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Abstract
Infection with the hepatitis B virus (HBV) is still a major global health threat as 
250 million people worldwide continue to be chronically infected with the virus. 
While patients may be treated with nucleoside/nucleotide analogues, this only 
suppresses HBV titre to sub-detection levels without eliminating the persistent 
HBV covalently closed circular DNA (cccDNA) genome. As a result, HBV 
infection cannot be cured, and the virus reactivates when conditions are favorable. 
Interferons (IFNs) are cytokines known to induce powerful antiviral mechanisms 
that clear viruses from infected cells. They have been shown to induce cccDNA 
clearance, but their use in the treatment of HBV infection is limited as HBV-
targeting immune cells are exhausted and HBV has evolved multiple mechanisms 
to evade and suppress IFN signalling. Thus, to fully utilize IFN-mediated 
intracellular mechanisms to effectively eliminate HBV, instead of direct IFN 
administration, novel strategies to sustain IFN-mediated anti-cccDNA and 
antiviral mechanisms need to be developed. This review will consolidate what is 
known about how IFNs act to achieve its intracellular antiviral effects and 
highlight the critical interferon-stimulated gene targets and effector mechanisms 
with potent anti-cccDNA functions. These include cccDNA degradation by 
APOBECs and cccDNA silencing and transcription repression by epigenetic 
modifications. In addition, the mechanisms that HBV employs to disrupt IFN 
signalling will be discussed. Drugs that have been developed or are in the 
pipeline for components of the IFN signalling pathway and HBV targets that 
detract IFN signalling mechanisms will also be identified and discussed for utility 
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in the treatment of HBV infections. Together, these will provide useful insights 
into design strategies that specifically target cccDNA for the eradication of HBV.
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Core Tip: Hepatitis B virus (HBV) infection remains an incurable disease affecting 
millions worldwide. Treatment with interferons (IFNs) can eliminate the virus by 
clearing its persistent genome, covalently closed circular DNA (cccDNA), from 
infected cells. However, its clinical efficacy is limited as HBV proteins antagonize IFN 
signalling. Other current therapeutics do not target cccDNA thus cannot eliminate 
HBV. Therefore, new drugs based on the knowledge of how IFNs cause cccDNA 
degradation and silencing, as well as insights into how HBV antagonizes IFN-mediated 
mechanisms are needed. This review summarizes what is known about these processes 
and highlights drugs and developing therapeutics targeted against them for HBV 
eradication.

Citation: Goh ZY, Ren EC, Ko HL. Intracellular interferon signalling pathways as potential 
regulators of covalently closed circular DNA in the treatment of chronic hepatitis B. World J 
Gastroenterol 2021; 27(14): 1369-1391
URL: https://www.wjgnet.com/1007-9327/full/v27/i14/1369.htm
DOI: https://dx.doi.org/10.3748/wjg.v27.i14.1369

INTRODUCTION
Chronic hepatitis B (CHB) is a major global health problem affecting about 250 million 
people worldwide, resulting in 800000 deaths per year[1]. It is the main etiological 
factor and cause of mortality for liver cirrhosis and hepatocellular carcinoma (HCC). 
Despite the availability of a prophylactic vaccine and antiviral therapies, the very high 
numbers of chronic carriers for the causative hepatitis B virus (HBV) indicates that 
current treatment regimens are inadequate in eliminating HBV. The primary reason 
for this is due to the stability and persistence of its genomic DNA[2,3], the covalently 
closed circular DNA (cccDNA), even under long-term therapy. This pivotal viral DNA 
template is solely responsible for generating all HBV transcripts[4] and viral proteins. 
Therefore, sub-detection levels of continually present cccDNA in infected cells and 
tissues act as template reservoirs for HBV to reactivate and persist long after achieving 
the treatment endpoint of expressing sub-detection levels of HBV antigens in patient 
sera. Given its importance in maintaining chronicity of HBV infection, experts in the 
field have come to a consensus that a curative regime can only be achieved through 
cccDNA elimination or permanently silencing cccDNA[5,6].

Of the 2 treatment options available, oral administration of nucleoside/nucleotide 
analogues (NAs) that target the HBV polymerase/reverse transcriptase (pol/RT) are 
better tolerated in patients to achieve reduced HBV titres[7]. However, NAs do not 
directly target cccDNA and therefore HBV reactivation persists. In contrast, the less 
tolerated interferon (IFN) treatment has been shown to be directly efficacious in 
promoting cccDNA clearance or epigenetically silencing cccDNA[8-10]. This is not 
surprising, as IFNs are a group of cytokines released from host cells as natural defence 
against external stimuli such as viral pathogens[11]. IFNs bind to their cognate receptors 
to elicit an intracellular signalling cascade that activates a set of IFN-stimulated genes 
(ISGs) with antiviral, immunomodulatory and anti-proliferative functions[12]. As such, 
IFNs are often used to treat viral infections against a range of viruses including 
HBV[13], hepatitis C virus[14], and West Nile virus[15]. Multiple lines of evidence have 
shown that IFN treatment effectively inhibits cccDNA function and eliminates 
cccDNA with great potency in vitro and in selected CHB patients[16,17]. However, the 
underlying mechanisms of its antiviral functions, especially on cccDNA are poorly 
understood. This is further compounded by the myriad of adverse effects associated 
with IFN treatments, such as neuropsychiatric disorders and neutropenia[18,19], greatly 
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limiting its use in HBV therapy. Moreover, HBV has multiple mechanisms that 
counteract IFN signalling, dampening the antiviral effect of IFN treatment[20,21] to result 
in poor antiviral response in some patients[22,23]. To overcome and enhance the sub-
optimal antiviral response from direct IFN administration, a better understanding of 
the precise mechanisms of how IFNs target cccDNA and how HBV can overcome 
these is necessary. By targeting host factors and HBV products that modulate 
intracellular IFN signalling and its antiviral and anti-cccDNA effectors, curative 
therapies with fewer undesirable pleiotropic adverse effects can be developed. This 
review will highlight these mechanisms and targets for which therapeutic agents can 
be and have been developed.

