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Abstract
BACKGROUND 
Liver fibrosis progressing to liver cirrhosis and hepatic carcinoma is very common 
and causes more than one million deaths annually. Fibrosis develops from 
recurrent liver injury but the molecular mechanisms are not fully understood. 
Recently, the TLR4-MyD88 signaling pathway has been reported to contribute to 
fibrosis. Extracellular histones are ligands of TLR4 but their roles in liver fibrosis 
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AIM 
To investigate the roles and potential mechanisms of extracellular histones in liver 
fibrosis.

METHODS 
In vitro, LX2 human hepatic stellate cells (HSCs) were treated with histones in the 
presence or absence of non-anticoagulant heparin (NAHP) for neutralizing 
histones or TLR4-blocking antibody. The resultant cellular expression of collagen I 
was detected using western blotting and immunofluorescent staining. In vivo, the 
CCl4-induced liver fibrosis model was generated in male 6-week-old ICR mice and 
in TLR4 or MyD88 knockout and parental mice. Circulating histones were 
detected and the effect of NAHP was evaluated.

RESULTS 
Extracellular histones strongly stimulated LX2 cells to produce collagen I. 
Histone-enhanced collagen expression was significantly reduced by NAHP and 
TLR4-blocking antibody. In CCl4-treated wild type mice, circulating histones were 
dramatically increased and maintained high levels during the duration of fibrosis-
induction. Injection of NAHP not only reduced alanine aminotransferase and liver 
injury scores, but also significantly reduced fibrogenesis. Since the TLR4-blocking 
antibody reduced histone-enhanced collagen I production in HSC, the CCl4 model 
with TLR4 and MyD88 knockout mice was used to demonstrate the roles of the 
TLR4-MyD88 signaling pathway in CCl4-induced liver fibrosis. The levels of liver 
fibrosis were indeed significantly reduced in knockout mice compared to wild 
type parental mice.

CONCLUSION 
Extracellular histones potentially enhance fibrogenesis via the TLR4–MyD88 
signaling pathway and NAHP has therapeutic potential by detoxifying 
extracellular histones.

Key Words: Liver fibrosis; Extracellular histones; Non-anticoagulant heparin; TLR4; 
MyD88; CCl4

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: This study fills the gap between recurrent liver injury and liver fibrosis. When 
liver cells die, histones are released. High levels of extracellular histones not only 
cause secondary liver injury, but also activate the TLR4-MyD88 signaling pathway to 
enhance collagen I production and liver fibrosis. Binding of non-anticoagulant heparin 
(NAHP) to extracellular histones reduces histone toxicity, alleviates liver injury, and 
prevents histones from activating the TLR4-MyD88 signaling pathway. These results 
may explain why NAHP reduces liver fibrosis in this animal model, although further 
investigations are required.

Citation: Wang Z, Cheng ZX, Abrams ST, Lin ZQ, Yates E, Yu Q, Yu WP, Chen PS, Toh CH, 
Wang GZ. Extracellular histones stimulate collagen expression in vitro and promote liver 
fibrogenesis in a mouse model via the TLR4-MyD88 signaling pathway. World J Gastroenterol 
2020; 26(47): 7513-7527
URL: https://www.wjgnet.com/1007-9327/full/v26/i47/7513.htm
DOI: https://dx.doi.org/10.3748/wjg.v26.i47.7513

INTRODUCTION
Liver fibrosis progression to liver cirrhosis and hepatocellular carcinoma is common, 
in China due to high incidence of hepatitis B and in western countries due to alcohol 
consumption and hepatitis C[1-3]. In 2017, liver cirrhosis caused more than 1.3 million 
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deaths globally, and constituted 2.4% of total deaths[4]. However, elucidating the 
underlying molecular mechanism and the development of specific therapies for 
fibrosis and cirrhosis have progressed slowly and significant discoveries in this area 
are urgently needed.

Liver fibrosis is a natural wound healing response to chronic liver injury, which has 
many common causes, including viral infection, alcohol abuse, autoimmune diseases, 
drug toxicity, schistosomiasis, and metabolic diseases[5]. This process can be easily 
reconstituted in animals by administering chemicals toxic to hepatic cells, including 
CCl4, thioacetamide, and dimethyl or diethyl nitrosamine[6-8]. Bile duct ligation (BDL) 
and animal models mimicking specific chronic liver diseases are also used[6]. CCl4 is 
most commonly used to study the underlying molecular mechanisms and evaluate 
therapeutic reagents for inhibiting liver fibrosis in animals[6]. CCl4 directly damages 
hepatocytes by ligation of CCl3 to plasma, lysosomal and mitochondrial membranes, 
as well as to highly reactive free radical metabolites[9]. A single dose of CCl4 causes 
centrizonal necrosis and steatosis, with recurrent administration leading to liver 
fibrosis[10].

