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Abstract
Although multiple drugs are accessible for recovering liver function in patients, 
none are considered efficient. Liver transplantation is the mainstay therapy for 
end-stage liver fibrosis. However, the worldwide shortage of healthy liver donors, 
organ rejection, complex surgery, and high costs are prompting researchers to 
develop novel approaches to deal with the overwhelming liver fibrosis cases. 
Mesenchymal stem cell (MSC) therapy is an emerging alternative method for 
treating patients with liver fibrosis. However, many aspects of this therapy 
remain unclear, such as the efficiency compared to conventional treatment, the 
ideal MSC sources, and the most effective way to use it. Because bone marrow 
(BM) is the largest source for MSCs, this paper used a systematic review approach 
to study the therapeutic efficiency of MSCs against liver fibrosis and related 
factors. We systematically searched multiple published articles to identify studies 
involving liver fibrosis and BM-MSC-based therapy. Analyzing the selected 
studies showed that compared with conventional treatment BM-MSC therapy 
may be more efficient for liver fibrosis in some cases. In contrast, the cotreatment 
presented a more efficient way. Nevertheless, BM-MSCs are lacking as a therapy 
for liver fibrosis; thus, this paper also reviews factors that affect BM-MSC 
efficiency, such as the implementation routes and strategies employed to enhance 
the potential in alleviating liver fibrosis. Ultimately, our review summarizes the 
recent advances in the BM-MSC therapy for liver fibrosis. It is grounded in recent 
developments underlying the efficiency of BM-MSCs as therapy, focusing on the 
preclinical in vivo experiments, and comparing to other treatments or sources and 
the strategies used to enhance its potential while mentioning the research gaps.
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Core Tip: Bone marrow (BM)- mesenchymal stem cells (MSCs) are a promising 
therapy for liver fibrosis. However, several aspects, such as efficiency, of this 
treatment are vague. This review summarizes the recent advances and effectiveness of 
BM-MSC therapy, its mechanisms, and related factors by focusing on preclinical in 
vivo experiments. While BM-MSCs appear to be effective in some cases, cotreatment 
appears to be a better option. Studies on strategies, implementation routes, and 
cotreatments are helping to strengthen the efficiency. While the potential of this 
therapy continues to advance, research is still needed to achieve full potential.

Citation: Al-Dhamin Z, Liu LD, Li DD, Zhang SY, Dong SM, Nan YM. Therapeutic efficiency 
of bone marrow-derived mesenchymal stem cells for liver fibrosis: A systematic review of in 
vivo studies. World J Gastroenterol 2020; 26(47): 7444-7469
URL: https://www.wjgnet.com/1007-9327/full/v26/i47/7444.htm
DOI: https://dx.doi.org/10.3748/wjg.v26.i47.7444

INTRODUCTION
The worldwide incidence of liver fibrosis has been increasing steadily in recent years; 
even though antiviral agents are widely used, the ultimate treatment for liver fibrosis 
is liver transplantation. Because transplants are not available in many countries and 
when they are, high costs and organ shortages cause this to be an unfeasible option for 
many patients. Development of curative therapies for end-stage liver disease is a 
necessity. Stem cell transplantation represents a promising solution because it involves 
recovery of the liver and production of hepatic stem cells (HSCs) in sufficient 
quantities to overcome the shortage of liver donors. Hepatocyte expansion from HSCs 
facilitates both physiological turnover and homeostatic regeneration[1].

Mesenchymal stem cells (MSCs) boast the benefits of being acquired relatively 
easily and stimulating low immunogenicity[2]. These cells are also characterized by a 
self-renewal ability and a capacity to differentiate into cells of various lineages, 
including osteoblasts, adipocytes, and chondrocytes[3]. MSCs also elicit less of an 
ethical concern because they do not originate from somatic cells. Their transplantation 
is considered safe and has been widely assessed in clinical settings and various 
diseases, yielding promising results[4].

Because bone marrow (BM) is the largest supplier of MSC sources, we focused this 
work on BM-MSC transplantation for liver fibrosis and its therapeutic efficiency. Many 
elements affect the therapeutic efficacy of BM-MSCs, such as culture method, 
strategies, and transplantation routes. Thus, understanding liver regeneration through 
BM-MSCs is crucial to offer new perspectives for treatment of liver diseases. This 
includes the underlying therapeutic mechanism that facilitates alleviation of liver 
fibrosis, its efficiency compared to other treatments, or dependence on the 
transplantation route and the strategies used for the procedure. This review outlines 
the recent advances of BM-MSCs for liver fibrosis, the main aspects of its utility steps, 
and their therapeutic effects on liver fibrosis to address questions regarding efficacy 
and gaps in the knowledge, opening a new path toward further studies (Figure 1).

LIVER FIBROSIS
Liver fibrosis is the extreme accumulation of extracellular matrix (ECM) proteins, 
including collagen, and appears in most chronic liver diseases. Distinct types of 
hepatotoxic agents produce mediators that induce inflammatory actions in hepatic cell 
types. Following chronic liver injury, symptoms associated with advanced hepatic 
fibrosis will appear. When advanced, liver fibrosis results in cirrhosis, liver failure, and 
portal hypertension, often requiring liver transplantation[5]. Alternatively, it can be 
resolved if the underlying cause is removed or through the use of an antifibrotic drug 
or cell therapy (Figure 2). It is possibly a reversible response that resulted from either 
hepatic insults generated by different chronic diseases, such as nonalcoholic fatty liver 

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
https://www.wjgnet.com/1007-9327/full/v26/i47/7444.htm
https://dx.doi.org/10.3748/wjg.v26.i47.7444
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Figure 1 Introduction of the main parts of the review. First, bone marrow-derived mesenchymal stem cells (BM-MSCs) are introduced as a therapy for liver 
fibrosis, then the steps before transplantation (culture, strategies, and the choice of transplantation route) are discussed. After that, the efficiency of BM-MSCs for liver 
fibrosis in vivo are explained through studies that research the efficiency, studies that compare the therapy to other medication sources, and the strategies to enhance 
the therapeutic efficiency.

disease[6] or repetitive chronic liver injury induced by hepatitis, fat deposition, and 
continued alcohol consumption[7,8]; for both, the liver may accumulate aberrant 
myofibroblasts and ECM thus generating liver fibrosis. Depending on the inducing 
liver disease, liver fibrosis pathogenesis differs; for example, schistosomiasis induces 
liver fibrosis by accumulating parasitic ova and periocular granulomas in portal 
veins[9]. Wilson’s disease (or hepatolenticular degeneration), caused by a mutation in 
the Wilson disease protein (ATP7B) gene, frequently induces liver fibrosis[10]. 
Furthermore, it has recently been found that metabolic syndromes, including obesity, 
insulin resistance, and diabetes, are closely related to end-stage liver fibrosis[11].

Physiologically speaking, liver fibrosis is a healing response to liver injury. It is 
characterized by excessive deposition of ECM proteins as an outcome of different 
chronic liver diseases, including viral hepatitis and alcoholic or nonalcoholic 
steatohepatitis[5,12]. Liver fibrosis is beneficial at first because it can encapsulate the 
injury and is considered a reversible process at this stage[13,14]; however, it ultimately 
develops into advanced fibrosis or cirrhosis, which might be irreversible and impairs 
liver function that leads to subsequent morbidity and mortality[15].

