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Abstract
BACKGROUND 
The Hippo signaling pathway regulates organ size by regulating cell proliferation 
and apoptosis with terminal effectors including Yes-associated protein-1 (YAP-1). 
Dysregulation in Hippo pathway has been proposed as one of the therapeutic 
targets in hepatocarcinogenesis. The levels of reactive oxygen species (ROS) 
increase during the progression from early to advanced hepatocellular carcinoma 
(HCC).

AIM 
To study the activation of YAP-1 by ROS-induced damage in HCC and the 
involved signaling pathway.

METHODS 
The expression of YAP-1 in HCC cells (Huh-7, HepG2, and SNU-761) was 
quantified using real-time polymerase chain reaction and immunoblotting. 
Human HCC cells were treated with H2O2, which is a major component of ROS in 
living organisms, and with either YAP-1 small interfering RNA (siRNA) or control 
siRNA. To investigate the role of YAP-1 in HCC cells under oxidative stress, MTS 
assays were performed. Immunoblotting was performed to evaluate the signaling 
pathway responsible for the activation of YAP-1. Eighty-eight surgically resected 
frozen HCC tissue samples and 88 nontumor liver tissue samples were used for 
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gene expression analyses.

RESULTS 
H2O2 treatment increased the mRNA and protein expression of YAP-1 in HCC 
cells (Huh-7, HepG2, and SNU-761). Suppression of YAP-1 using siRNA 
transfection resulted in a significant decrease in tumor proliferation during H2O2 
treatment both in vitro and in vivo (both P < 0.05). The oncogenic action of YAP-1 
occurred via the activation of the c-Myc pathway, leading to the upregulation of 
components of the unfolded protein response (UPR), including 78-kDa glucose-
regulated protein and activating transcription factor-6 (ATF-6). The YAP-1 mRNA 
levels in human HCC tissues were upregulated by 2.6-fold compared with those 
in nontumor tissues (P < 0.05) and were positively correlated with the ATF-6 
Levels (Pearson’s coefficient = 0.299; P < 0.05).

CONCLUSION 
This study shows a novel connection between YAP-1 and the UPR through the c-
Myc pathway during oxidative stress in HCC. The ROS-induced activation of 
YAP-1 via the c-Myc pathway, which leads to the activation of the UPR pathway, 
might be a therapeutic target in HCC.

Key Words: Hepatocellular carcinoma; Yes-associated protein-1; C-Myc; Reactive oxygen 
species; Unfolded protein response; Activating transcription factor-6

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: We found a novel connection between Yes-associated protein-1 (YAP-1) and 
the unfolded protein response (UPR) through the c-Myc pathway during oxidative 
stress in hepatocellular carcinoma (HCC). As the Hippo pathway and c-Myc pathway 
share many important functions, including the regulation of growth, death and survival 
in cells and the regulation of stress resistance and life spans in organisms, we speculate 
that the interaction between YAP-1 and c-Myc is a point of convergence that allows 
HCC proliferation. The reactive oxygen species-induced activation of YAP-1 via the c-
Myc pathway, which leads to the activation of the UPR pathway, might be a 
therapeutic target in HCC.

Citation: Cho Y, Park MJ, Kim K, Kim SW, Kim W, Oh S, Lee JH. Reactive oxygen species-
induced activation of Yes-associated protein-1 through the c-Myc pathway is a therapeutic 
target in hepatocellular carcinoma. World J Gastroenterol 2020; 26(42): 6599-6613
URL: https://www.wjgnet.com/1007-9327/full/v26/i42/6599.htm
DOI: https://dx.doi.org/10.3748/wjg.v26.i42.6599

INTRODUCTION
Reactive oxygen species (ROS), such as H2O2, superoxide radicals, and hydroxyl 
radicals, contribute to tumor progression by enhancing DNA damage and altering cell 
signaling pathways[1,2]. It has been recently suggested that ROS are involved in tumor 
metastasis, which is a complex process that includes angiogenesis, epithelial-to-
mesenchymal transition, invasion, and migration within the tumor micro-
environment[3]. ROS also control the expression of matrix metalloproteinases and 
mitogen-activated protein kinases (MAPKs), the activation of the Ras pathway, and 
the downregulation of E-cadherin expression[4].

