrgD, is 
also upregulated in the splanchnic vessels of the cirrhotic rats[23]. This study 
demonstrated that both MasR and MrgD blockade improved portal hypertension, 
likely via the inhibition of Ang-(1-7) mediated splanchnic vasodilatation[23].

Dilatation of the splanchnic vascular bed has also been linked to intrinsic vascular 
hyporesponsive to vasoconstrictors including Ang II in cirrhosis[243-245]. Supporting this 
in vitro vessel work, vasoconstriction measured by evaluating forearm blood flow 
responses to intra-arterial administration of Ang II was found to be lower in cirrhotic 
patients compared to the healthy controls[246]. Mechanistic insights into this was 
provided by studies which demonstrated that AT1R expression was either normal or 
upregulated in splanchnic vessels from cirrhotic patients[81,83], suggesting that vascular 
hyporesponsive to vasopressors is likely due to the changes that occur downstream of 
AT1R[82,247]. In support of this phenomenon, Ferlitsch and colleagues[240] demonstrated 
that a reduced response of forearm blood flow to intra-arterial administration of 
vasopressors including Ang II in cirrhotic patients was completely restored to that in 
control subjects by coadministration with vitamin C, suggesting that generation of 
intracellular reactive oxygen species, which is closely linked to the activation of AT1R, 
may be responsible for hyporesponsive to Ang II. These findings were however not in 
agreement with earlier findings which showed that AT1R-independent G-protein 
stimulation with AlCl3/NaF induced an intact contractile response of hepatic artery 
which is similar in magnitude to that of the control vessels obtained from organ 
donors and suggested that hyporesponsive to Ang II may be related to a receptor-
specific phenomenon localized upstream from the G-protein level[243]. In marked 
contrast to these findings however, recent work published by our laboratory using 
splanchnic arterial vessels isolated from liver transplant recipients demonstrated that 
they were not hyporesponsive to the pressor effect of Ang II[84]. Thus, there is 
conflicting literature data regarding the vasoactivity of splanchnic arteries[84,243,245] and 
forearm arteries[240,246] to vasopressors such as Ang II, implying more work is needed to 
clarify the vasoactivity of mesenteric arterial vessels in portal hypertension as not only 
different vascular beds may respond differently to vasopressors but also differences in 
vasoactive responses may be due to the compounding effects of different experimental 
conditions[248].

MANIPULATION OF THE RAS IN PORTAL HYPERTENSION
It is clear that the RAS contributes to the pathogenesis of portal hypertension. Whilst 
inhibition of classical RAS is expected to reduce intrahepatic vascular tone, inhibition 
of the alternate RAS in splanchnic vasculature would be expected to improve portal 
hypertension by increasing splanchnic vascular resistance. Thus, both the classical and 
the alternate RAS are potential targets that can be manipulated in portal hypertension.

TARGETING THE CLASSICAL RAS IN PORTAL HYPERTENSION
Since the primary contribution of classical RAS to increased intrahepatic resistance in 
cirrhosis was identified through the evidence from studies in experimental cirrhosis, 
the effect of inhibition of the classical RAS has been studied in a number of clinical 
trials. The anti-portal hypertensive effect of ACEi such as captopril and enalapril, and 
ARBs such as losartan, candesartan and irbesartan have been studied. These drugs 
would be expected to reduce portal pressure by reducing the Ang II mediated increase 
in intrahepatic resistance in cirrhosis. In addition to reducing Ang II production from 
Ang I, ACE inhibition also prevents the degradation of vasodilatory Ang-(1-7), and 
would be expected to increase intrahepatic Ang-(1-7) concentration. Although ACEi 
and ARBs are widely used in clinical practice to treat systemic hypertension, relatively 
limited and variable data are available to assess and compare their effectiveness in 
liver disease and portal hypertension[20,249-252].

A comprehensive meta-analysis by Tandon and colleagues[26] summarized the 
findings of nineteen clinical trials that included three ACEi and nine ARB studies 
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performed up until 2009. This analysis concluded that ACEi and/or ARBs were 
equally effective as NSBBs in early Child Pugh A cirrhosis where ACEi/ARBs showed 
a similar reduction in HVPG (17%) to NSBBs (21%). However, in advanced Child Pugh 
B or C cirrhosis, ACEi/ARB’s were not effective in reducing HVPG and showed only a 
3% reduction whereas NSBBs were just as effective as in Child Pugh A disease. This 
study concluded that in early stages of cirrhosis, the RAS is a major player in increased 
intrahepatic vascular resistance. However, in advanced cirrhosis, ACEi/ARBs are 
ineffective in reducing portal pressure likely due in part to the activation of other 
vasoconstrictive pathways such as sympathetic tone and the endothelin system that 
increase intrahepatic vascular tone[26,241,253]. Furthermore, it is known that treatment 
with ACEi/ARBs is associated with a significant hypotensive effect and renal 
impairment in patients with advanced cirrhosis because a baseline activation of the 
RAS is vital to maintain adequate arterial pressure and renal perfusion[26,254,255].