After a severe liver injury, parenchymal cells regenerate and substitute the necrotic 
or apoptotic cells associated with an inflammatory response and an incomplete ECM 
deposition. The liver regeneration fails if the hepatic injury persists, and hepatocytes 
are replaced with abundant ECM containing fibrillar collagen. Depending on the 
origin of the liver injury, the distribution of this fibrous material differs. In chronic 
cholestatic disorders and chronic viral hepatitis, the fibrotic tissue is first located 
around portal tracts. In alcohol-induced liver disease, it is instead situated in 
pericentral and perisinusoidal areas[16]. Liver fibrosis is related to significant alterations 
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Figure 2 The transition from a healthy liver to liver fibrosis. Different types of hepatotoxic agents produce mediators that induce inflammatory actions in 
hepatic cell types. Following chronic liver injury, symptoms associated with advanced hepatic fibrosis will appear. This can either lead to liver cirrhosis, liver failure, 
and portal hypertension or can be resolved under the conditions mentioned. HCV: Hepatitis C virus; LPS: Lipopolysaccharide.

in the quantity and composition of ECM[17]. In advanced stages, the liver holds about 
six times more ECM than ordinary, including collagens (I, III, and IV), fibronectin, 
undulin, elastin, laminin, hyaluronan, and proteoglycans[18]. Decreased activity of 
ECM-removing matrix metalloproteinases (MMPs) is mainly related to the 
overexpression of their inhibitors (i.e. TIMPs)[12].

Succeeding a chronic injury, HSCs, the primary ECM-producing cells[19], activate 
and transdifferentiate into myofibroblast-like cells, acquiring contractile, 
proinflammatory, and fibrogenic properties[20,21]. The activated HSCs accumulate at the 
spots of tissue repair, discharging significant ECM amounts and regulating ECM 
degradation. Kupffer cells (KCs) are the primary producer of PDGF, which is the main 
mitogen for activated HSCs. At the transcriptional and posttranscriptional levels, 
collagen synthesis in HSCs is regulated[22].

There is a complex interplay among different hepatic cell types the occurs during 
hepatic fibrogenesis. Many hepatotoxic agents can damage hepatocytes[23]; these 
damaged hepatocytes release reactive oxygen species (ROS) and fibrogenic mediators 
and induce white blood cell recruitment via inflammatory cells. Apoptosis of damaged 
hepatocytes stimulates the fibrogenic actions of liver myofibroblasts[23]. Inflammatory 
cells activate HSCs to secret collagen, emit inflammatory chemokines, and modulate 
lymphocyte activation[24,25]. Consequently, a vicious circle of inflammatory and 
fibrogenic cells stimulating each other occurs[26]. Fibrosis is affected by different T 
helper subsets, with the Th2 response being associated with more active 
fibrogenesis[27]. KCs play a main role in liver inflammation by releasing ROS and 
cytokines[28,29]. Also, changes in the composition of the ECM can directly promote 
fibrogenesis. Fibrinogen, type IV collagen, and urokinase-type plasminogen activator 
stimulate resident HSCs by activating latent cytokines, such as transforming growth 
factor (TGF)-β1[30]. Fibrillar collagens can attach and stimulate HSCs via the discoidin 
domain receptor and integrins. Furthermore, altered ECM can act as a reservoir for 
growth factors and MMPs[31].

BM-MSCS
Identification of MSCs
Modern science has witnessed an essential thrust in stem cell research[32], identifying 
their presence in limited amounts in adult tissues, such as adipose tissue (AD-
MSCs)[33,34], umbil ical  cord (UC) tissue[35], amniotic  fluid[36,37], breast  milk[38,39], 
synovium[40], BM-MSCs[41], placental cells[42], dental pulp[43], lung, and liver (both adult 
and fetal)[44]. They are multipotent cells capable of differentiating into distinct cell 
groups, such as hepatocytes[45].
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The therapeutic eminence index represents the amount of research that has 
advanced into clinical trials in the last 10 years, based on the Macrin et al[46] study 
(Figure 3). The eminent sources of adult MSCs are ordered following their therapeutic 
eminence index and are presented as follows: UC is the most eminent, then comes the 
placenta, AD, endometrium, dental pulp, and dermis successively, and the least 
eminent sources are amniotic fluid, synovium, and breast milk. Moreover, the cell 
types into which the isolated MSCs can differentiate vary, ranging from neurons and 
enterocytes to osteocytes and chondrocytes[47], etc. Among the eminent MSCs, three 
primary sources are capable of treating liver disease, namely the BM-MSCs, UC-MSCs, 
and AD-MSCs. Usually, MSCs derived from these sources express no signicant 
differences concerning the morphology and immune phenotype[47].

According to the research by Liu et al[48], the choice of MSCs should be related to the 
function and repair potentiality of the liver. Therefore, BM was selected as the best 
source compared to the three most capable sources to treat liver diseases. Accordingly, 
we decided to concentrate on BM-derived MSCs; as promising as this therapy can be, 
there are still many aspects of this therapy that need to be investigated.

Identification of BM-MSCs
As presented in Figure 4, the BM consists of two different cell lineages: the 
hematopoietic tissue cells and the associated stromal cells[49]. BM contains more than 
one stem cell population, and these include: (1) Hematopoietic stem cells and 
endothelial progenitor cells (EPCs) obtained through flow cytometric cell sorting 
(known as FACS) according to cell surface markers; (2) Side population cells present in 
the subpopulation as side scatters on FACS plot, owing to their ability to efflux 
Hoechst 33342 dye; (3) MSCs; and (4) Multipotent adult progenitor cells, which are 
derived through the characterization of adherent cell populations.

Isolation and expansion of BM-MSCs involve aspiration of the iliac crest followed 
by separation of the mononuclear cell fraction by density-gradient centrifugation and 
plating for expansion. BM-MSCs can differentiate into ectodermal cell lineages that 
include neurons, endodermal cell lineages, such as hepatocytes[50], and mesodermal 
lineages, such as myocytes, chondrocytes, osteocytes, and adipocytes[51]. Considering 
this differentiation capacity, several possible applications of BM-MSCs have been 
suggested, tested, and studied[46].

There is a presence of pluripotency markers in BM-MSCs, suggesting that they can 
differentiate into cell lineages of all three germ layers. These surface marker expression 
levels and transcription factors play a significant role in distinguishing the stem cell 
populations[46]. Besides the regenerative and differentiation potentials of MSCs, the 
immunosuppressive and immunomodulatory properties are critical to their use in 
cellular therapy[52].

The potential contribution of BM-MSCs to liver fibrosis is presented in Figure 5. 
Each of the presented elements is a different mechanism that has a specific role that 
can alleviate liver fibrosis, such as the higher differentiation of AFP, CK18, and CK19, 
the activation of HSCs, and the higher mobility of KCs. The most dominant axis seems 
to be transdifferentiation to a collagen-producing myofibroblast cell population. 
However, other factors can also show a potential contribution to liver fibrosis.

