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Abstract
The landscape of gastrointestinal endoscopy continues to evolve as new techno-
logies and techniques become available. The advent of image-enhanced and 
magnifying endoscopies has highlighted the step toward perfecting endoscopic 
screening and diagnosis of gastric lesions. Simultaneously, with the development 
of convolutional neural network, artificial intelligence (AI) has made un-
precedented breakthroughs in medical imaging, including the ongoing trials of 
computer-aided detection of colorectal polyps and gastrointestinal bleeding. In 
the past demi-decade, applications of AI systems in gastric cancer have also 
emerged. With AI’s efficient computational power and learning capacities, 
endoscopists can improve their diagnostic accuracies and avoid the missing or 
mischaracterization of gastric neoplastic changes. So far, several AI systems that 
incorporated both traditional and novel endoscopy technologies have been 
developed for various purposes, with most systems achieving an accuracy of 
more than 80%. However, their feasibility, effectiveness, and safety in clinical 
practice remain to be seen as there have been no clinical trials yet. Nonetheless, 
AI-assisted endoscopies shed light on more accurate and sensitive ways for early 
detection, treatment guidance and prognosis prediction of gastric lesions. This 
review summarizes the current status of various AI applications in gastric cancer 
and pinpoints directions for future research and clinical practice implementation 
from a clinical perspective.

Key Words: Artificial intelligence; Diagnostic; Therapeutic; Endoscopy; Gastric cancer; 
Gastritis

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Artificial intelligence-assisted endoscopy can assist physicians in the 
screening and diagnosis of gastric cancer. Most of the systems developed so far, 
applied in images and videos and using white light imaging and narrow-band imaging 
endoscopies, have achieved accuracies and sensitivities of at least 80%. However, the 
efficacy of artificial intelligence applications in gastric cancer depends on its intended 
role in clinical practice, and there have not been any attempts of clinical trials yet. This 
review summarizes the existing artificial intelligence applications in gastric cancer and 
pinpoints future research directions for their clinical practice implementation.

Citation: Hsiao YJ, Wen YC, Lai WY, Lin YY, Yang YP, Chien Y, Yarmishyn AA, Hwang 
DK, Lin TC, Chang YC, Lin TY, Chang KJ, Chiou SH, Jheng YC. Application of artificial 
intelligence-driven endoscopic screening and diagnosis of gastric cancer. World J 
Gastroenterol 2021; 27(22): 2979-2993
URL: https://www.wjgnet.com/1007-9327/full/v27/i22/2979.htm
DOI: https://dx.doi.org/10.3748/wjg.v27.i22.2979

INTRODUCTION
Diagnostic and therapeutic endoscopies play a major role in the management of gastric 
cancer (GC). Endoscopy is the mainstay for the diagnosis and treatment of early 
adenocarcinoma and lesions and the palliation of advanced cancer[1-5]. GC, being the 
fifth most common cancer and the third leading cause of cancer-related deaths 
worldwide, affects more than one million people and causes approximately 780000 
deaths annually[6-10]. Continued development in endoscopy aims to strengthen its 
quality indicators. These developments include using higher resolution and 
magnification endoscopies, chromoendoscopy and optical techniques based on the 
modulation of the light source, such as narrow-band imaging (NBI), fluorescence 
endoscopy and elastic scattering spectroscopy[11-13]. New tissue sampling methods to 
identify the stages of a patient’s risk for cancer are also being developed to decrease 
the burden on patients and clinicians during endoscopy.