Hepatocellular carcinoma (HCC) is one of the common fatal malignancies which 
results in approximately one million worldwide deaths every year[5]. Oxidative stress 
is known to be the most important factor of HCC development[6,7]. The major etiologies 
of HCC, including chronic hepatitis B or C, alcohol-related liver disease, and 
nonalcoholic fatty liver disease, increase ROS levels[8,9]. ROS levels are also positively 
correlated with HCC progression[10,11].

The Hippo signaling pathway regulates organ size by regulating both cell 
proliferation and apoptosis with terminal effectors such as yes-associated protein 
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(YAP)[12,13]. The key components of the Hippo pathway include sterile 20-like kinases 
(Mst1 and Mst2; homologues of D. hippo), large tumor suppressors (Lats1 and Lats2; 
homologues of warts), YAP, its paralog protein transcriptional coactivator with PDZ-
binding motif (TAZ), transcriptional coactivators, and homologues of yorkie. 
Inactivation of the Hippo pathway leads to uncontrolled cell proliferation in epithelial 
cells and stem cells[14,15] and oncogenic transformation[16], both of which are mediated 
by the upregulation of YAP. Dysregulation of the Hippo pathway has been proposed 
as one of the therapeutic targets in hepatocarcinogenesis[17-19]. A previous study 
showed that YAP is an independent predictive marker for the overall survival and 
disease-free survival of HCC patients and that it is associated with tumor 
differentiation[20]. The Hippo pathway, which regulates tumorigenesis, also has an 
important role in mediating oxidative stress[21]. Shao et al[13] suggested the involvement 
of YAP in causing cardiomyocyte survival during oxidative stress[13].

Thus, the activation of YAP-1 by ROS-induced damage has been hypothesized to 
exacerbate the progression of HCC, but it remains unclear which signaling pathway is 
involved. Here, we investigated ROS-induced YAP-1 activation in HCC and the 
associated signaling pathway.

MATERIALS AND METHODS
Cell lines and coculture
Human HCC cell lines including Huh-7 and HepG2, which are well-differentiated 
HCC cell lines, and SNU-761, which is a poorly differentiated HCC cell line were used 
in this study. We used Dulbecco’s modified Eagle medium (DMEM; Huh-7 and 
HepG2) or in RPMI 1640 (SNU-761) supplemented with 10% fetal bovine serum (FBS), 
100000 U/L penicillin, and 100 mg/L streptomycin, with or without 100 nmol/L 
insulin for cell culture.

Cell proliferation analysis (MTS assay)
HCC cell proliferation was measured with the Cell Titer 96 Aqueous One Solution cell 
proliferation assay (Promega, Madison, WI, United States), on the basis of the cellular 
conversion of the colorimetric reagent3, 4-(5-dimethylthiazol-2-yl)-5-(3-
carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazoliumsalt (MTS) into soluble 
formazan by the dehydrogenase enzyme found in metabolically proliferating cells. 
Following each treatment, 20 μL of the dye solution was added to each well of a 96-
wellplate and incubated for 2 h. Then, the absorbance was recorded at a wavelength of 
490 nm using an enzyme-linked immunosorbent assay plate reader (Molecular 
Devices, Sunnyvale, CA, United States).

Small interfering RNA transfection
Cells were seeded in a 6-well culture plate (2 × 105 cells per well) in 2 mL antibiotic-
free medium supplemented with 10% FBS. Once the cells reached 60%-80% 
confluence, they were transfected with small interfering RNA (siRNA) using the 
siRNA Transfection Reagent (Santa Cruz Biotechnology Inc., Santa Cruz, CA, United 
States) according to the manufacturer’s instructions. The cells were treated with siRNA 
for 6 h at 37 °C, and then, growth medium containing 20% FBS and antibiotics was 
added. After 18 h, the medium was replaced with fresh medium containing 10% FBS 
and antibiotics. Twenty-four hours after transfection, the cells were used in further 
experiments.

In vivo subcutaneous xenograft model
Briefly, H2O2 (100 μmol/L)-treated MH134 cells (5 × 107 cells per mouse) were 
subcutaneously transplanted into the flanks of C3H mice in the control group (n = 10). 
The tumor volume was measured using a Vernier caliper and calculated as [length × 
(width)2]/2. YAP-1 siRNA transfected MH134 cells were subcutaneously implanted on 
the flank of mice in YAP siRNA group, and control siRNA transfected MH134 cells 
were implanted in control siRNA group. The maximal diameter of each nodule was 
measured every day for 13 d.