BM-MSCs are known to express the MHC class I antigen but not the MHC class II 
antigen[53,54]. The coculture of BM-MSCs and HSCs inhibited the proliferation of HSCs 
and promoted cell apoptosis of HSCs through downregulating the E3 ligase S phase 
kinase associated protein 2 level, attenuating ubiquitination and increasing the 
stability of p27[55]. Moreover, BM-MSCs produce various growth factors and cytokines 
with anti-inflammatory effects in vitro and in vivo to inverse the fibrotic liver state. As 
transplantation of MSCs upsurges, the serum levels of vascular endothelial growth 
factor(VEGF), hepatocyte growth factor (HGF), IL-10, and MMP-9 increase in injured 
livers[56].

BM-MSCs attenuate hepatic fibrosis in vivo by decreased serum levels of collagen I, 
collagen IV, type III procollagen, hyaluronic acid, laminin, downregulated liver 
collagen proportionate area, hepatic hydroxyproline, and liver α-smooth muscle actin 
(SMA). This improvement is accompanied by reduced hepatic levels of TGF-β1, 
decreased expression of serum TGF-β1, Smad3, and Smad4 but increased Smad7 
expression[57,58]. BM-MSCs significantly ameliorate liver fibrosis in mice via stimulation 
of interferon-γ and inhibition of lymphocyte proliferation; the BM-MSCs also 
significantly decreased the number of IL-17 producing Th17 cells and the serum level 
of inflammatory IL-17 while increasing the serum levels of kynurenine, 
immunosuppressive IL-10, indoleamine 2,3-dioxygenase, and a number of CD4+ IL-
10+ T cells to attenuate liver fibrosis[59].

BM-MSCs are also confronting various challenges to reach clinical application 



Al-Dhamin Z et al. BM-MSCs in liver fibrosis

WJG https://www.wjgnet.com 7449 December 21, 2020 Volume 26 Issue 47

Figure 3 Eminent sources of adult mesenchymal stem cells and the cells into which they can differentiate. Eminent sources of adult 
mesenchymal stem cells are ordered through their therapeutic eminence index. Umbilical cord is the most eminent, followed by the placenta, adipose tissue, 
endometrium, dental pulp, and dermis. The least eminent sources are amniotic fluid, synovium, and breast milk. The cell types, such as neurons, enterocytes, 
osteocytes, and chondrocytes, into which the isolated mesenchymal stem cells can differentiate are variant.

requirements, such as the highly invasive donation procedure, the decline in MSC 
number and differentiation potential with increasing age, demands of a large number 
of cells for therapy, heterogeneic character of cell quality, low survival ability after 
transplantation, the weakening of MSC capacities in two-dimensional (2D) culture, 
and unclear mechanism of MSC function for disease therapy. An essential need for 
MSC therapy is to produce enough high-quality MSCs in vitro to meet clinical demand.

PRE-TRANSPLANTATION STEPS
Culture
As explained in Figure 6, different methods are used to culture stem cells; the general 
way is to culture MSCs in 2D dishes as a monolayer for fast expansion. This method 
conjures changes in MSCs, including cellular senescence, immunogenicity, losses of 
their stemness properties and paracrine activity, genetic expression of cells, and 
altered inner structure of cells[60,61]. The second way is the three-dimensional (3D) 
culture, which artificially creates an environment in which cells can interact or grow 
with their surroundings in all three dimensions. Thus, 3D culture is regarded as a 
more suitable and closer physiological microenvironment for cell growth[62,63]. There 
are numerous 3D culture methods developed to form MSC spheroids, such as 
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Figure 4 Bone marrow extracted cells. Bone marrow contains a variety of stem cell populations that can be extracted, either through specific growth factor 
media, such as that for multipotent adult progenitor cells (MAPCs) and mesenchymal stem cells (MSCs) or through flow cytometric cell sorting (FACS) technology, 
such as for the endothelial progenitor cells (EPCs), hematopoietic stem cells (HPSCs), and side population cells (SPs).

hanging-drop, magnetic levitation, chitosan membrane culture, microgravity 
bioreactor, and rotating culture[1,64]. These methods provide cells with a suspension 
culture condition where the 3D spheroids were formed mainly relying on cell-cell 
adhesion and interaction that promoted the self-assembly tendency of MSCs.

There are two main types of spheroid used for the 3D culture. The first of these is 
initially formed and derived from the aggregation of many individual cells and is 
named multiple cells-derived spheroid (MCDS). Growing evidence has shown that, in 
comparison to 2D culture, 3D MCDS culture enhances the characteristics of MSCs on 
cell survival, factor secretion, stemness maintenance, migration, and antisenescence in 
vitro and improves the capacities of anti-inflammation, angiogenesis, tissue repair, and 
regeneration in vivo[65,66]. However, despite the many advantages reported, visible 
defects restrict the direct application of MCDS-cultured MSCs in the clinic. These 
include the heterogeneity of cell quality in the whole spheroid, the multitudinous 
presence of individual MSCs with distinct viabilities, and the large size of MCDS 
resulting in different distributions of nutrients, oxygen, and waste metabolism 
between the core and periphery of the spheroid; moreover, the cells in the core are 
subjected to hostile metabolic stresses and tend to undergo apoptosis[67]. The large size 
(diameter > 100 μm) makes MCDSs unable to be directly injected into the body, as it 
poses risk of blood vessel blockage. So, the MCDSs generally must be dissociated into 
single cells by an enzymatic process before vein injection, but this affects the cells by 
causing damage and impairing viability[68].

The second type of spheroid is formed through a single cell-derived sphere (SCDS), 
based on the report by Qiao et al[69]. This formation can enhance the effectiveness of 
UC-MSCs thereby optimizing the quality of MSCs to meet the demand of the clinical 
application. In vitro and in vivo results have indicated that compared to 2D and MCDS 
cultures SCDS culture possesses some advantages for MSCs optimization, such as in 
cell stemness properties, survival ability, and therapeutic potential. However, despite 
this, there are still some questions that need to be explored further in the future; in 
particular, these questions involve the effects of SCDS culture on immunomodulatory 
capacities, inflammatory response, paracrine capacities, and cellular metabolism. 
Whether SCDS culture could markedly optimize BM-MSCs for potentially meeting the 
demand for clinical application also remains an unanswered question. In general, after 
cell transplantation, only a small number of MSCs migrate to injured tissues, so 
various studies have investigated effective strategies for improving the survival rate 
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Figure 5 Potential contributions of bone marrow-derived mesenchymal stem cells to liver fibrosis. Each of the presented elements represent a 
distinct mechanism that has a specific role that can contribute to alleviating liver fibrosis. BM-MSCs: Bone marrow-derived mesenchymal stem cells; HSCs: Hepatic 
stellate cells; KC: Kupffer cells.

and activity of MSCs to treat liver fibrosis.