The pathological feature of liver fibrosis is the extensive deposition of extracellular 
collagen produced by myofibroblasts[1]. In the healthy liver, no myofibroblasts are 
present but they accumulate in the damaged liver and play a pivotal role in 
fibrogenesis[11]. Myofibroblasts are derived from different types of cells. Hepatic 
stellate cells (HSCs) in the perisinusoidal Disse space are recognized as the most 
important source[12]. Bone marrow also contributes to both macrophages and to HSCs 
within the injured liver[13]. Recurrent injury, chronic inflammation and other chronic 
stimuli can cause HSCs to evolve into a myofibroblast-like phenotype and produce an 
extracellular matrix[14]. The myofibroblast-like phenotype also develops and expresses 
α-smooth muscle actin (α-SMA) in vitro when quiescent HSCs were isolated and 
cultured over a period of 5-10 d[15].

HSCs activated both in vivo and in vitro express TLR4, CD14 and MD2, therefore, 
lipopolysaccharide (LPS) is able to assemble a complex to activate TLR4 on HSCs[16]. 
TLR4 signals via MyD88-dependent and TRIF-dependent pathways that can activate 
fibroblasts, to promote fibrogenesis in numerous organs, including the liver, lungs, 
kidneys, heart and skin[17-20]. Since circulating LPS is produced primarily in Gram-
negative bacterial infections[21], ligands that activate TLR4 in chronic liver injury 
without concomitant bacterial infection are yet to be identified. Increased intestinal 
permeability allows LPS to enter the circulation in the later stages of liver cirrhosis, but 
this leakage has not been demonstrated in the early stages of fibrogenesis[22].

Liver cell injury and death also release damage-associated molecular patterns 
(DAMPs) that may initiate the wound-repair process[23]. Extracellular histones, the 
most abundant DAMPs, have gained much attention in recent years, as they play key 
roles in many pathological processes and human diseases[24-35]. Histones are well-
conserved proteins that are essential for DNA packaging and gene regulation[36]. 
During tissue damage and cell death, nuclear chromatin is cleaved into nucleosomes 
that are released extracellularly[37] and further degraded into individual histones[38]. 
Although histones are rapidly cleared by the liver[39] and rarely detected in 
blood[25,26,31,32], liver cell death is likely to release histones locally[40-43], which stimulate 
adjacent cells, including HSCs. Histones can activate TLR2, TLR4 and TLR9[24,40,43-46] in 
the early stage of chronic liver injury and fibrogenesis. Therefore, TLR4 activation is 
more likely to be maintained by extracellular histones rather than by LPS.

In this study, we investigated the roles and mechanisms of extracellular histones in 
liver fibrogenesis. Circulating histone levels were measured in a CCl4-induced mouse 
liver fibrosis model. Extracellular histones were used to stimulate human HSC cell 
lines to demonstrate their direct effect on collagen I production. In addition, we used 
non-anticoagulant heparin (NAHP) to neutralize circulating histones in both the cell 
culture system and mouse liver fibrosis model to explore the role of anti-histone 
therapy in reducing collagen I production and fibrosis. To clarify the potential 
molecular mechanisms, we used a TLR4-neutralizing antibody to block histone-
enhanced collagen production by an HSC cell line and compared the fibrogenesis in 
TLR4 and MyD88 knockout mice with their wild-type (WT) parental mice in response 
to CCl4 treatment.

MATERIALS AND METHODS
Cell culture
LX2 cells, a human HSC cell line, were purchased from Shanghai Meixuan Biological 
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Sciences and Technology Ltd. and routinely cultured.

Histone treatment
After optimization of the doses and times, 0-20 μg/mL calf thymus histones (Merck, 
Armstadt, Germany) were added to cell culture medium to treat the LX2 cells. 
Medium with different concentrations of histones was changed every 48 h. On day 6, 
cell supernatant and lysates were collected for western blotting.

TLR4-neutralizing antibody and NAHP treatment
The neutralizing antibody, PAb-hTLR4, was purchased from Invitrogen (Carlsbad, 
CA, United States). LX2 cells were treated with 5 μg/mL histones with and without 5 
μg/mL antibody. NAHP was synthesized and characterized by Dr. Yates at the 
University of Liverpool. NAHP (25 and 50 μg/mL) was used to treat LX2 cells together 
with 5 μg/mL histones. The cell culture medium was changed every 48 h. The cell 
lysates of the treated LX2 cells were collected on day 6.