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
https://www.wjgnet.com/1007-9327/full/v27/i22/2979.htm
https://dx.doi.org/10.3748/wjg.v27.i22.2979
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Statistically, the relative 5-year survival rate of GC is less than 40%[7,9,14,15], often 
attributed to the late onset of symptoms and delayed diagnosis[10]. Although early 
diagnosis is difficult as most patients are asymptomatic in the early stage, the 
diagnosis point largely determines the patient’s prognosis[16,17]. In other words, 
endoscopic detection of GC at an earlier stage is the only and most effective way to 
reduce its recurrence and to prolong patient survival. This early diagnosis of GC 
provides the opportunity for minimally invasive therapy methods such as endoscopic 
mucosal resection or submucosal dissection[18-20]. The 5-year survival rate was 
reported to be more than 90% among patients with GC detected at an early stage[21-
23]. Yet, the false negative rate of GC detected by esophagogastroduodenoscopy, the 
current standard diagnostic procedure, was reported to be between 4.6% and 25.8%
[24-29]. In terms of the common diagnostic methods, esophagogastroduodenoscopy is 
the preferred diagnostic modality for patients with suspected GC; the combination of 
lymph node dissection, endoscopic ultrasonography and computed tomographic 
scanning is involved in staging the tumor[30,31]. From the differential diagnosis 
between GC and gastritis, prediction of the horizontal extent of GC to characterizing 
the depth of invasion of GC, the early abnormal symptoms of GC and its advanced 
aggressive malignancy as well as the heavy workload of image analysis present ample 
inevitable challenges for endoscopists[32-34]. With large variations in the diagnostic 
ability of endoscopists, long-term training and experience may not guarantee their 
consistency and accuracy of diagnosis[35-37].

In recent years, artificial intelligence (AI) has caught considerable attention in 
various medical fields, including skin cancer classification[38-41], diagnosis in 
radiation oncology[42-45] and analysis of brain magnetic resonance imaging[46-49]. 
Although its applications have shown impressive accuracy and sensitivity identifying 
and characterizing imaging abnormalities, its improved sensitivity also meant the 
detection of subtle and indeterminately significant changes[50,51]. For example, in the 
analysis of brain magnetic resonance imaging, despite the promise of early diagnosis 
with machine learning, the relationship between subtle parenchymal brain alterations 
detected by AI and its neurological outcomes is unknown in the absence of a well-
defined abnormality[52]. In other words, the use of AI in diagnostic imaging in various 
medical fields is continuously undergoing extensive evaluation.

In the field of gastroenterology, AI applications in capsule endoscopy[53-56] and in 
the detection, localization and segmentation of colonic polyps have been reported as 
well[57-59]. In particular, in the late 2010s, there was an explosion of interest in GC. 
The use of AI has proven to provide better diagnostic capabilities, although further 
validation and extensions are necessary to augment their quality and interpretability. 
An AI system’s quality is often described with statistical measures of sensitivity, 
specificity, positive predictive value and accuracy.

Among the different AI models, the convolutional neural network (CNN) is a 
method most commonly used in medical imaging[60,61] as it allows the detection, 
segmentation and classification of image patterns[62] (Figure 1). CNN uses the 
mathematical operation of convolution to classify the images after recognizing 
patterns from the raw image pixel. Because the 7-layer Le-Net-5 program was first 
pioneered by LeCun et al in 1998, CNN architectures have been rapidly developing. 
Today, other widely-used CNNs include AlexNet (2012) with about 15.3% error rate, 
22-layer GoogLeNet (2014) with a 6.67% error rate but only 4 million parameters, 19-
layer visual geometry group (VGG) Net (2014) with 7.3% error rate and 138 million 
parameters, and Microsoft’s ResNet (2015) with an error rate of 3.6% that can be 
trained with as many as 152 layers[63-65]. While scholars have lauded AI for the 
potential and performance it has displayed, some have cast doubts on its generaliz-
ability and role in the holistic assessment of gastric abnormalities.

In the beginning of an AI-assisted diagnostic imaging revolution, we have to 
anticipate and meticulously assess the potential perils, in the context of its capabilities, 
to ensure effective and safe incorporation into clinical practice[66]. In this paper, we 
thereby review the current status of AI applications in screening and diagnosing GC. 
We explore with emphasis on two broad categories: namely, the identification of 
pathogenic infection and the qualitative diagnosis of GC. Finally, we considered some 
directions for further research and the future of its introduction into clinical practice.