Strategies to improve MSCs efficiency
BM-MSCs have limited viability, with as low as < 1% of transplanted cells predicated 
to survive. Inflexibility of the microenvironment encountered upon transplantation 
may be the cause[70]. Various strategies have been developed and implemented to 
improve cell therapy. In this section, we will focus on: genetic engineering and the 
preconditioning used during the culture phase; tissue engineering used on a 3D matrix 
and involving signaling molecules; and cell-free therapy achieved through the use of 
exomes (Ex) and microvesicles (MVs) (Figure 7).

Genetic engineering: BM-MSCs have also been genetically engineered to overexpress 
the desired gene to improve their therapeutic efficacy further. They can be used for the 
targeted delivery of therapeutic gene products as gene therapy. The genes capable of 
manipulation could be genes encoding receptors, growth factors, and cytokines. 
Genetically-engineered BM-MSCs have been applied as treatment to a range of genetic 
and acquired diseases. Genetic modification of BM-MSCs improves their therapeutic 
potential by enhancing various cellular features, like endurance and survival of the 
transplanted BM-MSC, angiogenesis, differentiation, homing, and anti-inflammatory 
effects[71].

This strategy investigated approaches to promote the expression of proteins 
involved in the homing of donor cells[72]. MSCs express low levels of molecules, 
including the homing factor stromal cell-derived factor-1 (SDF-1) and chemokine 
receptors[73]. Genetic manipulation of prosurvival or antiapoptosis genes have been 
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Figure 6 Two main types of mesenchymal stem cell culture. The two-dimensional (2D) culture using 2D dishes as a monolayer for fast expansion, and the 
three-dimensional (3D) culture with two main types of spheroid use: multiple cell-derived spheroid and single cell-derived sphere. MSCs: Mesenchymal stem cells.

shown to increase BM-MSC survival in vivo[74]. Through modulation of cellular 
networks, microRNAs can regulate mRNAs, including those involved in cell survival. 
MicroRNA overexpression can enhance BM-MSC survival[75]. Nonetheless, this 
strategy presents many risks, including carcinogenesis, that should be carefully 
considered when applying genetic manipulations.

Tissue engineering: Strategies that allow for BM-MSC homing and adaptation in the 
liver before initiating their regeneration will help improve cell survival. Several 
approaches have been investigated, involving coculture and the development of 3D 
systems that can involve a scaffold-based or scaffold-free system[76,77]. Cells grown in 
3D systems would behave more like cells in vivo and could be implanted directly. 
Numerous synthetic polymers as well as natural materials have been assessed for their 
ability to raise the expression of hepatocyte-specific genes in BM-MSCs through 
hepatic differentiation[78]. The most significant performance effect was observed when 
a 1:5 ratio of BM-MSCs to hepatocytes was used both in vitro and in vivo[79]. 
Decellularized tissue is another system in use for tissue engineering; the decellularized 
liver tissue forms an ECM scaffold, improving MSC engraftment by offering a more 
physiological environment[80].

Preconditioning: Priming methods avoid genetic and chemical modifications entirely 
by altering culture conditions to influence gene expression[81]. These methods have 
been used to improve the tethering, activation, and transmigration steps of systemic 
homing. Preconditioning improves the survival signals and resistance of MSCs against 
stress and insults in the pathological environment[82]. In the preconditioning process, 
BM-MSCs can be pretreated or exposed to a sublethal dose of various insults, such as 
apoptotic cascade activation, hypoxia, toxins, ROS, inflammatory response, 
autophagy, and many others. Furthermore, preconditioning can enhance cell survival 
following the transplantation because it considerably induces therapeutic benefits of 
BM-MSCs by increasing the potential of cell differentiation and its paracrine protective 
effect, improving migration and homing of BM-MSCs to the lesion site, increasing 
regenerative and repair potentials, and suppressing inflammatory and immune 
responses that occur after transplantation[83]. Many preconditioning strategies involve 
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Figure 7 Strategies to enhance bone marrow-derived mesenchymal stem cell therapeutic efficiency. Genetic engineering and preconditioning 
used during the culture phase; tissue engineering used on a three-dimensional (3D) matrix and involving signaling molecules; cell-free therapy through the use of 
exomes and microvesicles. MSCs: Mesenchymal stem cells.

exposing cells to a physical or an environmental shock and/or pharmacological 
modulators of targeted molecules[83,84]; the following three strategies exemplify such.

The first is a thermal preconditioning strategy carried out at 42 °C for 1-2 h before 
transplantation. It has been demonstrated to promote cell survival in vivo, and this 
outcome is related to the induction of heat shock protein expression, which inhibits 
apoptotic pathways[85,86].

The second is a hypoxic preconditioning strategy based upon the knowledge that 
hypoxia can promote defense mechanisms against oxidative stress. Hypoxia is a 
significant feature of MSCs; it plays a vital role in maintaining stem cell fate, self-
renewal, and multipotency. Cultivating MSCs under hypoxia is an essential 
preconditioning step because it mimics the natural microenvironment of BM. The 
reaction of MSCs to hypoxic conditions is contradictory, however, indicating both 
damaging and ameliorating effects.

The third is a pharmacologic strategy to maintain cell viability after transplantation. 
This process includes the use of antioxidants and HIF-1α stabilizers to contribute to 
cell survival, as well as antimycin and mitochondrial electron transport inhibitors to 
promote cell survival by activating mitochondrial death pathways[87].

Extracellular vesicles as a cell-free therapy
Worries regarding the use of MSCs as a cellular therapeutic approach for the liver 
include their potential for aberrant differentiation, the peril of tumor formation, and 
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the half-life of transplanted MSCs inadequate for tissue regeneration by 
differentiation[88]. To deal with these issues, the MSC secretome has been introduced as 
an acellular alternative therapy. Indeed, these soluble proteins or extracellular vesicles 
residing among the BM-MSCs and released by paracrine mechanisms could be a 
practical option and offer numerous advantages compared to the use of cellular 
therapies for liver diseases[89].

BM-MSCs can also release more elaborate structures, called extracellular vehicles 
(EVs)[90]. These EVs can be engineered to enhance anticipated activities or introduce 
specific effector molecules[91,92]. MSC-derived EVs were shown to improve hepatic 
injury and inflammation[93]. EVs from human MSCs preserve at least some of the 
immunomodulatory properties of the cells. MSC-derived induced pluripotent stem 
cell-EVs hold the EV characteristics that are usually obtained from tissue-derived 
MSCs, regardless of origin[94]. EVs could be a better therapeutic strategy because they 
characterize a physically different fraction and transport signals with more predictable 
effects. Although, the complex functions of EVs are still mostly undiscovered. 
Additional studies are needed to determine how long-circulating MSC-EVs survive 
after administration and what recognition pathways are used by the target cells.

Choice of transplantation routes
Many BM-MSC transplantation routes can be used for liver disease, in general. Some 
of the routes are direct, such as the portal vein and the hepatic artery; others are 
indirect routes, such as the peripheral vein, intrasplenic, intraperitoneal, BM 
reconstitution, and extra-corporeal liver assist device (Figure 8).

BM-MSC transplantation routes can affect the therapy’s potential because they 
conceptually represent the simplest method to improve MSCs homing by 
administrating the cells at or near the target tissue instead of infusing them through 
standard intravenous routes. It may seem intuitive that direct delivery of MSCs to a 
target tissue could result in higher retention[95].