cccDNA in HBV life cycle
cccDNA is a stable non-integrated mini chromosome formed in the nucleus of HBV-
infected cells[24]. HBV enters cells by engaging the sodium taurocholate cotransporting 
polypeptide (NTCP) receptor[25] and utilizing epidermal growth factor receptor for 
internalization[26]. Following cell entry, HBV releases its core nucleocapsid into the 
cytoplasm while the genomic material carried within, the partially double-stranded 
relaxed circular DNA (rcDNA) is transported into the nucleus where it is converted 
into cccDNA through a series of biochemical steps involving multiple host 
proteins[27-29]. cccDNA contains 4 overlapping open reading frames from which all HBV 
transcripts are transcribed. These include the 0.7 kb mRNA for the HBx protein, 2.4 kb 
and 2.1 kb mRNAs that encode three different forms (L, M, and S) of envelope surface 
proteins (HBs), 3.5 kb pre-Core mRNA that codes for the p22 pre-core protein, a 
precursor for HBe and another multi-functional 3.5 kb pre-genomic RNA (pgRNA) 
that is both the template for rcDNA synthesis and also encodes components of the core 
particle, the core protein (HBc) which forms the viral capsid and the HBV pol/RT[30]. 
pgRNA and pol/RT are encapsidated by HBc to form the core particle, where reverse 
transcription takes place within to form the full-length (-) strand of rcDNA, followed 
by the incomplete synthesis of (+) strand to generate the partially double-stranded 
rcDNA. This newly synthesized rcDNA can then be recycled into the nucleus to 
generate more cccDNA, maintaining nuclear cccDNA pool and contributing to 
cccDNA persistence. Alternatively, core particles can be enveloped for secretion to 
generate progeny virions[31]. Since cccDNA plays a central role in this replicative cycle, 
it is clear to see that HBV would cease to replicate or persist when cccDNA is 
eliminated.

cccDNA copy number and persistence
cccDNA exists in low copies and persists long after antiviral treatment, accounting for 
HBV reactivation after cessation of treatment[32]. cccDNA is found in every phase of the 
natural course of HBV infection, even in patients who underwent HBs seroconversion 
to produce protective anti-HBs antibodies after effective antiviral treatment. 
Seroconversion or the loss of HBs is an important end goal of HBV therapy as it is 
associated with positive long-term clinical outcomes such as improvement in liver 
function and reducing the risk of HCC[33]. Surprisingly, there is currently no 
international standard for HBV cccDNA quantitation, and a universally endorsed HBV 
cccDNA assay is also lacking. Thus, the kinetics and amount of cccDNA in infected 
cells are not clearly defined as the cccDNA copy numbers reported merely reflect the 
assay used in a publication and does not facilitate comparison between studies. Cell 
culture models suggest that cccDNA persists up to 40 d in infected HepG2 cells, at up 
to 12.5 copies per infected cell[31]. Studies in human liver biopsies show that the copies 
of cccDNA per cell varies greatly by >5000-fold, from very low copies of 0.03 copies 
per cell to very high levels of 173.1 copies per cell, and that this is correlated with HBV 
reactivation status[3]. Consistent with the correlation between high cccDNA copies and 
CHB status, HBe-positive patients have a higher level of cccDNA compared to HBe-
negative patients. Moreover, very low cccDNA copies of 1.5 copies per infected 
hepatocyte is sufficient to cause virus persistence[34]. High cccDNA levels has also been 
shown to be associated with increased risk of liver inflammation[35]. Collectively, high 
cccDNA levels is associated with greater HBV titres, increased risk of HBV 
reactivation and higher risk of developing HBV-associated liver diseases, emphasizing 
the need for cccDNA elimination to achieve a complete cure from HBV infection.
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CURRENT HBV TREATMENT STRATEGIES
Nucleoside/nucleotide analogues
The standard of care for hepatitis B is based on two therapeutic strategies: the use of 
NAs and IFN-α or its pegylated form (PEG-IFN)[36,37]. To date, six NAs have been 
approved for treatment, including lamivudine, adefovir, entecavir, telbivudine, 
tenofovir, and tenofovir alafenamide. As NAs are taken orally, they are easy to 
administer hence promote patient compliance. NAs suppress viral replication by 
targeting HBV pol/RT activity to disrupt rcDNA synthesis[38]. By suppressing HBV 
load, NAs can alleviate HBV-associated liver diseases, regress fibrosis[39] and reduce 
the risk of developing HCC[40]. However, NAs cannot cure HBV infection as loss of 
virological markers such as HBs is rarely achieved, and seroconversion rates are 
negligible (Table 1). As a result, HBV reactivation rate is high, with >50% patients 
showing flares in virological markers (e.g. HBV DNA) and biochemical markers for 
liver damage [e.g. alanine aminotransferase (ALT)]. This is often accompanied with 
irreversible liver decompensation, resulting in death even when re-introduced to 
lamivudine[41]. Thus, to avoid HBV reactivation, CHB patients are often put on long-
term (often >10 years) or even life-long NA therapy.

However, long-term administration of NAs leads to drug resistance, with nearly 
65% of CHB patients becoming resistant when treated with lamivudine for 5 years[42]. 
This is because NAs target the error-prone HBV pol/RT, generating progeny virions 
that may carry escape mutations such as rtM204V/I, rtL180M, rtA181T/V, or rtL80V/I 
in the pol/RT protein sequence, preventing the mutant pol/RT to incorporate NAs 
into the nascent rcDNA hence escape rcDNA chain termination. As a result, prolonged 
treatment with NAs allows these “fitter” escape mutants to accumulate, generating 
drug resistant HBV strains[43,44]. As such, new generations of NAs need to be designed 
to tackle the problem of HBV mutation. Entecavir and tenofovir are such new 
generation NAs that are currently favoured over first-generation lamivudine and 
adefovir due to their higher potency and lower occurrence of drug resistance[45]. Only 
time will tell if the lower drug resistance rates indeed hold true for these newer NAs. It 
is more important to note that, NAs do not target cccDNA as the established cccDNA 
pool does not require HBV pol/RT for maintenance. Therefore, NAs cannot cure HBV 
infection.

IFNs
IFN-α and PEG-IFN are immunomodulators that augment cell-mediated immunity, 
part of which includes intracellular antiviral activities that can be executed without the 
aid of immune cells[46]. The use of PEG-IFN has superseded standard IFN-α as 
pegylation improves IFN-α half-life, requiring less frequent dosing[47]. More 
importantly, PEG-IFN-α is more effective in reducing cccDNA levels and also leads to 
greater rates of ALT normalization with lower HBV reactivation rates (Table 1). When 
compared to NAs, treatment with IFN and PEG-IFN leads to higher rates of HBe and 
HBs seroconversion with greater reduction in HBV markers indicative of lower HBV 
replication rates. Of note, HBs seroconversion is rarely achieved with the use of NAs. 
Recent clinical studies[48,49] have also confirmed that switching from NA therapy to IFN 
therapy sustains more significant HBe and HBs losses for longer periods, 
demonstrating the potency of IFNs in the suppression of HBV replication. However, 
the use of IFNs in the clinical setting is limited due to the need for high dosage and 
unpredictably variable patient response, which depends on the status of immune cells, 
HBV titre and type of HBV. It is also less tolerated in patients due to pleiotropic off-
target effects from IFN signalling.