Western blotting
One milliliter of cell supernatant was collected and proteins were precipitated using 
ice-cold acetone and suspended in 50 μL clear lysis buffer [1% (w/v) sodium dodecyl 
sulfate (SDS), 10% (v/v) glycerol, 120 mmol/L Tris–HCl, 25 mmol/L EDTA, pH 6.8]. 
Cells were washed with phosphate-buffered saline (PBS) three times and lysed using 
clear lysis buffer. Protein concentrations were determined using Bio-Rad protein assay 
kit II (Bio-Rad, Watford, United Kingdom). Both supernatant and cell lysates (20 μg 
protein) were subjected to SDS-PAGE and electrically transferred onto polyvinylidene 
difluoride (PVDF) membranes (Millipore, Watford, United Kingdom). After blocking 
with 5% (w/v) dried milk in TBST buffer [50 mmol/L Tris-HCl, pH 7.6; 150 mmol/L 
NaCl, 0.1% (v/v) Tween-20], the membranes were incubated with the sheep anti-
human collagen I α1 antibody (1:2000, R&D Systems, Abingdon, United Kingdom) 
overnight at 4 °C. After extensive washings with TBST, the membranes were incubated 
with rabbit anti-sheep IgG-horseradish peroxidase (HRP, 1:10000, Santa Cruz 
Biotechnology, Dallas, TX, United States) for 1 h at room temperature. The protein 
bands were visualized using enhanced chemiluminescence (ECL, Millipore). For β-
actin, primary antibody was purchased from Abcam (Abcam, Cambridge, United 
Kingdom) and anti-rabbit IgG-HRP was purchased from Santa Cruz Biotechnology. 
The band density was analyzed using Image J software and then the ratios of collagen 
I/β-actin were calculated.

Immunofluorescent staining
LX2 cells were seeded in eight-well chamber slides and treated with or without 5 
μg/mL histones for 6 d. The cells were fixed with 4% (w/v) paraformaldehyde for 10 
min and permeabilized with PBS + 1% (v/v) Triton X-100 for 10 min. After blocking 
with 5% (w/v) dried milk + 2% (w/v) bovine serum albumin in PBS, the cells were 
incubated with sheep anti-human collagen I α1 antibody (1:200) or rabbit-anti-α-SMA 
antibody (1:200, Proteintech, Rosemont, IL, United States) at 4 °C overnight. After 
extensive washing, the cells were incubated with anti-sheep-fluorescein isothiocyanate 
(FITC, Abcam, 1:2000) or anti-rabbit-FITC (Abcam, 1:2000) at room temperature for 45 
min. Following extensive washing, the slides were mounted on coverslips using 
mounting medium and antifade (Thermo Fisher Scientific, Renfrew, United Kingdom). 
The fluorescent images were visualized using an LSM-710 confocal microscope 
(excitation: 488 nm and emission: 512 nm).

Animals
Mice were housed and used in sterile conditions at the Research Centre of Genetically 
Modified Mice, Southeast University, Nanjing, China. The mice were kept in a 
temperature and humidity controlled laminar flow room with an artificial 10-14 h 
light/dark cycle. All mice had free access to water. Sample sizes were calculated using 
power calculation based on our previous data and experience. All procedures were 
performed according to State laws and monitored by local inspectors, and approved 
by the Animal Research Ethics Committee at the Medical School of the Southeast 
University. Wang Z and Cheng ZX hold a full animal license for use of mice (Jiangsu 
Province, No. 2151981 and No. 2131272).

CCl4 model in ICR mice
Healthy male, 6-week-old ICR mice were purchased from Yangzhou University 
Animal Experiment Centre and divided randomly into three groups after blood 
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sampling: (1) 5 μL/g body weight of 25% (w/v) CCl4 in olive oil injected 
intraperitoneally (i.p.), twice per week; (2) CCl4 + NAHP: On the day of CCl4 injection, 
8 μL/g body weight NAHP (4 mg/mL in saline, filtered for sterility) were injected 
subcutaneously (s.c.) every 8 h. On the remaining days, 8 μL/g body weight NAHP 
was injected s.c. every 12 h. Both groups of mice were monitored every day and 
euthanized by neck dislocation at 4, 8 and 24 h (3 mice per group at each time point) 
after the first dose of CCl4 each week to collect the blood and organs for further 
analysis (Supplementary Figure 1); and (3) Saline was injected i.p. and NAHP injected 
s.c. as a control; nine mice in total were euthanized by the end of 4 wk. No mice died 
before euthanization.

CCl4 model using genetically modified mice
C57BL/6JGpt (WT), TLR-4-KO (B6/JGpt-Tlr4em1Cd/Gpt) and MyD88-KO(B6/JGpt-
Myd88em1Cd/Gpt) mice were purchased from Gempharmatech (Nanjing, China). Each 
type of mouse was divided into three groups as above after blood sampling. Eight 
mice in each group were treated with 5 μL/g body weight of 25% (w/v) CCl4 in olive 
oil i.p., twice per week for 4 wk. All mice were euthanized by neck dislocation and 
blood and organs were collected for further analysis (Supplementary Figure 2). No 
mice died before euthanization.