There are conflicting data about the engraftment of transplanted BM-MSCs, and 
some concerns around the fibrogenic potential have been raised. Unwanted effects 
may depend on the route and dose of BM-MSC infusion[96,97]. Different routes can be 
used to transplant BM-MSCs, such as intravenous, intraperitoneal, intrahepatic, 
intrasplenic, or portal vein injection, but the effectiveness varies depending on the 
injection route. The peripheral vein is the most common transplantation route 
followed by the hepatic artery, intrasplenic, intrahepatic and portal vein injection. It 
has been shown that BM-MSCs administered through the peripheral vein migrate well 
into the liver parenchyma in chronic injury in vivo. Simultaneously, limited BM-MSC 
engraftment has been observed in an acute injury environment[98].

Furthermore, BM-MSCs endured in liver tissues when injected through the 
intrahepatic artery, indicating that BM-MSCs were present without differentiating into 
hepatocytes. Moreover, the intraportal infusion was found to be more efficient than 
the peripheral route in clinical trials. However, direct approaches, such as via the 
portal vein or hepatic artery, carry a risk of portal hypertensive bleeding following cell 
injection[99]. Generally, the lines of evidence provided by most of these clinical studies 
have been lacking.

EFFICIENCY OF BM-MSCS FOR LIVER FIBROSIS IN VIVO
Several in vivo studies have continued to prove the efficiency of BM-MSCs in 
attenuating liver fibrosis induced by tioacetamide or carbon tetrachloride. These 
studies have investigated the efficiency and role of MSCs in liver fibrosis to elucidate 
the mechanism underlying the mobilization and function of BM-MSCs.

Mehrabani et al[100] investigated the regenerative effect of BM-MSCs in a rat model of 
liver fibrosis induced by tioacetamide. The study demonstrated that BM-MSCs could 
open a new window and be a therapy of choice in the amelioration of liver fibrosis 
because it alleviated liver fibrosis through the antifibrotic potential of BM-MSCs. The 
paracrine and endocrine functions of BM-MSCs also underlay the efficacy of these cells 
in the amelioration of liver damage through reducing inflammatory cells in the hepatic 
tissue and decreasing the alanine aminotransferase level.

Another study investigated the link between natural killer cells and liver fibrosis 
and their link to regenerative medicine. It was found that BM-MSCs alleviated liver 
fibrosis through suppressing the inflammatory response and the local 
proinflammatory cytokines. A significant increase in intrahepatic natural killer cells 
was also noted upon BM-MSC treatment[101]. BM-MSCs attenuate liver brosis by 
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Figure 8 Bone marrow-derived mesenchymal stem cell transplantation routes for liver disease. The routes are either direct (portal vein and 
hepatic artery) or indirect (peripheral vein, intrasplenic, intraperitoneal, bone marrow reconstitution, and extra-corporeal liver assist). BM-MSCs: Bone marrow-derived 
mesenchymal stem cells.

decreasing serum levels of the inammatory cytokine IL-17, increasing the 
immunosuppressive cytokine IL-10 and the related factors indoleamine 2,3-
dioxygenase and kynurenine, reducing the number of IL-17-producing Th17 cells, and 
expanding the percentage of CD4+ IL-10+ T cells[59].

The BM-MSCs have also been shown to improve thioacetamide-induced liver 
fibrosis in rats by remolding the collagen bers, which could be lysed by MMPs, 
namely MMP-2-mediated degradation of the ECM. PKH26-labeled BM-MSCs were 
seeded into liver tissue and found to differentiate into healthy cells replacing the 
damaged ones with either hepatocytes or cholangiocytes. The reduction in α-SMA 
expression that was observed reected a diminution in the number of activated 
HSCs[102].

BM-MSCs might play an immunomodulatory role in treating liver fibrosis through 
the down-regulation of IL-17A, affecting the IL-6/STAT3 signaling pathway. It was 
noted that after the treatment there was modulation of the cytokine milieu and among 
the signal transducers, including a significant downregulation of the genes encoding 
cytokines IL-17A, IL-17RA, IL-17F, and IL-17RC. In accordance with the BM-MSC 
administration was a decline in IL-17, IL-2, and IL-6 serum proteins and 
downregulation in the IL-17A and IL-17RA proteins in liver tissue. The BM-MSC 
administration also resulted in downregulation of both Stat3 mRNA expression and p-
STAT3 protein as well as Stat5a gene expression and p-SMAD3 and TGF-βR2 proteins 
and elevated p-STAT5 protein[103].

It was also evidenced that the SDF-1α/CXCR4, which is essential among the 
chemotactic axis regulating MSC migration from BM to fibrotic liver, can attenuate 



Al-Dhamin Z et al. BM-MSCs in liver fibrosis

WJG https://www.wjgnet.com 7456 December 21, 2020 Volume 26 Issue 47

liver damage and thus alleviate liver fibrosis[104]. That same study identified VEGF as 
the key cytokine that contributes to MSC proliferation. These results provide further 
evidence for the role of MSCs in liver fibrosis and help to elucidate the mechanism 
underlying MSC mobilization under the condition of carbon tetrachloride-induced 
liver injury (the model system used in the study).

Transplantation of stem cells, including BM-MSCs, has proven to be competent for 
repairing fibrotic livers. The underlying mechanism promotes hepatocyte 
transdifferentiation and hepatocyte proliferation while inhibiting activated hepatic 
stellate cells, upregulating the activity of MMPs, and promoting neovascularization in 
liver tissues[105].

Considering that BM-MSCs have demonstrated a strong proliferative ability, 
multilineage potential, and no ethical considerations for widespread application to 
repair various organ injuries, they are currently transplanted in vivo to reduce 
hepatocyte apoptosis and promote hepatocyte regeneration[106]. Thus, in this review, 
we focused on the in vivo research in the literature starting from the year 2015 to 
address these two main issues: (1) The therapeutic efficiency of BM-MSCs compared to 
other types of treatments; and (2) The possibility to enhance the therapeutic efficiency 
of BM-MSCs through various strategies.

Therapeutic efficiency of BM-MSCs compared to other treatments and stem cell 
sources
The therapeutic efficiency of BM-MSCs depends on various factors, but there remains 
a need to compare this efficiency to that of other treatments and other MSC sources. In 
Table 1[107-116], we present those studies in the literature that have compared BM-MSC 
efficiency to other existing therapies and other sources up to the year 2015.

We noted that compared to such standard treatments as resveratrol and silybum 
marianum the regenerative capabilities and resolution of hepatic fibrosis was higher 
for the BM-MSCs. Treatment with BM-MSCs enhanced the liver state more effectively 
than either of the two drugs. It also significantly decreased levels of alanine 
aminotransferase, aspartate aminotransferase, alkaline phosphatase, malondialdehyde, 
TNF-α, and CYP450 and increased levels of albumin, superoxide dismutase, 
glutathione, glutathione S-transferase, and catalase. BM-MSCs could also reestablish 
liver structure and function, ameliorating the toxicity of carbon tetrachloride and 
improving liver function tests[107].