At the tissue level, immune tolerance from chronic infection significantly reduces 
clinical efficacy of IFN treatment. The extracellular arm of the IFN-mediated antiviral 
response depends on the activation of HBV-specific CD4+ helper T-cells and CD8+ 
cytotoxic T-cells to produce cytokines such as IFN-γ and tumour necrosis factor-alpha 
(TNF-α) that lead to the elimination of HBV-infected cells[50]. However, constant 
exposure to HBV leads to T-cell exhaustion and an immunotolerant environment[51]. 
While IFN-γ also induces intracellular antiviral properties, its continued elevation 
upregulates programmed death-1 (PD-1) immune checkpoint protein on T-cells and 
also induces its ligand PD-ligand 1 on hepatocytes, leading to immune tolerance as 
HBV-specific T-cells fail to act on infected cells[52,53]. IFN-γ also promotes the secretion 
chemokines from hepatic macrophages that retain CD4+ T-cells in the liver and induce 
apoptosis of HBV-specific T-cells, further contributing to HBV evasion of immune 
clearance. Many other mechanisms of how HBV-specific immune cells’ antiviral 
activities have been augmented in chronic HBV infection have been documented and 
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Table 1 Treatment outcomes of nucleoside/nucleotide analogue and interferon therapy

Treatment % loss of HBV markers % seroconvert
Ref.

n Schedule HBs HBe rcDNA cccDNA α-HBs α-HBe
% normal 
ALT

% HBV 
reactivation

Reijnders et al[131] 132 NA: 16-43 mo 3 42 - - - 35 - 56

Song et al[132] 98 NA: 6-22 mo - 35 - - - 35 - 49

Jeng et al[133] 691 NA: 1-8 yr 6 n.a. n.a. - 4 n.a. - 79

45 NA: ≥ 1 yr 2 n.a. - - - - - 71Liem et al[134]

22 NA: ≥ 2 yr 4 n.a. - - - - - 18

181 NA: 48 wk 0 n.a. 29 - 0 - 44 -Marcellin et al[135]

177 PEG-IFN: 48 
wk

4 n.a. 43 - 3 - 59 -

272 NA: 48 wk 0 21 22 - 0 19 28 -Lau et al[136]

271 PEG-IFN: 48 
wk

3 34 32 - 3 32 41 -

van Zonneveld 
et al[137]

165 IFN: 16 wk 23 33 43 - - - 62 13

103 IFN: 4-6 mo 10 51 51 - - 51 50 -Niederau et al[138]

53 Untreated 0 13 9 - - - 9 -

38 IFN: 48 wk - - - 47 - - Low -Liu et al[139]

38 PEG-IFN: 48 
wk

- - - 63 - - High -

HBV: Hepatitis B virus; rcDNA: Relaxed circular DNA; cccDNA: Covalently closed circular DNA; ALT: Alanine aminotransferase; NA: 
Nucleoside/nucleotide analogue; PEG: Pegylated form; IFN: Interferon; n.a.: Not applicable.

reviewed[54-56], together showing very clearly that IFN treatment alone cannot induce 
effective clearance of HBV, allowing HBV to persist. Indeed, strategies aimed at 
restoring extracellular anti-HBV immunity in CHB patients such as with anti-PD-1 
therapeutics[57] and adoptive T-cell therapy[58] are being investigated. Since immune 
tolerance in CHB patients render immune cells non-responsive to IFN therapy, the 
efficacy of IFN therapy lies heavily on the intracellular arm of IFN-mediated immunity 
brought about by induction of intracellular antiviral proteins from IFN signaling.

IFNs induce the production of antiviral proteins that specifically disrupt HBV 
replication and degrade cccDNA. However, HBV has devised multiple strategies that 
antagonize IFN signalling. These strategies are so effective that even when coupled 
with NAs, the inability of NAs to reduce the amount of HBV products allows them to 
continue disrupting IFN signalling, rendering combination therapy efficacious only in 
selected patients[59,60] but redundant in others[61]. Multiple factors including type of 
combination therapy, HBV genotype and level of HBV replication greatly affect IFN 
treatment efficacy[62]. Some studies suggest that sequential NA and IFN therapy is 
more effective than simultaneous combination therapy[63], a phenomenon which 
warrants further confirmatory clinical investigation to enhance clinical response rates. 
HBV itself also significantly affects patient response to IFN therapy, as treatment 
outcomes are more efficacious in patients carrying the genotype A virus than the 
genotype D virus[64], and patients are also thrice more responsive to IFN treatment if 
they carry the genotype B virus than genotype C virus[65]. As further proof to the extent 
in which HBV alters patient sensitivity to IFN treatment, 30.4% of patients with low 
end-of-treatment HBs levels (< 10 IU/mL) achieve HBs clearance in a 5-year follow-
up, in stark contrast to < 10% of patients achieving HBs clearance[66] when end-of-
treatment HBs levels are ≥ 10 IU/mL. This is further supported by the association of 
greater PEG-IFN response in patients with HBV DNA levels of < 9 Log10 copies/mL 
sera[67]. Clearly, the full potential of IFN therapy has yet to be harnessed and directed 
towards HBV and its cccDNA. To achieve this, a strong understanding of how IFNs 
target cccDNA specifically and how HBV overcomes such mechanisms is necessary. 
New therapeutic agents and strategies can then be developed to prevent HBV from 
interfering with IFN signalling and enhance the anti-HBV and anti-cccDNA activities 
of IFNs to bring about HBV elimination.
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IFN SIGNALLING
IFNs are key mediators of immunity, comprising a group of cytokines with antiviral 
properties against a wide range of pathogens. There are 3 types of IFNs (Type I, II, III) 
(Figure 1) based on the distinct receptors used for signal transduction[68]. Amongst 
them, only type I IFN-α2a and IFN-α2b are used clinically in the treatment of HBV 
infections[69,70], although the mechanisms underlying its clinical efficacy remain poorly 
understood. IFNs from all 3 types have been shown to possess anti-HBV properties 
(Table 2), but many have poorer patient tolerability than IFN-α. IFNs also differ in 
anti-HBV potency, but the underlying reasons for such differences are not clear. At 
high doses, IFNs non-cytolytically purge or silence cccDNA from infected hepatocytes.