Immunoblot analysis
The cells were lysed for 20 min on ice with lysis buffer and centrifuged at 14000 g for 
10 min at 4 °C. The samples were resolved by sodium dodecyl sulfate-polyacrylamide 
gel electrophoresis, transferred to nitrocellulose membranes, blotted with the 
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appropriate primary antibodies at a dilution of 1:1000, and treated with peroxidase-
conjugated secondary antibodies (Biosource International, Camarillo, CA, United 
States). The bound antibodies were visualized using a chemiluminescent substrate 
(ECL; Amersham, Arlington Heights, IL, United States) and exposed to Kodak X-
OMAT film (Kodak, New Haven, CT, United States). The primary antibodies, 
including rabbit anti-phospho-p42/44 MAPK, anti-phosphorylated-Akt, and rabbit 
anti-c-Myc, were purchased from Cell Signaling Technology (Danvers, MA, United 
States). The goat anti-β-actin antibody was purchased from Santa Cruz Biotechnology 
Inc. (Santa Cruz, CA, United States). The densitometric analyses were performed with 
Image J software (National Institutes of Health, Bethesda, MD, United States).

Real time-polymerase chain reaction analysis
The total ribonucleic acids (RNAs) were extracted from Huh-7, HepG2, and SNU-761 
cells using TRIzol Reagent (Invitrogen, Carlsbad, CA, United States). The 
complementary deoxyribonucleic acid (cDNA) templates were prepared using oligo 
(dT) random primers and Moloney Murine Leukemia Virus (MoMLV) reverse 
transcriptase. After the reverse transcription reaction, the cDNA template was 
amplified by polymerase chain reaction (PCR) using Taq polymerase (Invitrogen). 
YAP-1 mRNA expression was quantified by real-time PCR (Light Cycler; Roche 
Molecular Biochemicals, Mannheim, Germany) using SYBR green as the fluorophore 
(Molecular Probes, Eugene, OR, United States). The primers for YAP-1 were as 
follows: Forward: 5′-TGAACAAACGTCCAGCAAGATAC-3′; and reverse: 5′-
CAGCCCCCAAAATGAACAGTAG-3′. The primers for c-Myc were as follows: 
F o r w a r d :  5 ′ -  C C C G C T T C T C T G A A A G G C T C T C - 3 ′ ;  a n d  r e v e r s e :  5 ′ -  
CTCTGCTGCTGCTGCTGCTGGTAG-3′. For the unfolded protein response (UPR) 
markers, the following primers were used: Glucose-regulated protein 78 (GRP78), 
f o r w a r d :  5 ′ - G A C G G G C A A A G A T G T C A G G A A - 3 ′  a n d  r e v e r s e :  5 ′ -
T C A T A G T A G A C C G G A A C A G A T C C A - 3 ′ ;  X B P 1 ,  f o r w a r d :  5 ′ -
TTGTCACCCCTCCAGAACATC-3′ and reverse: 5′-TCCAGAATGCCCAACAGGAT-
3′ ;  activating transcription factor-6 (ATF-6),  forward: 5′-TTGGCATTT 
ATAATACTGAACTATGGA-3′ and reverse: 5′-TTTGATTTGCAGGGCTCAC-3′. 
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene expression was used as a 
control. The level of YAP-1 mRNA expression was calculated as the relative intensity 
of the PCR product band compared with that of the GAPDH gene using the 2–ΔΔCt 

method. All the PCR experiments were performed in triplicate.

Statistical analysis
The statistical analyses were performed using PASW version 21.0 (SPSS Inc., Chicago, 
IL, United States). All the experimental results were obtained from three independent 
experiments using cells from three separate isolations and are presented as the mean ± 
standard deviation (SD). For comparisons between groups, the data were analyzed by 
the Mann–Whitney U test or one-way ANOVA. For all the tests, P < 0.05 was regarded 
as statistically significant.