IDENTIFICATION OF HELICOBACTER PYLORI INFECTION
AI applications in identifying pathogenic infections have been widely explored[67] 
(Table 1). Gastric epithelium Helicobacter pylori (H. pylori) infection is associated with 
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Table 1 Summary of artificial intelligence applications in predicting Helicobacter pylori infection

Ref. Endoscopic 
modality

Training 
dataset

Validation 
dataset Accuracy Sensitivity Specificity PPV

Huang et al[78], 
2004 

WLI 30 patients 74 patients 85.1 (avg)1 78.8 (avg) 90.2 (avg) -

Shichijo et al[79], 
2017

WLI 32208 images, 
1768 patients

11481 images, 397 
patients

87.7 88.9 87.4 -

Itoh et al[81], 2018 WLI 149 images, 139 
patients

30 images, 30 
patients

- 86.7 86.7 -

Nakashima et al
[84], 2018

WLI, BLI and LCI 162 patients 60 patients - 96.7 - -

Shichijo et al[80], 
2019

WLI 98564 images, 
4494 patients

23699 images, 847 
patients

Infected: 66.0; post-
eradication: 86.0

- - -

Zheng et al[82], 
2019

WLI 11729 images, 
1507 patients

3755 images, 452 
patients

84.5 81.4 90.1 -

Zhu et al[100], 
2019

WLI 790 images 203 images 89.2 76.5 95.6 89.7

Nakashima et al
[85], 2020

WLI, BLI and LCI 12887 images, 395 
patients

120 patients 80.0 (avg)2 61.3 (avg) 89.4 (avg) 74.7 (avg)

1Histological characteristics were assessed for the various antrum, body and cardia locations.
2White light imaging and linked color imaging-based images were both analyzed, with the linked color imaging obtaining significantly higher accuracy, 
sensitivity, specificity and positive predictive value. BLI: Blue laser imaging; LCI: Linked color imaging; PPV: Positive predictive value; WLI: White light 
imaging.

Figure 1 The convolutional neural network model. A convolutional neural network consists of an input layer, a few hidden layers and an output layer. It is 
commonly applied in medical imaging through the detection, segmentation and classification of image patterns.

functional dyspepsia, peptic ulcers, mucosal atrophy, intestinal metaplasia, atrophic 
gastritis and GC[68,69]. Because most gastric malignancies correlate with H. pylori 
infection, identifying H. pylori infection at its early stage is essential in preventing H. 
pylori-aggravated comorbidities[70-74]. Although physicians usually use the C13 urea 
breath test to diagnose H. pylori, most subclinical H. pylori infection cases still rely on 
the time-consuming and invasive biopsy examination to avoid the risk of a false 
negative diagnosis. Moreover, the Kyoto Classification, as the current gold standard of 
H. pylori severity classification, requires examiners to measure lesions by their bare 
eyes. Such a method is a subjective judgment that usually comes with interoperator 
bias[75-77]. Compelled by such ambiguity, researchers have turned to devising a next-
generation semi-automatic standard examination protocol, that is AI.
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As early as 2004, before CNN took the lead in machine-assisted image diagnosis, 
Huang et al[78] deployed the refined feature selection neural network to process 
endoscopic images and return the results of H. pylori infection probability and severity. 
By training AI with 30 patients’ endoscopic images including crops of antrum, body 
and cardia locations of the stomach, they established an algorithm that achieved an 
average of 78.8% sensitivity, 90.2% specificity and 85.1% accuracy in an independent 
cohort of 74 patient images. The overall prediction accuracy was better than the one 
demonstrated by young physicians and fellow doctors, who scored 68.4% and 78.4%, 
respectively. It was the first model demonstrating the potential of computer-aided 
diagnosis of H. pylori infection by endoscope images.