Activation of ISGs
The antiviral effects of IFNs are achieved through ISGs[46,68], which are induced through 
the IFN signalling pathway that activates janus kinase/signal transducers and 
activators of transcription (JAK/STAT) signalling (Figure 1). After IFNs engage their 
specific IFN receptors, tyrosine kinase 2 (TYK2) transduces the activating signal to 
result in phosphorylation of STAT1 and STAT2 transcription factors by protein kinase 
C-delta (PKC-δ) necessary for nuclear translocation. The heterodimer interacts with 
IFN regulatory factor 9 (IRF9) to form the ISG factor 3 (ISGF3) transcription factor 
complex which translocates into the nucleus by importin-dependent mechanisms. 
ISGF3 can then induce the expression of antiviral ISGs through IFN-stimulated 
response elements (ISRE) cis regulatory elements with the consensus sequence 
“AGTTTCNNTTTCN” in ISG gene promoters. Alternatively, phosphorylated STAT1 
may homodimerize to form the IFN-gamma-activated factor (GAF) complex that binds 
to another cis-element, the IFN-gamma activated site with the “TTCN2-4GAA” 
conserved sequence motif and induce ISG expression in the absence of IRF9[71]. As will 
be further elaborated, each ISG functions differently to bring about the destruction or 
silencing of cccDNA and other antiviral effects, accounting for pleiotropic effects of 
IFN treatment. There are a variety of IFN subtypes, each targeting the activation of 
different sets of ISGs with antiviral properties that may suppress HBV replication 
(Table 2). By specifically activating these ISGs relevant for cccDNA degradation or 
silencing, new drugs can be developed that specifically eliminate HBV. In doing so, 
adverse effects of IFNs that are not well-tolerated in patients may be eliminated as the 
activation of ISGs that are irrelevant for suppressing HBV replication are by-passed.

Regulators of IFN signalling
As JAK/STAT signalling is critical for the expression of ISGs, it is tightly regulated by 
several proteins[72]. Suppressor of cytokine signalling (SOCS) 2 and SOCS3 inhibit the 
IFN signalling cascade by preventing TYK2 activation and hence STAT1 
phosphorylation. STAT1 methylation by protein arginine methyltransferase 1 (PRMT1) 
prevents its binding to the inhibitor protein inhibitor of activated STAT1 (PIAS1), 
where PIAS1 functions to sequester STAT1 away from its DNA-binding motifs[73]. The 
methylation of STAT1 is in turn negatively regulated by protein phosphatase 2A 
(PP2A), which inhibits PRMT1 activity[74]. These factors can be targeted by HBV to 
disrupt and dampen the IFN signalling and will be discussed later.

ANTI-cccDNA MECHANISMS
Degradation by APOBECs
Many of the IFN subtypes with anti-HBV properties induce APOBEC family genes[75], 
which are cytidine deaminases that perform RNA editing[76]. They have also been well-
documented to act directly on cccDNA to result in degradation. IFN-α, which is used 
in clinical therapy of CHB, has been shown to reduce the expression of cccDNA, HBV 
RNA, HBs and HBe in primary human hepatocytes (PHH) and HepRG liver cells. The 
IFN-α mediated loss of cccDNA was found to last up to 15 d[8]. Induced expression of 
APOBECs can be seen after IFN treatment in liver biopsies of hepatitis B patients, and 
in HBV-infected chimpanzees[77]. The importance of APOBECs in mediating cccDNA 
clearance is supported by the fact that the expression of APOBECs correlates with 
clinical response to IFN.

Besides IFN-α and IFN-γ, other pathways induced by pro-inflammatory cytokines 
including TNF-α and lymphotoxin-β (LT-β) have also been shown to induce APOBECs 
and affect the stability of cccDNA. In agreement with its anti-cccDNA functions[78], 
APOBECs induced through LT-β signalling with LTβR agonist antibody was shown to 
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Table 2 Interferons with anti-hepatitis B virus properties

Effect on HBV
Types of Interferon

cccDNA rcDNA HBs HBe
Remarks Antiviral ISGs Ref.

IFN-α2a/PEG-
IFN-α2a

↓ ↓ ↓ ↓ Clinical anti-HBV agent APOBEC3A1,APOBEC3F1,
APOBEC3G1,STAT11,ISG201, 
TRIM38, MX1, etc.

[140-142]

IFN-α2b/PEG-
IFN-α2b

↓ ↓ ↓ ↓ Clinical anti-HBV agent IFITM1, IFITM3, TRIM14, RNASEL 
etc.

[143-145]

IFN-α14 ↓ - ↓ ↓ Activates IFN-α and IFN-
γ signalling

GBP4, GBP5 [146]

IFN-β/PEG-IFN-β ↓ ↓ ↓ ↓ - MX1, CXCL10 [147]

I

IFN-ω - ↓ ↓ ↓ - IRF1, IRF9, ISG15, OAS [148-150]

II IFN-γ - - - ↓ - APOBEC3G1, OAS, IDO [151-153]

IFN-λ1a - ↓ ↓ ↓ Increased HBe 
seroconversion

PKR, OAS [154,155]

IFN-λ2 ↓ ↓ - ↓ - APOBEC3A1,APOBEC3B1,
APOBEC3G1, MX1, OAS

[156]

III

IFN-λ3 - ↓ ↓ ↓ Increased JAK/STAT 
signalling

APOBEC3G1,IRF91, IRF7, MX1, 
OAS, ISG15 etc.

[157-159]

↓: Reduced; -: Not determined.
1Important for cccDNA elimination or silencing. HBV: Hepatitis B virus; rcDNA: Relaxed circular DNA; cccDNA: Covalently closed circular DNA; JAK: 
Activate janus kinase; STAT: Signal transducers and activators of transcription; ISGs: Interferon-stimulated genes; PEG: Pegylated form; IFN: Interferon.

clear 90% of cccDNA in HBV-infected cultured liver cells with good in vivo 
tolerability[8]. As the clinical dose of IFN-α used to achieve cccDNA clearance is 
relatively high, this suggests that inducing expression of APOBECs through LT-β 
signalling is an alternative means for cccDNA clearance with potentially fewer adverse 
effects. While its clinical efficacy and safety remain to be studied, upregulation of 
natural ligands for LTβR in HBV-infected liver tissues have been reported[79]. IFN-γ 
and TNF-α also exhibit anti-cccDNA effects to degrade cccDNA[80] levels without 
causing cell death in HBV-infected chimpanzees, PHH and cultured liver cells.