Tissue processing and staining
In our pathology laboratory, organ tissues were routinely processed and 4-μm sections 
were prepared. Staining with hematoxylin and eosin (H&E) and Sirius red was 
routinely performed and α-SMA was detected by immunohistochemical staining using 
anti-α-SMA (Proteintech), as described previously[47]. Liver histological grading was as 
previously reported[48] and as performed by two investigators in a blinded manner. 
The staining areas of α-SMA and fibrosis were quantified using Image J software.

Measurement of blood histones and alanine aminotransferase
Venous blood was collected with citrate anticoagulant and immediately centrifuged at 
1500 × g for 25 min at room temperature. Plasma was collected and alanine 
aminotransferase (ALT) levels were measured by an automatic blood biochemical 
analyzer in the clinical laboratory and histone levels were measured by western 
blotting using anti-histone H3 (Abcam), as described previously[32]. Plasma and histone 
H3 protein (New England Biolabs, Herts, United Kingdom) as standard were 
subjected to SDS-PAGE and electrically transferred onto PVDF membranes (Millipore). 
After blocking, the blot was probed by anti-histone H3 (Abcam, 1:2000) at 4 °C 
overnight. After extensive washings, HRP-conjugated secondary antibody (Santa Cruz 
Biotechnology, 1:10000) was incubated at room temperature for 1 h. After extensive 
washing in TBST, ECL (Millipore) was used to visualize the protein bands, which were 
quantified against histone H3 protein standard to obtain the concentration of histone 
H3 in plasma using Image J software. The total histones were estimated based on the 
molar ratio of H3 in the cell nuclei.

Measurement of hydroxyproline in liver tissues
Part of the liver from mice was washed with saline and frozen at -80 °C. Two hundred 
and fifty milligrams of frozen liver tissues were ground using a low temperature 
Tissuelyser (Shanghai Jingxin Industrial Development Co. Ltd.) and hydroxyproline 
was measured using a colorimetric kit from Beijing Solarbio Science & Technology Co. 
Ltd.

Statistical analysis
Continuous variables are presented as mean ± standard deviation (SD) or standard 
error (SE). Differences in means between any two groups were compared using 
unpaired Student’s t test. Differences in means between more than two groups were 
compared using analysis of variance followed by Student-Newman-Keuls test. P < 0.05 
was considered significant. Statistical analysis was performed using SPSS version 25.

RESULTS
High levels of circulating histones are detected in mice treated with CCl4

CCl4 is a hepatotoxin that directly damages hepatocytes. CCl4 administration in mice is 
the most commonly used animal model to generate liver fibrosis, but it is not clear 

https://f6publishing.blob.core.windows.net/acc76f97-dcf6-4d6f-a87d-e1a6d0bc6de1/WJG-26-7513-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/acc76f97-dcf6-4d6f-a87d-e1a6d0bc6de1/WJG-26-7513-supplementary-material.pdf
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whether high levels of histones actually exist under these conditions in the circulation. 
Circulating histone H3 was detected by western blotting and the total circulating 
histone levels were calculated based on these levels of H3, as described previously[32]. 
Histone H3 was detectable at 4 h after the first administration of CCl4 alone or CCl4 + 
NAHP (Figure 1A and B) at week 1. At week 4, before or 24 h after the last dose of 
CCl4, H3 was also detectable (Figure 1C). Total circulating histones reached peak 
values (around 200 μg/mL) between 8 and 24 h after CCl4 was administered and then 
gradually reduced to low levels (10-60 μg/mL) prior to the subsequent dose of CCl4 
(Figure 1D). The mean ± SD of total histones during each week from 8 and 24 h after 
CCl4 injection is shown in Figure 1E. In contrast, histone H3 was barely detectable in 
the control group treated with saline + NAHP (data not shown). To monitor liver 
injury, blood ALT level was measured using a clinical biochemical analyzer. The mean 
± SD from nine mice on day 28 was compared, and NAHP alone did not increase ALT 
levels, while CCl4 caused a significant elevation in circulating ALT (approximately 10-
fold), but this elevation was significantly reduced by NAHP (approximately 40% 
reduction) (Figure 1F). Liver injury scores of H&E-stained liver sections were also 
significantly reduced by NAHP treatment (Figure 1G). These observations indicated 
that NAHP treatment reduced liver injury.