Ethics statement
Ethical approval was obtained from the ethics committee at CHA University. We 
carried out this study in strict accordance with the recommendations in the Guide for 
the Care and Use of Laboratory Animals of the National Institutes of Health. The in 
vivo study protocol was approved by the Institutional Animal Care and Use 
Committee (IACUC-180027) of CHA University. All the in vivo surgical procedures 
were performed under anesthesia with 2, 2, 2-tribromoethanol, and all efforts were 
made to minimize suffering.

All the experiments using human tissues were approved by the Bundang CHA 
Medical Center Institutional Review Board (CHAMC 2018-02-037). All the human 
tissues were provided by the Bundang CHA Biobank of Bundang CHA Medical 
Center. For the gene expression analyses, 88 surgically resected frozen HCC tissue 
samples and 88 nontumor liver tissue samples were analyzed. Cases were 
prospectively and consecutively identified at Bundang CHA Medical Center between 
2012 and 2018.
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RESULTS
ROS enhanced the mRNA and protein expression of YAP-1 in HCC cells
To analyze the potential ROS-induced changes in YAP-1 expression in HCC cells, we 
treated human HCC cells (Huh-7, HepG2, and SNU-761 cells) with 150 μmol/L H2O2. 
Real-time PCR and immunoblot analyses indicated that H2O2 treatment increased the 
mRNA (Figure 1A) and protein (Figure 1B) expression of YAP-1 in the HCC cells. 
These effects were inhibited following treatment of the cells with the antioxidant N-
acetylcysteine (NAC) (Figure 1C). The antioxidant treatment significantly suppressed 
the protein expressions of YAP-1 in HCC cells.

Modulation of YAP-1 expression in ROS-exposed HCC cells showed antitumor 
effects in vitro
Next, to investigate whether exposure to H2O2 impacts HCC cell survival, HCC cells 
were treated with H2O2 (0-350 μmol/L), and the ROS levels were increased by intervals 
of 50 μmol/L. As shown in Figure 2A, exposure to H2O2 (0-350 μmol/L) did not reduce 
HCC cell survival. Then, we examined the efficacy YAP-1 siRNA transfection with 
real-time PCR. YAP-1 siRNA transfection significantly suppressed YAP-1 mRNA 
expression compared to control siRNA transfection in HCC cells (Figure 2B; P < 0.05). 
Next, we performed an MTS assay to evaluate whether YAP-1 modulates HCC cell 
proliferation. Suppression of YAP-1 using siRNA transfection or verteporfin treatment 
(YAP-1 inhibitor) resulted in a significant decrease in tumor proliferation during 
exposure 150 μmol/L H2O2 in vitro (Figure 2C and D; both P < 0.05).

Modulation of YAP-1 expression in ROS-exposed HCC cells showed antitumor 
effects in an in vivo xenograft tumor mouse model
The antitumor effects of YAP-1 siRNA were examined using an in vivo xenograft 
model. First, we evaluated whether exposure to ROS changes the expression of YAP-1 
in the murine HCC cell line MH134. H2O2 treatment significantly increased the 
proliferation of the MH134 cells (Figure 3A; P < 0.05). We also confirmed that 
suppression of YAP-1 using siRNA transfection resulted in significantly decreased 
mRNA expression of YAP-1 in the MH134 cells treated with 150 μmol/L H2O2 

(Figure 3B). In the xenograft tumor model, the YAP-1 siRNA group showed 
significantly suppressed tumor growth compared to the control siRNA group at days 
11, 12, and 13 after tumor budding (Figure 3C; all P < 0.05).

The oncogenic action of YAP-1 was reciprocally activated by the c-Myc pathway in 
ROS-exposed HCC cells
The immunoblot assay results showed that the downregulation of YAP-1 caused by 
siRNA transfection or verteporfin treatment decreased the protein expression of c-Myc 
in the ROS-exposed HCC cell lines (Figure 4A and B). When the ROS-exposed HCC 
cells were treated with a c-Myc inhibitor (10058-F4, 60 μmol/L), the protein expression 
of YAP-1 was significantly decreased compared with that in the control-treated cells 
(Figure 5A). Moreover, treatment with the antioxidant NAC downregulated the 
expression of c-Myc in the ROS-exposed HCC cell lines (Figure 5B). We also 
performed real-time PCR and immunoblot analyses to evaluate whether up-regulation 
of the c-Myc pathway was dependent on YAP-1 expressions. YAP-1 siRNA 
transfection significantly suppressed c-Myc mRNA expression compared to control 
siRNA transfection in ROS-exposed HCC cells (Figure 5C; all P < 0.05). Immunoblot 
analyses of c-Myc also revealed that ROS-exposed HCC cells transfected with YAP-1 
siRNA showed suppressed protein expression of c-Myc as compared to those 
transfected with control siRNA (Figure 5D).