Following IFN receptor or LTβR activation, the upregulated IFN-α induced 
APOBEC3A (A3A) and LTβR activation-induced APOBEC3B (A3B) are brought to 
cccDNA by HBc (Figure 2). Similarly, IFN-γ induced the expression of both A3A and 
A3B while TNF-α induced the expression of A3B only, whereas knockdown of A3A 
and A3B abrogated the antiviral effects of IFN-γ and TNF-α. HBc amino acids 77-149 
are crucial for this interaction, which brings the APOBECs into close proximity with 
cccDNA for deamination[8]. cccDNA deamination generates apurinic/apyrimidinic 
(AP) sites that are recognized by endonucleases[81], which ultimately degrade cccDNA. 
The dependence on AP sites for cccDNA degradation was confirmed by reduced intact 
DNA amount when DNA extracted from IFN-γ or TNF-α treated cells were digested 
with recombinant APE1, an AP endonuclease which specifically recognizes and 
cleaves AP sites[9]. Surprisingly, knockdown of APE1 in IFN-γ and TNF-α treated HBV 
infected cells did not show a reduction in cccDNA clearance, suggesting the 
redundancy of endonucleases in clearing cccDNA. While AP sites can be repaired by 
the host cells’ DNA repair machinery, this is not observed with IFN-mediated AP site 
formation in cccDNA. This is most likely due to the concurrent downregulation of the 
base excision repair enzymes such as thymine DNA glycosylase and Nei-like DNA 
glycosylase after IFN treatment[77]. These studies indicate that A3A and A3B are key 
proteins responsible for IFN and LTβR mediated cccDNA clearance. APOBECs also 
have other important roles in clearing HBV cccDNA. APOBEC3F (A3F) and 
APOBEC3G (A3G) were also found to have anti-HBV properties[82]. A3G for example 
inhibits pgRNA packaging to reduce virion formation[83]. The mechanism of action for 
A3F has not been well-characterized.

Epigenetic silencing and transcriptional repression
Apart from eliminating cccDNA, permanently silencing cccDNA is another strategy 
for the development of anti-HBV therapy. Several studies have shown that IFNs 
control the epigenetic silencing of cccDNA[84,85], spurring growing interest in 
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Figure 1  Activation of antiviral interferon-stimulated genes by different interferon subtypes. Different subtypes of interferons (IFNs) bind to their 
cognate receptors to trigger IFN signalling pathways. The activate janus kinase/signal transducers and activators of transcription-dependent signalling results in the 
formation of transcription complexes that induce the expression several IFN-stimulated response elements-dependent and gamma activated site-dependent antiviral 
IFN-stimulated genes (ISGs), which target covalently closed circular DNA (cccDNA) stability and function through a variety of mechanisms. The potency of IFN sub-
type for cccDNA degradation or silencing is dependent on the types and number of ISGs induced. IFN: Interferon; TYK2: Tyrosine kinase 2; SOCS: Suppressor of 
cytokine signalling; PKC-δ: Protein kinase C-delta; IRF: Interferon regulatory factor; JAK: Activate janus kinase; STAT: Signal transducers and activators of 
transcription; ISGF: Interferon-stimulated gene factor; GAF: Gamma-activated factor; ISGs: Interferon-stimulated genes; ISRE: Interferon-stimulated response 
elements; GAS: Gamma activated site.

controlling cccDNA transcriptional activity through epigenetic modifications[86]. HBV 
cccDNA exists as episomal chromatin wound around cellular histones that undergo 
post-translational modifications (PTMs)[87], altering cccDNA chromatin compaction 
hence accessibility to transcription regulators (Figure 2). Some of the histone marks 
associated with active cccDNA transcription include H3K4me3, H3K27ac, H3K122ac, 
and repressive PTMs include H3K27me3. Of note, the distribution of these histone 
marks varies across different types of HBV-producing samples[10]. In the HepG2-NTCP 
cell model, histone PTM enrichment is mainly confined to the pre-core/core promoter 
(CP) region whereas in PHH, they are found throughout the genome with the greatest 
modifications at the X and pre-S1 promoter regions. In contrast, HBV-infected liver 
tissues have few PTMs at the CP but accumulate them near pre-S2 and the X promoter 
regions. The reason and basis for this variability is at present unclear.

cccDNA transcription activity is heavily influenced by the state of epigenetic 
modification by host cellular factors and PTMs. The cccDNA mini chromosome is 
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Figure 2  Interferon treatment silences covalently closed circular DNA transcription and recruits APOBECs to actively degrade covalently 
closed circular DNA. Covalently closed circular DNA (cccDNA) exists as an episomal mini chromosome that is epigenetically modified to support active 
transcription. Interferon (IFN)-α treatment results in the recruitment of histone modifying complexes that remove activating transcription post-translational 
modifications (PTMs), and add repressive PTMs that silence cccDNA function. These complexes can be recruited by IFN-stimulated genes (ISGs) such as IFI16. 
ISGs may also bind directly to cccDNA to repress transcription. Other ISGs such as APOBECs induced by IFN signalling are also recruited by HBc, generating AP 
sites which lead to cccDNA degradation. HBV: Hepatitis B virus; IFN: Interferon; IRF: Interferon regulatory factor; JAK: Activate janus kinase; STAT: Signal 
transducers and activators of transcription; ISGs: Interferon-stimulated genes; ISRE: Interferon-stimulated response elements; cccDNA: Covalently closed circular 
DNA.

heavily modified by various activating PTMs under normal circumstances (Figure 2). 
H3K4 methyltransferase Set domain containing 1A (Set1A) is recruited to cccDNA 
promoter sites by HBx, depositing the activating PTM H3K4me3 to drive active 
transcription[88]. By modulating the expression of Set1A, the relative expression of 
H3K4me3 can be fine-tuned. IFN treatment disrupts cccDNA transcription activity by 
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downregulating these epigenetic PTMs that support transcription. In studies using 
PHH, IFN-α specifically reduced trimethylation of H3K4 and acetylation of H3K27 
and H3K122 on cccDNA chromatin to inhibit transcription of HBV RNA, but had 
negligible effect on epigenetic modification for the control promoters of ACTB and 
Nanog in the host genome[10].

IFNs also result in cccDNA transcriptional repression through active recruitment of 
complexes that confer transcription inhibitory epigenetic modifications. The repressive 
H3K27me3 PTM is induced by IFN-α through increased binding of polycomb 
repressive complex 2 (PRC2) to cccDNA[84]. The importance of H3K27me3 in inhibiting 
cccDNA transcription was also confirmed in a separate study showing that 
upregulation of DNA methyltransferase 3a hypermethylates HBV cccDNA to repress 
transcription[89]. IFNs have also been recently shown to inhibit succinylation of 
cccDNA histones, adding on to the transcriptionally repressed state brought about by 
hypoacetylation and/or methylation[90]. This involves the succinylation of H3K79 by 
GCN5 histone succinyltransferase (also known as lysine acetyltransferase 2A), which 
corresponds to higher HBV replication. They further showed that low levels of 
succinylated H3K79 from GCN5-specific knockdown resulted in significantly reduced 
cccDNA levels, and that expression of GCN5 and cccDNA correlate well in HBV-
infected individuals. More importantly, IFN-α treatment could overcome the effects of 
overexpressed GCN5 to reduce the levels of succinylated cccDNA, indicating that 
IFNs act upstream to control GCN5 function and repress cccDNA transcription, the 
specific mechanism of which remains to be elucidated. Taken together, IFNs 
epigenetically silence cccDNA function through the recruitment of epigenetic factor 
complexes that add repressive PTMs or remove activating PTMs so that cccDNA 
enters a transcriptionally repressed chromatin structural state. Importantly, IFNs can 
also do so by inducing ISGs that bring about both the removal of activating PTMs and 
the addition of suppressive PTMs. For example, IFI16 reduces cccDNA transcription 
activity[91] by recruiting histone deacetylase 1 (HDAC1) and Sirtuin 1 (SIRT1) to 
increase repressive H3K27me3 PTMs on cccDNA, and concurrently impairs the 
recruitment of p300/CBP to prevent the addition of activating PTMs on cccDNA.