Extracellular histones stimulate HSCs to increase production of collagen I and α-
SMA
Extracellular histones are TLR ligands, including TLR2 and TLR4[40,45]; both of which 
signal via the downstream MyD88 pathway. During liver fibrogenesis, HSCs express 
TLR4 and its signaling enhances activation of fibroblasts[17]. We directly treated LX2 
cells with calf thymus histones and found that histone concentrations between 2 and 
10 μg/mL significantly increased collagen I production. Histones (5 μg/mL) incubated 
for 6 d were the optimal condition. This increased collagen I released into the culture 
media by nearly 2.5-fold and increased collagen I expression by 2.7-fold in cell lysates 
(Figure 2A and B). Concentrations of ≥ 20 μg/mL histones caused cell death (data not 
shown). Using immunofluorescent staining, we found that LX2 cells treated with 5 
μg/mL histones were positively stained with anti-collagen I and anti-α-SMA 
compared to LX2 cells treated without histones (Figure 2C), supporting that LX2 cells 
were activated by histone treatment and induced collagen production.

NAHP reduces histone-enhanced collagen production in LX2 cells and liver fibrosis 
induced by CCl4

NAHP has been demonstrated to bind histones and block their cytotoxicity[26,32,49]. We 
added NAHP (25 and 50 μg/mL) to culture medium to neutralize 5 μg/mL calf 
thymus histones (Histones: NAHP approximately 1:2 and 1:4 molar ratio), and found 
that NAHP inhibited histone-enhanced collagen I synthesis in LX2 cells (Figure 3A 
and B). In H&E-stained liver sections from the CCl4-induced mouse liver fibrosis 
model, CCl4 caused extensive hepatocytic damage compared to controls (Figure 3C), 
including hepatocyte swelling, vacuole formation, necrosis, Kupffer cell proliferation 
and immune cell infiltration (Figure 3C). NAHP intervention significantly reduced 
CCl4-induced hepatocyte vacuolization, necrosis and immune cell infiltration 
(Figure 3C). Immunohistochemical staining with anti-α-SMA showed a larger area of 
positive staining in CCl4-treated mice compared to controls (Figure 3C). In NAHP-
treated mice, the CCl4-induced α-SMA staining was reduced (Figure 3C). Using Sirius 
red staining to visualize collagen, only the vascular walls were stained positively in 
controls (Figure 3C). In contrast, large areas of positive staining appeared in CCl4-
treated mice (Figure 3C), which were reduced by NAHP intervention (Figure 3C). 
Using Image J software to quantify the areas of positive staining for α-SMA 
(Figure 3D) and collagen (Figure 3E), we demonstrated that NAHP significantly 
reduced both α-SMA and collagen production by 50%-70%. Using a colorimetric assay, 
hydroxyproline in liver tissues was detected and NAHP was shown to significantly 
reduce CCl4-induced hydroxyproline elevation by about 40% (Figure 3F).

TLR4 is involved in histone-enhanced collagen production in LX2 cells and in liver 
fibrosis induced by CCl4

To understand how histones are involved in liver fibrosis, we specifically tested if 
histone-activated TLR/MyD88 signaling played a major role in this process. This 
hypothesis was based on previous reports that TLR4 and MyD88 were involved in 
fibrogenesis[17,19]. We used human TLR4-neutralizing antibodies to treat LX2 cells and 
found that histone-enhanced collagen I production was significantly reduced 
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Figure 1 Circulating histones are elevated in ICR mice treated with CCl4. Typical western blots of histone H3 standard and histone H3 in plasma from 
mice treated with the first dose of CCl4 (A) and CCl4 + non-anticoagulant heparin (NAHP) (B), and a typical H3 blot before and 24 h after the last dose of CCl4 (C); D: 
The mean ± SD of circulating histones at different time points, including 0 h (before the experiment), and 4, 8, 24, 48 and 84 h after first dose of CCl4 (orange) and 
CCl4 + NAHP (blue) of each week are presented. ANOVA test, aP < 0.05 compared to time 0; E: The mean ± SD of peak circulating histones (8 and 24 h after first 
CCl4 injection of each week). ANOVA test, aP < 0.05 compared to time 0 (before first injection). The mean ± SE of blood alanine aminotransferase levels (F) and liver 
injury scores (G) from nine mice in each group following 4 wk of treatment. ANOVA test, aP < 0.05 compared to mice without treatment (before). bP < 0.05 compared 
to CCl4 group. ANOVA: Analysis of variance; NAHP: Non-anticoagulant heparin; ALT: Alanine aminotransferase.