The ROS-induced oncogenic action of YAP-1 in HCC cells led to an enhanced UPR
To determine whether the oncogenic action of YAP-1, which occurs via the activation 
of the c-Myc pathway, leads to the upregulation of components of the UPR, we 
performed real-time PCR on cells treated with or without H2O2 for 78-kDa GRP78/BiP, 
ATF-6, and XBP1 (Figure 6A). ROS exposure significantly enhanced the mRNA 
expression of GRP78, ATF-6, and XBP1 in the HCC cell lines. The downregulation of 
YAP-1 by siRNA transfection also significantly suppressed the expression of the UPR 
markers compared to control siRNA transfection. We also performed immunoblot 
analysis to evaluate the endoplasmic reticulum (ER) stress marker phosphorylated eIF-
2α (Figure 6B); the results revealed that the transfection of YAP-1 siRNA attenuated 
the protein expression of phosphorylated eIF-2α compared to control siRNA 
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Figure 1 Reactive oxygen species enhanced the mRNA and protein expression of yes-associated protein-1 in hepatocellular carcinoma 
cells. A: Yes-associated protein-1 (YAP-1) mRNA was significantly enhanced in hepatocellular carcinoma (HCC) cells treated with 150 μmol/L H2O2. YAP-1 mRNA 
expression was quantified using quantitative polymerase chain reaction and normalized to glyceraldehyde-3-phosphate dehydrogenase mRNA expression. The 
experiment was repeated three times. The data are expressed as the mean ± SD. The error bars represent the SD; B: The protein expression of YAP-1 in HCC cells 
was significantly enhanced when the HCC cells were exposed to 150 μmol/L H2O2, especially at 48 h. The experiment was repeated three times; C: Treatment with 
the antioxidant N-acetylcysteine inhibited the protein expression of YAP-1 in HCC cells. The experiment was repeated three times. YAP-1: Yes-associated protein-1; 
HCC: Hepatocellular carcinoma; SD: Standard deviation; NAC: N-acetylcysteine.

transfection.

Upregulated mRNA expression of YAP-1was correlated with the expression of ATF-6 
in human HCC tissues
For the gene expression analyses, 88 surgically resected frozen HCC tumor tissue 
samples and 88 paired nontumor liver tissue samples were evaluated. The majority of 
the patients (n = 71, 80.7%) had stage I HCC according to the American Joint 
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Figure 2 The effects of Yes-associated protein-1 on the proliferation of reactive oxygen species reactive oxygen species -exposed 
hepatocellular carcinoma cells. A: An MTS assay was performed on hepatocellular carcinoma (HCC) cells that were treated with H2O2 (0-350 μmol/L), and the 
reactive oxygen species levels were increased by intervals of 50 μmol/L. The data are expressed as the mean ± SD of percent changes of optical densities. The 
experiment was repeated three times; B: Yes-associated protein-1 (YAP-1) small interfering RNA (siRNA) transfection significantly suppressed YAP-1 mRNA 
expression compared to control siRNA transfection in HCC cells (P < 0.05). The data are expressed as the mean ± SD. The experiment was repeated three times; C: 
When HCC cells were transfected with YAP-1 siRNA, the proliferation of HCC cells was significantly decreased compared with control siRNA transfection based on 
the MTS assay results (P < 0.05). The data are expressed as the mean ± SD of percent changes of optical densities. The experiment was repeated three times; D: 
When HCC cells were treated with verteporfin (1000 nmol/L), the proliferation of HCC cells was significantly decreased compared with the control treatment based on 
the MTS assay results (P < 0.05). The data are expressed as the mean ± SD of percent changes of optical densities. The experiment was repeated three times. YAP: 
Yes-associated protein; siRNA: Small interfering RNA; VP: Verteporfin.