Interestingly, cccDNA also carries the ISRE cis-element, and this is critical for 
establishing IFN-mediated epigenetic changes on cccDNA. The HBV ISRE is located at 
the enhancer I/X promoter region[92,93], and is recognized by the ISGF3 complex and 
the ISGs IRF1 and IRF7. In transcriptionally active cccDNA, the HBV ISRE is bound by 
phosphorylated and unphosphorylated STAT1 and STAT2 transcription factors to 
active cccDNA (Figure 2). IFN treatment induces redistribution of the STAT proteins 
from the HBV ISRE towards the IFN signalling pathway, resulting in antiviral effects 
against HBV cccDNA by the upregulation of cccDNA-targeting ISGs. One of these 
ISGs is IRF9, which binds directly to the HBV ISRE element to suppress cccDNA 
transcription[94]. When the HBV ISRE is mutated, loss of IRF9 binding was shown to 
abrogate IFN-induced suppression of cccDNA transcription. This is clinically 
significant, as mutations in the HBV ISRE affects CHB patient response to IFN 
treatment[95] to render IFN treatment less effective. In addition, the HBV ISRE sequence 
is HBV genotype dependent, thus its sequence-dependent functionality partially 
accounts for differences in patient responder rates between carriers of HBV genotypes 
B and C[96]. Another ISG, ISG20, also directly inhibits transcription from cccDNA by 
direct binding to the enhancer II/CP region[97]. Higher ISG20 expression level also 
correlates to better response to IFN-α treatment in CHB patients[98] and viral clearance 
in HBV-infected chimpanzees[99]. With the withdrawal of activating transcription 
factors from cccDNA and binding of specific transcription repressors induced by IFN 
treatment, cccDNA transcription is further suppressed by epigenetic modifications of 
histones such as histone hypoacetylation which occurs through the recruitment of the 
HDAC1 and SIRT1, and hypermethylated by the PRC2 complex. Thus, in addition to 
epigenetic silencing of cccDNA, IFNs also suppress cccDNA transcription activity by 
generating IFN-induced transcription repressors specific to cccDNA.

Inhibition of cccDNA synthesis
IFNs are also known to directly inhibit cccDNA synthesis. The antiviral ISG myxovirus 
resistance protein 2 has been shown to reduce cccDNA formation when 
overexpressed[100]. Its specific knockdown abrogates the loss of cccDNA induced by 
IFN-α, providing confirmation for its role in IFN-α induced reduction in cccDNA 
levels. It has been proposed that this occurs through inhibiting cccDNA synthesis from 
rcDNA, as well as from downregulated HBV transcripts.
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HBV DISRUPTION OF IFN SIGNALLING
HBV is not without its defences. It generates multiple factors that dampen the IFN 
signalling pathway. Inter-individual variability in the balance of these against antiviral 
IFN-mediated mechanisms could explain why CHB patients do not respond equally 
well to IFN-treatment. By understanding how HBV proteins antagonize IFN action, 
therapeutic approaches that interrupt the anti-HBV functions of IFNs can be 
developed to improve the response and efficacy of IFN treatments.

HBV disrupts the IFN signalling cascade at various steps. HBx[21] and HBe[20] 
downregulate the expression of IFN receptors, IFNAR1 and IL10RB, disrupting the 
initiation of type I and type III IFN signalling (Figure 3). HBe and HBx achieve this by 
upregulating SOCS2 and SOCS3 respectively, suppressing the IFN signalling cascade 
and inhibiting TYK2 activation (Figure 1). As SOCS2 also prevents STAT1 
phosphorylation, STAT1 is prevented from entering the nucleus to induce ISG 
expression. Since SOCS2 and SOCS3 are the most direct upstream inhibitors of the IFN 
signaling pathway, their increased expression significantly attenuates IFN-dependent 
transcription of ISGs to compromise the therapeutic efficacy of IFNs. It was found that 
overexpression of HBe alone leads to 6-fold reduction in phosphorylated STAT1 
nuclear translocation, hence downregulating protein kinase R (PKR) and oligo-
adenylate synthetase (OAS) gene expression by 50%[20]. Similarly, HBx overexpression 
alone doubled SOCS3 expression and increased PP2A expression by 5-fold, 
significantly reducing PKR and OAS expression by 3-fold[101]. It is thus clear to see, that 
the combined effects of expressing HBx and HBe in infected cells, especially in cells 
with high viral titre and virological markers, will compromise the clinical efficacy of 
direct IFN therapy. Other HBV proteins act further down the IFN signalling cascade to 
prevent STAT1 nuclear translocation, further disrupting ISG expression. HBV pol/RT 
inhibits PKC-δ, preventing STAT1 phosphorylation and competitively binding to 
importin[102,103]. HBV pol/RT also significantly reduces the induction of IRF9 critical for 
the generation of ISGs through formation of the ISGF3 complex. p22 also binds 
importin[104] to prevent STAT1 nuclear translocation. In the nucleus, HBx and HBs 
upregulate PP2A, which inhibits PRMT1 hence reduces STAT1 methylation, enabling 
PIAS1 to sequester phosphorylated STAT1 away from its DNA-binding elements in 
vitro and in liver tissues from HBV infected patients[105]. As HBV proteins specifically 
target multiple regulatory elements of IFN signalling to block ISG expression, the 
expression of anti-cccDNA and antiviral ISGs would therefore be significantly reduced 
in the presence of HBV, rendering the effort to eliminate HBV by direct IFN 
administration futile. Therefore, to circumvent HBV mechanisms that antagonize IFN 
signalling, therapies aimed at targeting HBV molecules and components of the IFN-
signalling pathway would greatly enhance the efficacy of IFN treatment for the 
elimination and suppression of cccDNA and HBV.