(Figure 4A). To confirm that the TLR4-MyD88 signaling pathway was involved in CCl4

-induced liver fibrosis, TLR4 and MyD88 gene knockout mice were used. The extent of 
fibrosis was significantly less in both TLR4-/- and MyD88-/- mice than in WT mice 
treated with CCl4 (Figure 4B and C). These results are consistent with a previous study 
that demonstrated TLR4 and MyD88 deficiency reduced liver fibrosis in a mouse BDL 
model[50]. These findings strongly suggest that extracellular histones activate the TLR4-
MyD88 signaling pathway to enhance collagen I production and liver fibrosis. 
However, further investigation is required to substantiate this point and the 
downstream pathways.

DISCUSSION
We proposed a novel concept that extracellular histones act as pathogenic factors in 
liver fibrosis. High levels of circulating histones in CCl4-treated mice were detected 
from 4 h after the first administration of CCl4 and remained high during fibrosis 
induction. In vitro, extracellular histones directly enhanced collagen I production in 
LX2 (HSC) cells by up to 2.7-fold. When NAHP was used to neutralize histones, it 
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Figure 2 Extracellular histones induced collagen I and α-smooth muscle actin production in LX2 cells. A: Typical western blots of collagen I in 
medium (upper panel) and lysates (middle panel) of LX2 cells treated with different concentrations of histones at day 6. Lower panel: β-actin in the cell lysates; B: The 
mean ± SD of the relative percentages of collagen/β-actin ratios with untreated LX2 cells set at 100% from five independent experiments. Analysis of variance test, aP 
< 0.05 compared to untreated cells; C: Immunofluorescent staining of LX2 cells with anti-collagen I and anti-α- smooth muscle actin (SMA) antibodies. Control: Cells 
were treated with culture medium without histones for 6 d. Histones: Cells were treated with culture medium + 5 μg/mL histones. Typical images are shown. White 
arrows indicate staining for collagen I, orange arrows indicate staining for α-SMA. Bar = 50 m. α-SMA: α-smooth muscle actin.

significantly reduced histone-enhanced collagen I production in LX2 cells and 
significantly reduced fibrosis in CCl4-treated mice. When TLR4 neutralizing antibody 
was used, histone-enhanced collagen I production in LX2 cells was also reduced. 
When CCl4 was injected into TLR4 or MyD88 knockout mice, they showed 
significantly less fibrosis compared to WT mice, suggesting that both TLR4 and 
MyD88 were involved in histone-enhanced fibrosis.

TLRs not only recognize pathogen-associated molecular patterns from various 
microbial infections, but also respond to DAMPs from host cell damage[51]. TLR4 
recognizes LPS from Gram-negative bacteria as well as histones released following cell 
death. TLR4 can activate nuclear factor-κB via MyD88[40,44,52,53]. The TLR4-MyD88 
pathway has been demonstrated to promote liver fibrosis in a mouse BDL model by 
enhancing transforming growth factor (TGF)-β signaling[50]. LPS as a TLR4 ligand was 
elevated 3-6-fold in this model likely due to obstruction of bile ducts and subsequent 
bacterial infection[50]. However, circulating LPS concentration did not increase in the 
CCl4 mouse model[54]. Without infection, LPS from digestive tracts enters the 
circulation in the late stage of fibrosis or cirrhosis, while the wound-healing process is 
initiated immediately after injury. Therefore, LPS is unlikely to be an initiating factor 
in fibrosis. Extracellular histones are newly identified TLR4 ligands and are most likely 
to mediate the initial stage of fibrogenesis by activating the TLR4-MyD88 signaling 
pathway[40,44]. However, the downstream signaling pathways requires further 
experimental clarification. In addition, fibrogenesis not only involves collagen 
production but also many molecular and cellular mechanisms[55]. The co-operation of 
the TLR4-MyD88 pathway with other signaling pathways, such as TGF-β signaling 
and inflammatory response, also requires further investigation to determine their 
relative contributions to liver fibrosis.

The level of extracellular histones required for stimulating LX2 (HSC) cells is 2-10 
μg/mL, which is lower than that detected in the circulation of CCl4-treated mice. All 
groups, including ICR mice treated with CCl4 and CCl4 + NAHP, and C57BL/6, 
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Figure 3 Effect of anti-histone reagent, non-anticoagulant heparin, on histone-enhanced collagen I production in LX2 cells and CCl4-
induced fibrosis in mice. A: Typical western blots of collagen I in LX2 cells treated with histones or histones + non-anticoagulant heparin (NAHP). Beta-actin is 
shown as a loading reference; B: The mean ± SD of relative percentage of collagen/actin ratios in untreated LX-2 cells set at 100% from three independent 
experiments. ANOVA test, aP < 0.05 compared to untreated cells. bP < 0.05 compared to cells treated with 5 μg/mL histones; C: Typical images of stained liver 
sections (hematoxylin and eosin staining: a-c; immunohistochemical staining with anti-α-SMA: d-f; and Sirius red staining: g-i) from normal mice (a, d, g); mice treated 
with CCl4 (b, e, h) and mice treated with CCl4 + NAHP (CCl4 + H) (c, f, i). Arrows in b and c: Black indicate hepatocyte swelling and white indicate necrosis and 
immune cell infiltration. Arrows in e and f: Indicate staining for smooth muscle actin. Arrows in h and i: Indicate collagen deposition. The mean ± SD of percentage of 
areas of staining for α-SMA (D) and Sirius red staining for collagen (E) (nine mice per group, and six randomly selected sections per mouse). ANOVA test, aP < 0.05 
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compared to controls. bP < 0.05 compared to CCl4 alone; F: The mean ± SD of hydroxyproline levels in liver tissues from nine mice per group. ANOVA test, aP < 0.05 
compared to controls. bP < 0.05 compared to CCl4 alone. α-SMA: α-smooth muscle actin; ANOVA: Analysis of variance; NAHP: Non-anticoagulant heparin.