In other cases, drug treatment with imatinib, simvastatin, and decorin was found to 
be more efficient when used concomitant to BM-MSCs. For example, with imatinib the 
single treatment and combination therapy significantly reduced serum levels of 
alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase and 
downregulated α-SMA, procollagen I, procollagen III, collagen IV, and laminin. 
However, in pathological observations the highest therapeutic potential was achieved 
with a combination of BM-MSCs and imatinib[108]. Also, compared to simvastatin and 
decorin the cotreatment exhibited better histological improvement than was achieved 
with simvastatin or decorin alone. The combination treatment also lowered the 
hydroxyproline content, decreased hepatic collagen distribution, and rescued liver 
function impairment. The upregulation of α-SMA, collagen-1, TGF-b1, and p-Smad3 
was prevented by the administration of the cotreatment, which exerted strong 
protective effects against hepatic fibrosis[109,110].

Depending on the source, the efficiency of MSCs differ; for instance, compared to 
human UC CD34+ cells, both the CD34+ cells and BM-MSCs have the same efficacy in 
significantly reducing TNF-α. Nevertheless, concerning liver function and gene 
expression, the UC CD34+ cells were more efficient in elevating albumin and reducing 
alanine aminotransferase concentrations and gene expression of collagen Iα, TGF-β1, 
α-SMA, albumin, and MMP-9. Thus, human UC CD34+ stem cells were deemed more 
efficient than the BM-MSCs[111].

While the UC-MSCs present similar effectiveness to BM-MSCs, levels were also 
compared to UC-EPCs and AD-MSCs. The UC-EPCs showed higher MMP-2 and 
VEGF gene expression than BM-MSCs. Moreover, the UC-EPCs were more effective 
than BM-MSCs in increasing gene expression of HGF, α-SMA, and Ki-67. The UC-EPCs 
also showed significantly higher TGF-β than BM-MSCs[112]. Comparison of BM-MSCs 
and AD-MSCs showed them to be similarly efficient at attenuating liver fibrosis, both 
using a mechanism that involves inhibiting the activation and proliferation of HSCs 
and boosting apoptosis of HSCs. The AD-MSCs may be a better candidate than BM-
MSCs for cell-based therapy to treat liver fibrosis because they improved the anti-
inflammatory and antifibrotic effects to a slightly greater extent than the BM-MSCs, 
they are easier to prepare, and they are more effective at inhibiting HSC proliferation 
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Table 1 Bone marrow-derived mesenchymal stem cell therapeutic efficiency compared to other treatments and other stem cell sources

Ref. Year Pathogenesis Model Route BM-MSCs 
compared to Effect on liver fibrosis Efficiency 

comparison
[107] 2020 CCl4 Rats Penile vein Standard therapy: 

resveratrol and 
silybum 
marianum

Decreased AST, ALT, MDA, ALP, 
TNF-α, and CYP450 and increased 
albumin, SOD, GSH, GST, and 
CAT

BM-MSCs were 
more efficient

Restored liver structure and 
function and markedly decreased 
the induced liver fibrosis

[108] 2020 CCl4 Rats Intravenous Imatinib High therapeutic potential of 
utilizing BM-MSCs and imatinib, 
either individually or combined

Combined 
treatment was the 
most efficient 

Reduced serum levels of ALT, AST, 
and ALP concomitantly

Downregulated α-SMA, 
procollagen I, procollagen III, 
collagen IV, and laminin

[109] 2018 TAA Rats Right lobe of the 
liver

Simvastatin Reduced TGF-β1, α-SMA, and 
collagen-1 expression

Combined 
treatment was 
more efficient

Inhibited TGF-β/Smad signaling

Sim-MSCs strongly inhibited the 
progression of TAA-induced 
hepatic fibrosis

[110] 2016 TAA Rats Intrahepatic Decorin DCN and BM-MSCs alleviated 
liver fibrosis through: (1) decreased 
proliferation of HSCs; (2) 
suppressed TGF-β/Smad signaling; 
and (3) antifibrotic effect

Combined 
treatment was 
more efficient

[111] 2016 CCl4 Rats Intravenous Endothelial 
progenitor cells

Elevated albumin and reduced 
ALT concentrations

No statistically 
significant 
difference

UC-EPCs were more valuable in 
increasing gene expression of HGF 
and immunohistochemistry of α-
SMA and Ki-67; BM-MSCs had 
significantly lower TGF-β 
compared to UC-EPCs

[112] 2020 CCl4 Rats Tail vein Human UC 
CD34+

Expressing liver-specific genes BM-MSCs were 
less efficient

Decreased gene expression of 
profibrotic genes (collagen Iα, TGFβ1
, α-SMA) and of albumin

Increased antifibrotic gene (MMP-9
) expression and decreased 
proinflammatory gene (TNF-α) 
expression

Reduced ALT concentration

[113] 2017 CCl4 Rats Intravenous WJ-MSCs Decreased hepatic hydroxyproline 
content and the percentage of 
collagen proportionately

BM-MSCs were 
more efficient

Reduced α-SMA and 
myofibroblasts

Increased number of EpCAM+ 
hepatic progenitor cells along with 
Ki-67+ and human matrix 
metalloprotease-1+ (MMP-1+) cells

[114] 2017 CCI4 Rats Portal vein AD-MSCs Prevented activation and 
proliferation of HSCs, and 
promoted apoptosis of HSCs

Similar 
efficiency
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Implantation of AD-MSCs 
exhibited slightly improved anti-
inflammatory and antiliver fibrotic 
activities compared to BM-MSCs

[115] 2018 CCl4 Rats Intravenous and 
intrasplenic

Intravenous and 
intrasplenic route

Elevated serum albumin levels and 
reduced serum ALT levels

Intravenous route 
was more efficient

Decreased inflammation by 
reducing the gene expression of 
proinflammatory cytokines (IL-1β, 
IL-6, and INF-γ)

An antifibrotic effect via reduced 
profibrogenic factors (TGF-β1, α-
SMA, CTGF) and increased 
antifibrogenic factors (CK18, HGF)

Increased VEGF protein levels

[116] 2016 CCl4 Mice Portal and tail 
vein

Tail and portal 
vein route

Reduced AST/ALT levels There were no 
efficiency 
differences

Stimulated positive changes in 
serum bilirubin and albumin

Downregulated expression of 
integrins (600-7000-fold), TGF, and 
procollagen-α1

α-SMA: Alpha-smooth muscle actin; a-SMA: Anti-alpha-smooth muscle actin; AD-MSCs: Adipose-derived mesenchymal stem cells; ALT: Alanine 
aminotransferase; ALP: Alkaline phosphatase; AST: Aspartate aminotransferase; BM-MSCs: Bone marrow-mesenchymal stem cells; CAT: Catalase; CCl4: 
Carbon tetrachloride; CK18: Cytokeratin 18; CTGF: Connective tissue growth factor; CYP450: Cytochrome P450; DCN: Decorin; GSH: Glutathione 
reductase; GST: Glutathione S-transferase; HGF: Hepatocyte growth factor; HSCs: Hepatic stellate cells; IL-1β: Interleukin-1β; IL-6: Interleukin 6; MDA: 
Malondialdehyde; MMP: Matrix metalloproteinase; MSCs: Mesenchymal stem cells; Sim-MSCs: Simvastatin-mesenchymal stem cells; SOD: Superoxide 
dismutase; TAA: Thioacetamide; TGF-β: Transforming growth factor-beta; TNF-α: Tumor necrosis factor-alpha; UC CD34+: Umbilical cord blood CD34+; 
UC-EPCs: Umbilical cord-endothelial progenitor cells; WJ-MSCs: Wharton’s jelly-derived mesenchymal stem cells; VEGF: Vascular endothelial growth 
factor.

and apoptosis in the coculture system. However, the slight improvement in anti-
inflammatory and antifibrotic effects did not reach the threshold of statistically 
significant difference[113,114].