THERAPEUTIC AGENTS AND STRATEGIES AGAINST cccDNA
IFNs may eliminate and suppress cccDNA formation for a therapeutic cure of HBV 
infections, but IFN therapy has not been particularly efficacious due to the adverse 
effects from pleiotropic off-target effects and the existence of multiple HBV 
mechanisms that antagonize the IFN signalling pathway and downstream effector 
functions. As these greatly limit the clinical use of IFNs for treating HBV infections, 
alternative approaches that specifically enhance the anti-HBV effects of IFNs and 
suppress the antagonistic effects of HBV proteins can be developed to achieve cccDNA 
elimination and suppression without adverse effects from IFN signalling. Multiple 
classes of drugs that are in development or have been developed, that act on such 
targets may have the beneficial effect by downregulating HBV cccDNA (Figure 3). 
They act by modulating the functions of IFN signalling pathway components or HBV 
proteins that antagonize IFN signalling and its anti-cccDNA effector functions. Of 
note, as HBV disruption of IFN response is multi-factorial, combination therapy may 
be necessary to achieve cccDNA elimination for a true HBV cure.

Inducers of APOBECs
Perhaps the most obvious strategy to eliminate cccDNA is to enhance and sustain the 
expression of APOBECs which actively result in cccDNA degradation. While APOBEC 
mimics are not yet available, APOBEC expression can be induced through multiple 
pathways including activation of IFN signalling using other IFN sub-types such as 
IFN-γ and IFN-λ, and alternative pathways involving TNF-α and LTβR activation. 
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Figure 3  Anti-covalently closed circular DNA strategies and antagonistic hepatitis B virus proteins that modulate the interferon 
signalling pathway. Hepatitis B virus (HBV) has developed multiple mechanisms that target different parts of the intracellular interferon (IFN) signalling pathway to 
avert elimination by IFN treatment. Therapeutic agents that counter HBV anti-IFN signalling activities or enhance the strength of host cell IFN signalling may be 
beneficial to increase the efficiency of IFN treatment for the elimination or silencing of covalently closed circular DNA. HBV: Hepatitis B virus; IFN: Interferon; PEG: 
Pegylated form; SOCS: Suppressor of cytokine signalling; PKC-δ: Protein kinase C-delta; IRF: Interferon regulatory factor; JAK: Activate janus kinase; STAT: Signal 
transducers and activators of transcription; Pol/RT: Polymerase/reverse transcriptase; TNF: Tumour necrosis factor; ISGs: Interferon-stimulated genes; ISRE: 
Interferon-stimulated response elements; cccDNA: Covalently closed circular DNA.

IFN-λ3 was found to be specifically upregulated in patients treated with adefovir or 
tenofovir, and further shown in cell culture models to be effective in reducing HBs by 
inducing ISGs[106]. Studies in HepaRG differentiated hepatocytes also show that IFN-β, 
IFN-λ1 and IFN-λ2 induce longer-lasting APOBEC expression than IFN-α2, and are 
just as efficient in mediating cccDNA degradation[107]. IFN-γ and TNF-α have also been 
shown to upregulate APOBEC expression. In particular, the utility of IFN-γ in the 
treatment of HBV infections can be explored as it is currently used clinically for the 
treatment of hepatic fibrosis[108]. An LTβR agonist antibody has already been developed 
and was shown to be safe in mice at lower dosing requirements than clinical IFN-α. 
This could be further developed and tested in clinical settings for efficacy and safety in 
the treatment of HBV infections.

The IFN response may also be strengthened by reducing the action of negative 
regulators of the IFN signalling pathway, primarily by acting on SOCS2 or SOCS3 and 
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PP2A. This directly inhibits the degradation of IFN signaling, allowing ISGF3 and GAF 
complexes to form hence carry out transcription of ISGs. Thiazolidinediones such as 
pioglitazone and rosiglitazone are known to reduce the expression of SOCS 
proteins[109], and consequently would prevent the loss of IFN signalling transduction 
hence upregulate APOBEC expression in the presence of appropriate IFNs. They are 
currently used in the treatment of type II diabetes, thus may be readily re-purposed for 
the treatment of HBV infections to reduce cccDNA levels. The first-in-class small 
molecule inhibitor of PP2A, LB-100, would theoretically achieve similar effects of 
inducing APOBEC expression. It was found to be well-tolerated in patients with solid 
tumours in phase I clinical trials[110].

Epidrugs
As cccDNA function is highly dependent on its epigenetic PTM status, “epidrugs” are 
also being investigated for their efficacy in silencing cccDNA function. HAT inhibitor 
C646, which is widely used in cancer studies, has been shown to reduce H3K27ac and 
H3K122ac thus silence cccDNA for reduced HBV transcription[10]. The pro-drug GS-
5801 (Gilead), which specifically inhibits KDM5 (lysine demethylase 5) has been 
shown to suppress cccDNA transcription by removing H3K4me3[111]. Given the 
importance of other epigenetic modifiers such as GCN5 and p300/CBP for cccDNA 
transcriptional activation, and SIRT1, HDAC1 for transcriptional repression and 
silencing, other unexplored epidrugs that inhibit the transcription activation group or 
activate the transcription repression and silencing group may also be tested for 
efficacy in directly silencing cccDNA. While epidrugs directly silence cccDNA in vitro, 
their greatest challenge in utility as an anti-HBV therapeutic depends on their ability 
to specifically target cccDNA in infected cells while sparing host genome to avoid 
carcinogenesis and toxicity[112,113]. In addition, due to compromised functionality of 
HBV-infected livers, many drugs that have safe profiles in the treatment of non-liver 
diseases are contraindicated in CHB. For example, the Food and Drug Administration-
approved DNMT inhibitor, 5-azacytidine commonly used in the treatment of 
hematologic malignancies is contraindicated in patients with advanced liver cancer to 
control HBV infection due to hepatotoxicity[114]. Thus, epidrugs need to be carefully 
evaluated for safety and suitability in the treatment of HBV infections.

Targeted degradation of HBV products
To avoid drug-induced toxicity, approaches that directly target HBV products 
(cccDNA, RNA and proteins) are being developed. One such approach is to directly 
degrade cccDNA using CRISPR/Cas9 (clustered regularly interspaced short 
palindromic repeats)/CRISPR-associated protein 9) DNA editing machinery, where 
guide RNA-directed gene editing of cccDNA specifically results in its erroneous repair 
by non-homologous end-joining which cleaves and/or mutates cccDNA. This has been 
shown to effectively reduce cccDNA copies and is followed by concomitant clearance 
of HBs, HBc and HBe expression in mice with humanized liver[115,116] and multiple 
human liver cell lines[117,118]. While the cccDNA-targeting system is being developed 
and improved for clinical use, a major concern for this strategy is the generation of off-
target double-strand breaks in the host genome that may facilitate HBV genomic 
integration to cause liver cancer. A suggested solution for this is to tether impaired 
Cas9 to APOBECs so that cccDNA may be mutated by base-changes instead of strand-
breaks[119], highlighting again the importance of APOBECs in the role of targeted 
cccDNA degradation.