In addition, the effects of ACEi/ARBs as antifibrotic therapy have been studied in a 
number of clinical trials. In addition to any effects of these drugs on intrahepatic tone, 
attenuation of fibrosis would be expected to lead to improvement of intrahepatic 
vascular resistance to the portal blood flow. An open label randomized clinical trial 
reported that ARB candesartan significantly improved hepatic fibrosis in patients with 
compensated alcoholic cirrhosis with small but significant decrease in mean arterial 
pressure[256]. A recent systematic meta-analysis, which was performed on four 
randomized controlled trials published up until 2014, summarized the antifibrotic 
effects of ACEi/ARBs and suggested efficacy of these drugs in alleviating hepatic 
fibrosis but no data were available on the effects on portal pressure[257].

TARGETING THE ALTERNATE RAS IN PORTAL HYPERTENSION
As outlined above, there is considerable evidence that the components of the alternate 
RAS are upregulated in the hepatic, systemic and splanchnic circulations in 
cirrhosis[24,35,80,230]. It has been shown that vasodilatory actions of Ang-(1-7) is more 
prominent in the splanchnic vascular bed compared to the systemic vascular beds[258]. 
Indeed, in animal models, Ang-(1-7), the effector peptide of the alternate RAS, 
contributes to portal hypertension by reducing splanchnic vascular resistance, 
resulting in increased splanchnic blood flow[22]. The effects of Ang-(1-7) in splanchnic 
vascular bed appears to be mediated at least in part via the MasR, because the specific 
MasR blocker A779 increased splanchnic vascular resistance, thereby reducing 
splanchnic blood flow in cirrhotic rat models[22]. However, this treatment produced 
only a modest effect on portal hypertension, particularly in one animal model where 
A779 also increased intrahepatic vascular resistance.

In addition to MasR, vasodilatory effects of Ang-(1-7) could also be mediated by the 
newly characterized MrgD[226]. Recent work by our laboratory demonstrated for the 
first time that similar to MasR, MrgD is also upregulated in the cirrhotic splanchnic 
vessels[23]. Moreover, a bolus injection of MrgD blocker D-Pro significantly reduced 
portal pressure in cirrhotic rat models (Figure 5A and B), and this reduction was 
similar to that of the MasR blockade. However, we noted that both MasR or MrgD 
blockers did not produce a clinically meaningful reduction in portal pressure (i.e., < 
20% from the baseline) and the pressure lowering effect was only sustained for up to 
20-25 min. This was possibly due to the rapid metabolism of these peptide blockers in 
the rat circulation (Figure 5C). Therefore, this study warranted further experiments in 
which continuous infusions of the receptor blockers should be employed to detect 
whether they have a clinically significant and meaningful effect on portal pressure in 
experimental models. Nevertheless, we made an important discovery in this study that 
unlike MasR, MrgD is not upregulated in the hepatic vascular bed of cirrhotic animals 
(Figure 6), suggesting that vasodilatory effects of MrgD may be confined to the 
splanchnic vascular bed in cirrhosis. This finding, if proven, is of central importance 
because MasR blockade with A779 did not lower portal pressure in the bile duct 
ligated cirrhotic model since the effect of A779 on hepatic MasR compromises the 
overall effect on portal pressure[22]. Thus, knowledge of the tissue-specific expression of 
MrgD is important since it could provide a guide for the development of novel 
therapies that specifically target splanchnic vasodilatation with minimal off-target 
effects.
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Figure 5 Portal pressure responses with Mas receptor and Mas-related G protein-coupled receptor type-D blockade and plasma 
angiotensin-(1-7) peptide (or blocker) concentrations. A and B: Portal pressure responses after systemic administration of a bolus dose of Mas receptor 
(MasR) blocker D-Ala7-Ang-(1-7) (A779) (10 mg/kg) or Mas-related G protein-coupled receptor type-D (MrgD) blocker D-Pro7-Ang-(1-7) (D-Pro) (10 mg/kg) in cirrhotic 
carbon tetrachloride-induced (A) and bile duct ligated (B) rats. Both MrgD and MasR blockade significantly reduced portal pressure likely by blocking angiotensin-(1-
7) [Ang-(1-7)] mediated splanchnic vasodilatation; C: Plasma concentrations of Ang-(1-7) peptide and blockers measured before and after a bolus intra-jugular 
injection of Ang-(1-7) peptide (3.5 mg), MasR blocker A779 (3.5 mg) or MrgD blocker D-Pro (3.5 mg). The peptide and the blockers were injected into healthy rats and 
plasma levels of Ang-(1-7) peptide were measured by a radioimmunoassay using an antibody directed at middle amino acids of the peptide. Each time point 
represents the mean ± SEM profile from 4 rats per treatment group. P < 0.001, baseline vs 2-min post-injection and 2-min vs 5-min post-injection. Adapted from 
reference[23]. CCl4: Carbon tetrachloride-induced; BDL: Bile duct ligated; A779: D-Ala7-Ang-(1-7); D-Pro: D-Pro7-Ang-(1-7); Ang-(1-7): Angiotensin-(1-7).