The transplantation route also impacts BM-MSC competence. This is not the case for 
all though, as there are no notable differences in the impact from portal and tail vein 
injections. The former involves different procollagen gene expression than the latter; 
nevertheless, the liver serum markers and liver histology classification show no 
differences postinjection. Remarkably, there are also no differences in treatment effects 
for those two administrations. When considering safety, though, BM-MSC transfusion 
via a peripheral vein is a safer potential method. In other cases, the impact results 
differ; for example, the intravenous route is remarkably more efficient than the 
intrasplenic one. Although both routes achieve a similar enhancement of liver 
function, the intravenous route provides greater reduction in cytokine gene expression 
levels (IL-1β, IL-6, and INF-γ)[115,116].

As a result, we note that although BM-MSCs are more efficient than other 
treatments, combination treatment with other therapies can itself become a strategy to 
enhance the therapeutic potential of BM-MSCs. We also want to point out that even 
though BM-MSCs are considered the most significant source of stem cells and are 
more efficient in some cases, there should be more studies to consider the potential of 
other sources potential. Lastly, many possible transplantation routes can affect the 
therapeutic impact of BM-MSCs on liver fibrosis, but we have observed a lack of 
studies that research the advantages and disadvantages of these routes.

Possibility to enhance the therapeutic efficiency of BM-MSCs
The therapeutic efficiency of BM-MSCs as a treatment for liver fibrosis is influenced by 
numerous factors including culture conditions, delivery route, number of infused cells, 
gene modification of MSCs, and other potential factors. Hence, we herein arrange and 
analyze the current evidence related to BM-MSC transplantation in liver fibrosis and 
summarize the strategies for promoting the therapeutic efficiency of BM-MSC 
transplantation. We expect to develop other strategies to improve BM-MSC activities 
in vivo to restore liver function and alleviate liver fibrosis. Based on Table 2[117-129], the 
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Table 2 Strategies to enhance bone marrow-derived mesenchymal stem cell therapeutic efficiency

Ref. Year Pathogenesis Model Route Strategy Strategy efficiency
[117] 2020 CCl4 Mice Tail vein Preconditioning: Autophagy regulation 

in BM-MSCs
Boosted antifibrotic potential primed by autophagy inhibition in BM-MSCs 
may be attributed to their suppressive effect on CD4+ and CD8+ 
lymphocytes infiltration and HSC proliferation, which were regulated by 
elevated PTGS2/PGE2 via a paracrine pathway

BM-MSC-based remedy in liver fibrosis and other inflammatory disorders

[118] 2019 CCL4 Rats Tail vein Preconditioning: Conditioned media Increasing antioxidant enzyme activity

Increased gene expression levels attenuated by CCl4 up to basal levels

Normalized the organization apart from some dilated sinusoids and 
vacuolated cells

Improved morphological, immunohistochemical, and biochemical measures

[119] 2016 CCl4 Rats Tail vein Preconditioning: With melatonin Enhanced homing ability of MSCs

Enhanced liver function

Enhanced the interaction of melatonin receptors and matrix enzymes

Expressed a high level of CD44

Ability to differentiate into adipocytes and Schwann cells

[120] 2017 CCI4 Rats Tail vein Preconditioning: With melatonin High ability of homing into the injured liver (P ≤ 0.05 vs BM-MSCs)

Higher percentage of glycogen storage but a lower percentage of collagen 
and lipid accumulation (P ≤ 0.05 vs CCl4 + BM-MSCs)

Low expression of TGF-β1 and Bax and lower content of serum ALT but 
higher expressions of MMPs and Bcl2

The effectiveness of MT preconditioning in cell therapy

[121] 2019 CCL4 Rats Tail vein Cell-free therapy: MSC-derived 
macrovesicles BM- MSC-MVs

Increased serum albumin levels and VEGF quantitative gene expression (P 
< 0.05)

Decreased serum ALT enzyme levels, quantitative gene expression of TGF-β
, collagen-1α, and IL-1β

Decreased the collagen deposition and improvement of the 
histopathological picture

Antifibrotic, anti-inflammatory, and proangiogenic effects

[122] 2019 CCl4 Rats Tail vein Cell free therapy: hBM-MSCs-Ex Inhibition of Wnt/β-catenin signaling (PPARγ, Wnt10b, Wnt3a, β-catenin)

Downregulation of downstream gene expression (cyclin D1, WISP1)



Al-Dhamin Z et al. BM-MSCs in liver fibrosis

WJG https://www.wjgnet.com 7460 December 21, 2020 Volume 26 Issue 47

[123] 2015 CCl4 Rats Intravenous Genetically modified BM-MSCs 
expressing TIMP-1-shRNA

Decreased TIMP-1 expression thereby regulating HSC survival

Decreased serum levels of ALT and AST, fibrotic areas, and collagens

Reduction of the fibrotic area

Restoration of the liver function

[124] 2020 CCl4 Mice Intraperitoneal injection MSCs expressing EPO Promoted cell viability and migration of BM-MSCs

Enhanced antibrotic efcacy with higher cell viability and stronger 
migration ability

Alleviated liver brosis

[125] 2015 BDL or CCl4 Mice Underneath the kidney 
capsule

Microencapsulated BM-MSCs Activated HSCs

Released antiapoptotic (IL-6, IGFBP-2) and anti-inflammatory (IL-1Ra) 
cytokines

Decreased mRNA levels of collagen type I

Increased levels of MMPs

[126] 2018 CCl4 Rats Tail vein Genetically modified BM-MSCs with 
human MMP-1

Biochemical parameters and hepatic architecture improved

Decreased collagen content

Suppressed activation of HSCs

Improvement of both liver injury and fibrosis

[127] 2016 CCl4 Rats Tail vein Human urokinase-type plasminogen 
activator gene-modified BM-MSCs

Decreased serum levels of ALT, AST, total bilirubin, hyaluronic acid, 
laminin, and procollagen type III

Genetically modified BM-MSCs with 
human urokinase-type plasminogen 
activator

Increased levels of serum albumin

Downregulated both protein and mRNA expression of β-catenin, Wnt4, and 
Wnt5a

Decreased the Wnt signaling pathway

Decreased mRNA and protein expression of molecules involved in Wnt 
signaling thus working as an antifibrotic

[128] 2015 TAA Mice Tail vein Genetically modified BM-MSCs, MSCs 
engineered to produce IGF-I