Another approach that has potentially fewer off-target effects is to specifically 
destroy HBV proteins that disrupt the IFN signalling pathway. Cell-penetrating 
monoclonal antibodies (mAb) have been developed for such purpose. For example, the 
genetically engineered antibody 9D11-Tat, formed by fusing a cell-penetrating peptide 
on the C-terminus of the heavy chain of a mAb specific to HBx, can target HBx for 
proteosomal degradation[120]. Alternatively, the transcripts for HBV proteins may be 
targeted for degradation by small interfering RNA (siRNA) duplexes[121]. siRNA 
therapeutics are already in clinical trials and currently assessed for efficacy and safety. 
siRNA candidates ARC-520, JNJ-3989 (Arrowhead Pharmaceuticals), and GSK3389404 
(Ionis/GlaxoSmithKline)[122-124] have displayed promising efficacy in clearing viral 
transcripts to reduce HBs and HBV DNA production. Small molecules may also 
achieve the same effect by reducing HBV transcripts. Of note, the small molecule 
RG7834 was found to be even more potent than using the current clinical therapeutic 
agent entecavir in reducing HBs levels in cell culture model and HBV-infected human 
liver chimeric uPA-SCID mice[125,126]. With increased interest in natural compounds and 
their potential antiviral functions, curcumin was shown to reduce the expression of 
HBe and HBs[127] which antagonizes the IFN signalling cascade. Another natural 
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compound, Dicoumarol, can enhance HBx degradation. It inhibits NQO1 to de-
stabilize its interaction with HBx, rendering it susceptible to the action of 
proteasomes[128]. With such promising new candidate drugs for tackling HBV, 
combination therapy that couples IFN treatment with these HBV protein-targeting 
drugs have been proposed to be hopeful for achieving cccDNA elimination without 
giving HBV the chance to evade the IFN response.

Clinical updates on the use of IFNs
Neither NAs nor IFNs alone can achieve effective HBV elimination in majority of HBV 
carriers. However, their mechanisms of action complement one another to potentially 
achieve viral elimination. NAs are effective in suppressing viral titre in most patients, 
allowing IFNs to effectively mount a cellular immune response in a less immuno-
tolerant environment when HBV titre is decreased, and concurrently allow IFN-
mediated intracellular antiviral mechanisms to effectively act against HBV and its 
cccDNA with less antagonistic effects from decreased HBV titre. As such, combination 
therapy is increasingly explored, with many experimenting the types of combinations 
that can be administered (Table 3). Combinations explored include NA monotherapy 
followed by IFN monotherapy or vice versa, periods of monotherapy followed by 
periods of IFN and NA co-administration, or co-therapy followed by monotherapy. 
Interestingly, the efficacies of combination therapy differ greatly. When NA 
monotherapy is switched to IFN monotherapy, higher rates of HBe and HBs 
seroconversion are observed together with lower relapse rates. Simultaneous 
administration of NAs and IFNs for more than 24 wk, followed by sustained NA 
treatment gives very high HBe seroconversion rate of 50%, accompanied by the loss of 
HBs expression in 16% patients. This is a remarkable feat considering the loss of HBs is 
usually less than 5% with NA or IFN monotherapy (Table 1). In contrast, multiple 
reports show that simultaneous administration of NAs and IFN yield conflicting 
results, with many studies showing little benefit from adding IFNs into the regime of 
NA treatment[129,130]. Further large-scale clinical studies are needed to ascertain the 
differences in these findings.

CONCLUSION
It is widely accepted that elimination or silencing of cccDNA is necessary to cure HBV 
infections so that no active template remains for HBV to reactivate. It is possible for 
IFNs to achieve this through induction of ISGs, primarily APOBECs that specifically 
target cccDNA for degradation. IFN signalling also results in the recruitment of 
epigenetic modifiers that render cccDNA in a transcriptionally repressed and silent 
state. However, HBV prevents these by inhibiting IFN signalling through upregulating 
negative regulators of IFN signal transduction such as SOCS2, and sequestration of 
factors that transduce IFN signalling. Thus, to achieve an anti-HBV response that 
targets cccDNA specifically, drugs that enhance and sustain the anti-cccDNA effects of 
IFN signalling and drugs that target HBV products that disrupt these IFN-mediated 
mechanisms need to be developed. Fortunately, many of the anti-cccDNA mechanisms 
are not unique to HBV infection. Drugs known to modulate these IFN-mediated 
pathways can be re-purposed and tested for efficacy in suppressing HBV replication 
and cccDNA levels. These include LTβR agonists and other cytokines that serve as 
alternative pathways to strengthen IFN-mediated APOBEC expression, inhibitors in 
the treatment of type II diabetes that act on SOCS proteins to prevent dampening of 
IFN signalling transduction, and epidrugs that render cccDNA transcriptionally silent. 
These drugs may be used together with current HBV therapies, new anti-HBV drugs 
in the pipelines such as cell-penetrating antibodies, cccDNA-targeting CRISPR/Cas9 
systems and even natural compounds that directly target HBV proteins that disrupt 
IFN signalling for degradation. Hopefully, the success of these novel strategies would 
materialize for the eradication of HBV.
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Table 3 Updates on combination therapy

Treatment % loss of HBV markers % seroconvert
Ref.

Type Schedule HBs HBe rcDNA cccDNA α-HBs α-HBe
% normal 
ALT

% HBV 
reactivation

Hagiwara 
et al[160]

Sim Combi: 48 wk 4 60 62 85 - 60 77 38

Sim Combi: 48 wk 9 - 58 - - 30 73 -

Mono IFN: 48 wk 6 - 31 - - 25 56 -

Add IFN: 12 wk; +Combi: 
36 wk; +NA: 12 wk

16 - 72 - - 50 78 -

Zhang et al[63]

Add IFN: 24 wk; +Combi: 
24 wk; +NA: 24 wk

9 - 69 - - 31 78 -

Swi NA: ≥ 2 yr +IFN: 60 
wk

33 91 n.a. - 26 65 n.a. -Huang et al[48]

Mono NA: ≥ 2 yr 0 38 n.a. - 0 22 n.a. -

Swi NA: ≥ 4 yr +IFN: 48 
wk

36 n.a. n.a. - 27 n.a. - 25Zhou et al[49]

Mono NA: ≥ 5 yr 4 n.a. n.a. - 0 n.a. - 58

HBV: Hepatitis B virus; rcDNA: Relaxed circular DNA; cccDNA: Covalently closed circular DNA; ALT: Alanine aminotransferase; NA: 
Nucleoside/nucleotide analogue; IFN: Interferon; n.a.: Not applicable; Sim: Simultaneous therapy; Add: Add-on therapy; Mono: Monotherapy; Swi: Switch 
therapy.
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