Cho Y et al. ROS-induced YAP-1 activation in HCC

WJG https://www.wjgnet.com 6606 November 14, 2020 Volume 26 Issue 42

Commission on Cancer 8th edition HCC staging system. 11 patients (12.5%) and 6 
patients (6.8%) had stage II and stage III HCC, respectively. No patient had major 
vascular invasion or lymph node/distant metastasis. The expression of YAP-1 was 
further determined in the resected HCC tissues and adjacent nontumor tissues using 
real-time PCR. The mean mRNA expression of YAP-1 was upregulated by 2.6-fold in 
the HCC tissues compared with the nontumor tissues (Figure 7A; P < 0.05). Among the 
88 HCC tumor tissues, YAP-1 RNA expression was upregulated in 42 samples (47.7%) 
compared to the nontumor tissues, and YAP-1 expression was positively correlated 
with ATF-6 expression (Figure 7B; Pearson’s coefficient = 0.299; P < 0.05). For one 
patient whose YAP-1 expression in HCC tissue was 15.5-fold higher than that in 
nontumor tissue, we performed immunohistochemical staining for YAP-1 with HCC 
tissue, which is shown in Figure 7C.

DISCUSSION
This study revealed that the ROS-induced activation of YAP-1 via the c-Myc pathway, 
which leads to the activation of the UPR, might be a therapeutic target in HCC. We 
have elucidated the molecular mechanism by which YAP-1 mediates the survival of 
HCC cells under oxidative stress.

Carcinogenesis leads to the accumulation of misfolded proteins in the ER[22]. Then, 
the UPR is activated to restore normal cellular function by degrading the misfolded 
proteins and activating the production of chaperones, such as GRP78. However, under 
pathological conditions, prolonged UPR activation can promote apoptosis, leading to 
cell death. Overall, if ER stress is too severe, the UPR leads to translational arrest and 
induces specific factors for cell survival or cell death. In several cancers, the expression 
of UPR components is enhanced, indicating the dependency of these cancers on the 
UPR[23]. Thus, there is a possibility that modification of the UPR might have anticancer 
effects.

Hypoxia is one of the major mediators of UPR-inducing pathways. Human 
fibrosarcoma and lung carcinoma cells upregulated GRP78 expression and XBP1 
splicing under hypoxic conditions in vitro[24]. Tumor formation with aberrant 
microcirculation might lead to hypoxic conditions, which induce the UPR. Gradually, 
the UPR increases cell survival and tumor proliferation, which thereby increases 
hypoxia in the core of the tumor. After the sequestration of GRP78 by misfolded 
proteins, ATF-6, inositol requiring protein 1, and protein kinase RNA-like endoplasmic 
reticulum kinase (PERK) act as transducers to transmit the ER stress signal to the 
cytosol and nucleus. Activated ATF-6 translocates to the Golgi, where proteases cleave 
it and release its fragments into the cytosol[25]. Indeed, enhanced nuclear translocation 
of the ATF-6 fragment is observed in various cancers, including HCC. In this study, we 
identified the potential of ATF-6 to act as an effector of HCC under oxidative stress.

The c-Myc pathway undergoes chromosomal translocation and gene amplification 
in many cancers, including HCC. Activated c-Myc pathway upregulates oncogenes 
which are involved in ribosome biogenesis. Previous studies reported that elevated 
protein synthesis due to increased c-Myc expression in cancer cells lead to UPR 
activation[26,27]. Activation of UPR signaling promotes autophagy in tumor cells under 
conditions of hypoxia, oxidative stress, and nutrient limitation. Our findings suggest a 
key link between YAP-1-mediated oncogenic transformation and HCC cell survival via 
the c-Myc-mediated UPR under oxidative stress.

There are increasing lines of evidence suggesting that the loss-of-function mutations 
in components of the Hippo pathway and hyperactivation of YAP-1 have been 
observed in many cancers. Thus, we speculate that the regulating the YAP-1-c-Myc 
pathway might be a crucial mechanism through which the Hippo pathway regulates 
hepatocarcinogenesis.