Figure 4 TLR4 is involved in histone-enhanced collagen I production and CCl4-induced mouse liver fibrosis. A: LX2 cells were treated with 5 
μg/mL histones (Hist) in the presence or absence of TLR4 neutralizing antibody (TLR4i). The mean ± SD of the relative percentage of collagen Ι/β-actin ratios are 
presented with control (UT) set at 100% from three independent experiments. ANOVA test, aP < 0.05 compared to UT. bP < 0.05 compared to histone alone; B: 
Typical images of Sirius red staining of liver section from untreated wt C57BL/6j mice (a), CCl4-treated wt  mice (b), and TLR4 and MyD88 knockout mice; C: The 
mean ± SD of stained areas of liver sections from untreated wt mice (UT), CCl4-treated wt mice (WT), CCl4-treated TLR4-/- and MyD88-/- mice. Eight mice were in 
each group and six sections from each mouse were analyses. ANOVA test, aP < 0.05 compared to untreated wt mice (UT). bP < 0.05 compared to CCl4-treated wt 
mice. ANOVA: Analysis of variance; wt: Wild type; UT: Control.

TLR4-/- and MyD88-/- mice treated with CCl4, had comparable levels of peak circulating 
histones (Supplementary Figure 3). This is due to the severe and extensive damage to 
hepatocytes caused by the radical CCl3, a metabolite of CCl4. The highest levels of 
histones detected after CCl4 administration are comparable to those we have detected 
in critical illnesses[26,31,32] and are most likely able to cause further liver injury[56]. 
However, plasma can neutralize histones at a concentration of up to 50 μg/mL in vivo 
or ex vivo, making cells more resistant than those in culture medium[32]. Additionally, 

https://f6publishing.blob.core.windows.net/acc76f97-dcf6-4d6f-a87d-e1a6d0bc6de1/WJG-26-7513-supplementary-material.pdf
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in our mouse model, the interval between two doses of CCl4 was 84 h; therefore, more 
than half of this period had histone levels around 50 μg/mL, which may be sufficient 
in maintaining TLR4 activation. Elevation of circulating histones was also found in 
many types of liver disease and the high levels of circulating histones could cause 
secondary liver injury[26,40,57]. Some human chronic liver diseases, such as chronic 
hepatitis B and C, and alcoholic and autoimmune liver diseases may have low but 
constant levels of circulating histones to serve as alarmins, which signal tissue injury 
and initiate repair processes. However, this needs further clinical investigation.

NAHP can bind to histones, but does not lower the levels of circulating histones. In 
the first week, NAHP seems to increase the levels of circulating histones in the CCl4-
treated mice and this result could be explained by its ability to reduce histone 
clearance, as we have observed previously[26]. NAHP binding to extracellular histones 
prevents their binding to the cell plasma membrane and other targets, such as 
prothrombin[32-34] and thereby detoxifies histones. In this study, we found that ALT and 
liver injury scores were significantly reduced by NAHP in CCl4-treated mice, strongly 
indicating that high levels of circulating histones are toxic to liver cells, which can be 
neutralized by NAHP. This protective effect may also contribute to the reduction of 
liver fibrosis.

Heparin was reported to reduce collagen fiber formation and liver fibrosis two 
decades ago[58-60]. Enzymatically depolymerized low-molecular-weight heparins were 
shown to inhibit CCl4-induced liver fibrosis by reducing tumor necrosis factor (TNF) α 
and interleukin (IL)-1β[61]. Although extracellular histones could enhance cytokine 
release, including IL-6, IL-1β, and TNFα[33,40], we suggest that the major mechanism for 
heparin-inhibited liver fibrosis is most likely due to its blocking the ability of 
extracellular histones to activate the TLR4-MyD88 signaling pathway. Heparin has 
been used as an anticoagulant for many decades and overdoses may cause bleeding, 
which can be avoided by using NAHP[26]. Additionally, NAHP alone appears to have 
no significant liver toxicity, but it significantly reduced histone-enhanced collagen I 
expression in LX2 cells and reduced CCl4-induced liver fibrosis. Therefore, this novel 
finding may help to advance translating this old discovery into clinical application.