CONCLUSION
In cirrhosis, portal hypertension is initiated by increased intrahepatic vascular 
resistance due to fixed obstruction of the portal vascular bed resulting from tissue 
fibrosis and other contractile cells. It is also associated with a hyperdynamic 
circulatory state characterized by a high cardiac output, increased total blood volume 
and splanchnic vasodilatation, resulting in increased mesenteric blood flow and this 
further increases portal pressure. Despite major advances in understanding the 
pathophysiology of portal hypertension, treatment options for this condition are 
limited. At present, NSBBs are the most widely accepted pharmacotherapy in clinical 
practice to prevent variceal bleeding. However, a significant proportion of cirrhotic 
patients are intolerant of NSBBs and fail to achieve an optimal therapeutic response. 
Therefore, there is an unmet major need to develop more safe, specific and effective 
pharmacotherapies for the treatment of portal hypertension.

Recent developments in understating the complex mechanisms of the pathogenesis 
of portal hypertension have opened up avenues for the development of novel 
therapies. These emerging therapeutic options target both the increased splanchnic 
vasodilatation and elevated intrahepatic vascular resistance. It is well known that the 
RAS is an important pathological system upregulated in both hepatic and splanchnic 
vascular beds in cirrhosis. Whilst the blockers of the classical RAS such as ACEi and 
ARBs can have a therapeutic effect by improving intrahepatic vascular tone via 
reduced hepatic fibrosis and vasoconstriction, they also cause adverse off-target effects 
such as systemic hypotension and renal failure. On the other hand, recent findings 
from studies that have investigated the potential use of the blockers of the components 
of the alternate RAS provided compelling evidence to justify the development of drugs 
targeting the splanchnic vascular bed to inhibit splanchnic vasodilatation in portal 
hypertension. In view of this, it is now evident that splanchnic vascular bed-specific 
inhibition of the alternate RAS may provide a better therapeutic option than 
manipulating the classical RAS in portal hypertension.
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Figure 6 Expression of the receptors of the alternate renin angiotensin system in the splanchnic and hepatic vasculatures in cirrhosis. A: 
Gene expression of Mas receptor (MasR) and Mas-related G protein-coupled receptor type-D (MrgD) in cirrhotic mesenteric arterial vessels and livers of carbon 
tetrachloride-injected (CCl4) and bile duct ligated rats compared with sham-operated and healthy controls. Each bar represents the mean ± SEM profile from 6-7 rats 
per group. Gene expression of both MasR and MrgD are upregulated in the splanchnic vascular bed of both cirrhotic models, suggesting that both receptors are likely 
involved in angiotensin-(1-7)-mediated splanchnic vasodilatation in cirrhosis. In marked contrast, MasR, but not MrgD, is upregulated in the cirrhotic livers, suggesting 
that MasR, but not MrgD of the alternate renin angiotensin system, likely contributes to the regulation of hepatic vascular resistance in cirrhosis; B: Shows 
immunohistochemical localization of MasR and MrgD in the livers of CCl4 rats and healthy controls. Consistent with gene expression analysis, strong positive staining 
for MasR is shown in liver sinusoids (arrow), bile duct epithelial cells (arrowhead-large) and hepatic arterioles (arrowhead-small) of the cirrhotic liver. Consistent with 
gene expression analysis, there was no positive staining for MrgD in the cirrhotic liver. Adapted from reference[23]. MasR: Mas receptor; MrgD: Mas-related G protein-
coupled receptor-type D; CCl4: Carbon tetrachloride-injected; BDL: Bile duct ligated.
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