Several multikinase inhibitors that have been approved for advanced HCC, 
including sorafenib, regorafenib, and lenvatinib, have shown modest survival 
advantages[28,29]. Recent evidence suggests that long-term treatment of HCC leads to 
hypoxia-mediated sorafenib resistance in patients with HCC because tumor-driving 
pathways, including YAP-1, become activated[30-32]. However, the molecular 
mechanism of sorafenib resistance is unclear. Here, we found that ROS are the primary 
triggers of YAP-1-c-Myc-UPR signaling hyperactivation during oxidative stress, and 
this phenomenon is also observed in human HCC tissues.
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Figure 3 Modulation of yes-associated protein-1 in reactive oxygen species-exposed hepatocellular carcinoma cells showed antitumor 
effects in an in vivo xenograft tumor mouse model. A: H2O2 treatment significantly increased the proliferation of MH134 cells based on the MTS assay 
results (P < 0.05). The data are expressed as the mean ± SD. The experiment was repeated three times; B: Yes-associated protein-1 (YAP-1) small interfering RNA 
(siRNA) transfection significantly suppressed YAP-1 mRNA expression compared to control siRNA transfection in reactive oxygen species-exposed MH134 cells (P < 
0.05). The data are expressed as the mean ± SD. The experiment was repeated three times; C: In the xenograft tumor model, the YAP-1 siRNA group showed 
significantly suppressed tumor growth compared to the control siRNA group at days 11, 12, and 13 after tumor budding (all aP < 0.05). The data are expressed as the 
mean ± SD. YAP: Yes-associated protein; siRNA: Small interfering RNA.

CONCLUSION
In conclusion, our study shows a novel connection between YAP-1 and the UPR 
through the c-Myc pathway during oxidative stress in HCC. As the Hippo pathway 
and c-Myc pathway share many important functions, including the regulation of 
growth, death and survival in cells and the regulation of stress resistance and life 
spans in organisms, we speculate that the interaction between YAP-1 and c-Myc is a 
point of convergence that allows HCC proliferation. The ROS-induced activation of 
YAP-1 via the c-Myc pathway, which leads to the activation of the UPR pathway, 
might be a therapeutic target in HCC.
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Figure 4 The oncogenic action of yes-associated protein-1 was activated by the c-Myc pathway in reactive oxygen species-exposed 
hepatocellular carcinoma cells. A: Immunoblot analyses of phosphorylated-Akt, total-Akt, c-Myc, phosphorylated-p42/44 (Erk), total-p42/44 (Erk), and yes-
associated protein-1 (YAP-1) were performed in reactive oxygen species (ROS)-exposed hepatocellular carcinoma (HCC) cells transfected with YAP-1 small 
interfering RNA (siRNA) or control siRNA. The experiment was repeated three times; B: Immunoblot analyses of phosphorylated-Akt, total-Akt, c-Myc, 
phosphorylated-p42/44 (p-Erk), total-p42/44 (Erk), and YAP-1 were performed in ROS-exposed HCC cells treated with verteporfin or control. The experiment was 
repeated three times. YAP: Yes-associated protein; siRNA: Small interfering RNA; VP: Verteporfin.
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Figure 5 Up-regulation of the c-Myc pathway was dependent on yes-associated protein-1 expressions in reactive oxygen species-
exposed hepatocellular carcinoma cells. A: A c-Myc inhibitor (10058-F4, 60 μmol/L) significantly decreased the protein expression of yes-associated protein-
1 (YAP-1) in reactive oxygen species (ROS)-exposed hepatocellular carcinoma (HCC) cells. The experiment was repeated three times; B: N-acetylcysteine treatment 
downregulated c-Myc protein expression in ROS-exposed HCC cell lines. The experiment was repeated three times; C: YAP-1 small interfering RNA (siRNA) 
transfection significantly suppressed c-Myc mRNA expression compared to control siRNA transfection in ROS-exposed HCC cells (all P < 0.05). The c-Myc mRNA 
expression was quantified using quantitative PCR and normalized to glyceraldehyde-3-phosphate dehydrogenase mRNA expression. The data are expressed as the 
mean ± SD. The experiment was repeated three times; D: Immunoblot analyses of c-Myc were performed in ROS-exposed HCC cells transfected with YAP-1 siRNA 
or control siRNA. The experiment was repeated three times. YAP: Yes-associated protein; siRNA: Small interfering RNA; NAC: N-acetylcysteine.
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Figure 6 The reactive oxygen species-induced oncogenic action of yes-associated protein-1 in hepatocellular carcinoma cells led to an 
enhanced unfolded protein response. A: Yes-associated protein-1 (YAP-1) small interfering RNA (siRNA) significantly decreased the mRNA expression of 
unfolded protein response markers, including 78-kDa (glucose-regulated protein 78/BiP), activating transcription factor-6, and XBP1, in reactive oxygen species 
(ROS)-exposed hepatocellular carcinoma (HCC) cells (P < 0.05). The experiment was repeated three times. The data are expressed as the mean ± SD; B: 
Immunoblot analyses of YAP-1 and phosphorylated-eIF-2α were performed in ROS-exposed HCC cells transfected with YAP-1 siRNA or control siRNA. The 
experiment was repeated three times. GRP78: Glucose-regulated protein 78; ATF-6: Activating transcription factor-6; YAP: Yes-associated protein; siRNA: Small 
interfering RNA.
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Figure 7 Upregulated mRNA expression of yes-associated protein-1 was correlated with the expression of activating transcription factor-
6 in human hepatocellular carcinoma tissues. A: The mean mRNA expression of yes-associated protein-1 (YAP-1) was upregulated by 2.6-fold in 
hepatocellular carcinoma (HCC) tissues compared with nontumor tissues (n = 88). The data are expressed as the mean ± SD; B: The mRNA expression of YAP-1 
was positively correlated with the mRNA expression of ATF6 (Pearson’s coefficient = 0.299; P < 0.05); C: The expression of YAP-1 in human HCC tissue was 
detected by immunohistochemistry (400 × magnification). Scale bars, 50 μm. YAP: Yes-associated protein; HCC: Hepatocellular carcinoma; SD: Standard deviation; 
ATF-6: Activating transcription factor-6; HE: Hematoxylin-eosin.