CONCLUSION
This study has demonstrated that high levels of circulating histones exist in mice 
treated with CCl4 during induction of liver fibrosis. Treatment of LX2 cells with 
extracellular histones enhanced production of collagen I and α-SMA. Neutralizing 
histones using NAHP significantly reduced the production of collagen I and the extent 
of liver fibrosis. These data demonstrate that extracellular histones released after liver 
injury promote liver fibrosis. Blocking TLR4 receptor on LX2 cells reduced histone-
enhanced collagen I production and CCl4 induced less fibrosis in TLR4 and MyD88 
knockout mice than in WT parental mice, strongly suggesting that histone-enhanced 
collagen production is via the TLR4-MyD88 signaling pathway. However, there were a 
few limitations to this study. Firstly, in our in vivo study, no direct link was established 
between histones and their binding to TLR4. The relative contribution of the histone-
TLR4-MyD88 axis and downstream signaling pathways is still not clear. Secondly, 
only one type of animal model for liver fibrosis was used and it may not truly 
represent the fibrosis caused by different diseases. However, the results are sufficient 
to demonstrate the novel concept that extracellular histones are involved in liver 
fibrosis. Thirdly, liver fibrosis is a complicated process involving many types of cells 
and signaling pathways. Besides collagen overproduction, many other biological 
processes are also involved in liver fibrosis. High levels of extracellular histones may 
also affect many other types of cells besides HSCs and collagen production. The 
detailed roles of extracellular histones in the complex processes of fibrogenesis require 
extensive investigation. Similarly, NAHP may have other effects besides blocking 
histones to activate TLR4 and to injure hepatocytes. Therefore, further in vivo 
mechanistic studies and development of better reagents to target histones and 
potential signaling pathways may offer a better understanding of fibrogenesis and 
more effective therapies in the future.
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ARTICLE HIGHLIGHTS
Research background
Currently, the molecular mechanisms of liver fibrosis are not fully understood. 
Recurrent liver injury or inflammation initiates wound healing along with 
fibrogenesis. However, what initiates this process is not clear. When cells die, damage-
associated molecular patterns (DAMPs) are released. Histones are the most abundant 
DAMPs and are also ligands for TLR4, which in turn has been demonstrated to be 
involved in bile-duct-ligation-induced liver fibrosis. Lipopolysaccharide (LPS) is 
proposed to be a ligand for TLR4. Since recurrent liver injury does not naturally 
produce LPS but abundant extracellular histones, this study sought to investigate the 
potential roles of extracellular histones as TLR4 ligands in liver fibrosis.

Research motivation
Since our laboratory has been involved in studying the roles of DAMPs in critical 
illnesses, extracellular histones in liver fibrosis are of interest in terms of biological and 
clinical significance.

Research objectives
Our study aimed to clarify the roles of extracellular histones in fibrogenesis in vitro 
and in vivo.

Research methods
In our study, a hepatic stellate (HSC) cell line and animal models of liver fibrosis were 
used. Intervention studies with non-anticoagulant heparin (NAHP) to detoxify 
histones and TLR4-blocking antibodies to inhibit TLR4 were performed. In addition, 
TLR4 and MyD88 knockout mice were used to support the theory that the TLR4-
MyD88 signaling pathway is involved in liver fibrosis in the CCl4 mouse model.

Research results
High levels of circulating histones were present when fibrosis was induced by CCl4 in 
the mouse model. Extracellular histones stimulated HSC cells in vitro to increase 
production of collagen I and alpha-smooth muscle actin. NAHP inhibited histone-
enhanced collagen production in vitro, and reduce liver injury and fibrosis in vivo. 
TLR4 was involved in histone-enhanced collagen I production by HSC cells. In vivo, 
the TLR4-MyD88 signaling pathway mediated liver fibrosis, but whether circulating 
histones were the major activators of the pathway was not clear.

Research conclusions
Recurrent liver injury releases extracellular histones that potentially activate TLR4-
MyD88 signaling to promote liver fibrosis. The ability of NAHP to detoxify circulating 
histones has the potential for treatment of liver injury and prevention of liver fibrosis.

Research perspectives
Future studies demonstrating the contribution of circulating histones to activation of 
the TLR4-MyD88 signaling and downstream pathways will validate their role in liver 
fibrosis. Development of effective anti-histone therapies to reduce liver injury and 
prevent liver fibrosis have potential in the management of diseases with recurrent liver 
injury.
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