Enhanced the effects of MSC transplantation

Decreased inflammatory responses
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Decreased collagen deposition

Increased growth factor like-I, IGF-I, and HGF

Reduced fibrogenesis and the stimulation of hepatocellular proliferation

[129] 2017 CCl4, BDL Mice Intraperitoneal BM-MSCs triggered by sphingosine 1-
phosphate

Increased HuR expression and cytoplasmic localization

S1P-induced migration of HBM-MSCs via S1PR3 and HuR

HuR regulated S1PR3 mRNA expression by binding with S1PR3 mRNA 3’ 
UTR

S1P-induced HuR phosphorylation and cytoplasmic translocation via S1PR3

HuR regulated S1PR3 expression by competing with miR-30e

ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; BDL: Bile duct ligation; BM-MSCs: Bone marrow-mesenchymal stem cells; CCl4: Carbon tetrachloride; EPO: Erythropoietin; hBM-MSCs-Ex: Human BM-MSCs-exomes; 
HBM: Human bone marrow; HGF: Hepatocyte growth factor; HSCs: Hepatic stellate cells; IGF-I: Insulin growth factor like-I; IL: Interleukin; MMPs: Matrix metalloproteinases; MSCs: Mesenchymal stem cells; MT: Melatonin; MVs: 
Microvesicles; PGE2: Prostaglandin E2; PPARγ: Peroxisome proliferator-activated receptor-gamma; PTGS2: Prostaglandin-endoperoxide synthase-2; S1P: Sphingosine 1-phosphate; S1PR3: Sphingosine-1-phosphate receptor 3; TGF: 
Transforming growth factor; TIMP-1: Tissue inhibitor of metalloproteases 1; UTR: Untranslated region; VEGF: Vascular endothelial growth factor; WISP1: Wnt-1-induced secreted protein 1.

overall strategies used have a positive therapeutic impact on liver fibrosis. Notable 
among the various strategies are preconditioning using autophagy regulation, 
microencapsulation, and preconditioned media.

BM-MSCs conditioned medium preparation provided a predominant therapeutic 
role in experimentally-induced chronic liver fibrosis as demonstrated by improved 
morphological, immunohistochemical, and biochemical measures[118]. Still, future 
studies should be carried out to further delineate the mechanisms underlying their 
action.

Cell-free therapy with BM-MSC-MVs and human BM-MSCs-Ex is another method 
by which the healing effect is enhanced as demonstrated by human BM-MSCs-Ex 
providing a meaningfully greater therapeutic effect than the human BM-MSCs. In fact, 
the human BM-MSCs-Ex effectively alleviated liver fibrosis as evidenced by reduced 
collagen accumulation, inhibition of inflammation, enhanced liver functionality, and 
increased hepatocyte regeneration. Besides, the administration of hBM-MSCs-Ex 
reduced liver fibrosis via inhibition of Wnt/β-catenin signaling to prevent HSC 
activation. Therefore, the use of hBM-MSCs-Ex presents a new and promising 
therapeutic strategy for hepatic disease in the clinical setting[122].

Adding to that, genetically-modified BM-MSCs expressing TIMP-1-short hairpin 
RNA or with human MMP-1 boosted the original effects of BM-MSCs through a 
mechanism that involved enhancing the antifibrotic potential as well as the anti-
inflammatory and proangiogenic effects. Although BM-MSC administration reduced 
liver fibrosis, transplantation of the BM-MSCs/MMP-1 enhanced the reduction in liver 
fibrosis to a greater extent. Therapy with BMSCs/MMP-1 also reduced collagen 
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content and suppressed activation of HSCs in the fibrotic liver, leading to the 
subsequent improvement of liver injury and fibrosis[126].

In other cases, such strategies as preconditioning with melatonin enhanced the 
homing and transplantation of the BM-MSCs. Remarkably, melatonin-BM-MSCs 
showed better therapeutic outcomes, likely facilitated through a mechanism involving 
the improvement of cell homing and better maintenance of the balance between matrix 
degradation and accumulating factors that had a high ability to home into the injured 
liver. This could be related to a higher percentage of glycogen storage but a lower 
percentage of collagen and lipid accumulation. On the other hand, this could be due to 
lower expressions of TGF-β1 and Bax, and lower content of serum alanine 
aminotransferase but higher expressions of MMPs and Bcl2[120].

Simultaneously, other strategies, such as MSCs expressing EPO promoted cell 
viability and strengthened their migration ability to damaged cells. As an example, 
compared to BM-MSCs EPO-MSC treatment was found to promote cell viability and 
migration of the BM-MSCs and to enhance the antibrotic efcacy without inducing 
apoptosis[124]. This finding supported improving the efciency of MSC transplantation 
as a potential therapeutic strategy for liver brosis.

Overall, each strategy tackles specific aspects that can enhance the therapeutic 
potential of BM-MSCs, but there are no strategies that tackle several aspects at the 
same time. Therefore, there is a need to create strategies that can affect various aspects 
and mechanisms related to improving the potential of BM-MSCs as a therapy for liver 
fibrosis. Moreover, these strategies need to have sufficient safety, proficiency, and 
productivity features. It is also important to mention a deficiency in all types of 
strategies to enhance the therapy’s efficiency. Because there are many undiscovered 
and unclear aspects of the therapeutic mechanism of BM-MSCs for liver fibrosis, there 
is also room for new strategies to be discovered and researched.

Limitations and further study
This review successfully studied the recent advances in therapeutic efficiency of BM-
MSCs for liver fibrosis, focusing on the preclinical in vivo experiments while 
mentioning the gaps that still exist within the field. However, this review remains 
limited because it focused mostly on preclinical studies performed on animals; 
although these studies targeted many aspects of the topic, different targets still need to 
be addressed. This review did not address clinical studies, but it is crucial to address 
all the concerns regarding long-term follow-up exams for humans. Only then may we 
draw solid conclusions on the therapeutic effects of BM-MSC transplantation on liver 
fibrosis. Ultimately, such additional work will also help to further improve the 
therapeutic effects of BM-MSC transplantation for liver fibrosis, enhancing the quality 
of life and prolonging patient survival time with liver fibrosis.

CONCLUSION
Various therapeutic methods are used to alleviate liver fibrosis; BM-MSCs are a 
promising therapy being investigated in vivo. This type of therapy has diverse 
advantages, including anti-inflammatory, self-renewal, and multipotency abilities. 
Thus, more and more studies are investigating the anti-inflammatory and 
immunomodulatory effects of BM-MSCs and focusing on comparing them with other 
stem cell sources and treatments to identify and develop an optimal treatment for the 
regression of liver fibrosis. Ongoing studies are focused on determining the different 
factors affecting the therapeutic efficiency of BM-MSCs, such as the transplantation 
route, where the portal vein route may be the optimum choice for restoring liver 
function in liver fibrosis, and the strategies used, including BM-MSC-based cell-free 
therapy and preconditioned, tissue-engineered, and genetic-engineered BM-MSC 
transplantation. These strategies have thus far presented promising results, but more 
research and experiments need to be done to find the optimum and most efficient 
strategy (or strategies) to enhance the therapeutic effect and be elevated to clinical 
trials.
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