ARTICLE HIGHLIGHTS
Research background
Reactive oxygen species (ROS) contribute to tumor progression by promoting DNA 
damage and altering cell signaling pathways. It has been recently suggested that ROS 
are involved in tumor metastasis, which is a complex process that includes epithelial-
to-mesenchymal transition, migration, invasion, and angiogenesis within the tumor 
microenvironment.

Research motivation
Oxidative stress is the most important causative factor of hepatocellular carcinoma 
(HCC). The major etiologies of HCC, including chronic hepatitis B or C, alcohol-
related liver disease, and nonalcoholic fatty liver disease, increase ROS levels. Thus, 
the activation of yes-associated protein-1 (YAP-1) by ROS-induced damage has been 
hypothesized to exacerbate the progression of HCC.

Research objectives
We investigated the activation of YAP-1 by ROS-induced damage in HCC and the 
involved signaling pathway.

Research methods
The expression of YAP-1 was quantified using real-time PCR and immunoblotting. 
Human HCC cells were treated with H2O2, and with either YAP-1 small interfering 
RNA (siRNA) or control siRNA. MTS assays were performed to evaluate HCC cell 
proliferation. To investigate the signaling pathway, immunoblotting was performed. 
Eighty-eight surgically resected frozen HCC tissues and 88 nontumor paired liver 
tissues were used for gene expression analyses.



Cho Y et al. ROS-induced YAP-1 activation in HCC

WJG https://www.wjgnet.com 6612 November 14, 2020 Volume 26 Issue 42

Research results
H2O2 treatment increased the mRNA and protein expression of YAP-1 in HCC cells. 
Suppression of YAP-1 resulted in a significant decrease in tumor proliferation during 
H2O2 treatment both in vitro and in vivo. The oncogenic action of YAP-1 occurred via 
the activation of the c-Myc pathway, leading to the upregulation of components of the 
unfolded protein response, including 78-kDa glucose-regulated protein and activating 
transcription factor-6 (ATF-6). The YAP-1 mRNA levels in human HCC tissues were 
upregulated by 2.6-fold compared with those in nontumor tissues and were positively 
correlated with the ATF-6 Levels.

Research conclusions
This study shows a novel connection between YAP-1 and the unfolded protein 
response (UPR) through the c-Myc pathway during oxidative stress in HCC. We 
speculate that the interaction between YAP-1 and c-Myc is a point of convergence that 
allows HCC proliferation.

Research perspectives
The ROS-induced activation of YAP-1 via the c-Myc pathway, which leads to the 
activation of the UPR pathway, might be a therapeutic target in HCC.
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