However, since the introduction of the 7-layer Le-Net-5 program by LeCun et al in 
1998, the CNNs have gradually taken over in the field of medical image processing. To 
name a few examples, Shichijo et al[79] used 32208 images of 735 H. pylori-positive and 
1015 H. pylori-negative cases to develop an H. pylori identifying AI system based on the 
architecture of 22-layer GoogLeNet. The sensitivity, specificity, accuracy and time 
consumption were 81.9%, 83.4%, 83.1% and 198 s for the first CNN and 88.9%, 87.4%, 
87.7% and 194 s for the secondary CNN developed, respectively, compared with that 
of 79.0%, 83.2%, 82.4% and 230 min by the endoscopists. Later, still using GoogLeNet, 
Shichijo et al[80] developed another system that further classified the current infection, 
post-eradication and current noninfection statuses of H. pylori, obtaining an accuracy 
of 48%, 84%, and 80%, respectively. In this system, the CNN was trained with 98564 
images from 4494 patients and tested with 23699 images from 847 independent cases. 
Itoh et al[81] also developed a CNN based on GoogLeNet, trained with 149 endoscopic 
images obtained from 139 patients and tested with 30 images from 30 patients, which 
could detect and diagnose H. pylori with sensitivity and specificity of 86.7%. 
Additionally, the use of ResNet CNN architecture was reported by Zheng et al[82] in 
2019, achieving a sensitivity, specificity and accuracy of 81.4%, 90.1% and 84.5%, 
respectively. In this study, the system was trained with 11729 images from 1507 
patients and tested with 3755 images from 452 patients using a 50-layer ResNet-50 
(Microsoft) CNN system and PyTorch (Facebook) deep learning framework.

Recently, AI has also been applied to linked color imaging (LCI) and blue laser 
imaging, two novel image-enhanced endoscopy technologies[83]. It helped diagnose
[84] and classify[85] the H. pylori infection and has shown greater effectiveness. In 
2018, Nakashima et al[84] developed a system on a training set of 162 patients and a 
test set of 60 patients that could diagnose H. pylori infection with an area under the 
curve of 0.96 and 0.95 and sensitivity of 96.7% and 96.7% for blue laser imaging-bright 
and LCI, respectively. Such performance is superior to systems that use conventional 
white light imaging (WLI) (with 0.66 area under the curve and sensitivities as 
mentioned earlier in other studies) as well as that of experienced endoscopists. 
Another 2020 study by the same team also showed that classifying the H. pylori 
infection status (uninfected, infected and post-eradication) by incorporating deep 
learning and image-enhanced endoscopies yields more accurate results. The system 
was trained with 6639 WLI and 6248 LCI images from 395 patients and tested with 
images from 120 patients[85].

However, there are some limitations of AI in identifying H. pylori that remain to be 
overcome amongst the developed systems and findings. First, the histological time 
frame, especially for the eradicated infection, was not considered in the AI systems
[86]. Second, both the training data sets and test data sets were obtained from a single 
center for all existing systems. A continued and even more rigorous external 
validation, which uses more diverse sources of images and endoscopies, is necessary 
to evaluate each system’s generalizability[87,88]. Additionally, the application of CNN 
algorithms is also still confined to the existing models of CNN algorithms (mostly 
GoogLeNet and a few ResNet). Further technical refinements may overcome current 
limitations faced by endoscopists. They also shed light on the possibility of a system 
that distinguishes between H. pylori-infected and H. pylori-eradicated patients, 
determines different parts of the stomach (cardia, body, angle and pylorus) and 
provides real-time evaluations of H. pylori. These will be considerations vital for its 
implementation in clinical practice in the future.

DETECTION OF GC
Besides H. pylori infection, computer-aided pattern recognition with endoscopic 
images has also been applied to diagnose wall invasion depth (Table 2). An accurate 
diagnosis of invasion depth and subsequent staging is the basis for determining the 
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Table 2 Summary of artificial intelligence applications in prediction of invasion depth and differentiation of cancerous areas from 
noncancerous areas

Ref. Application Endoscopic modality Training 
dataset

Validation 
dataset Accuracy Sensitivity Specificity PPV NPV

Kubota et al
[98], 2012

Prediction of invasion 
depth

WLI 344 patients, 
902 images

- 77.2 (T1) - - 80.1 
(T1)

Miyaki et al
[137], 2013

Differentiation of 
cancerous areas from 
noncancerous areas

WLI and magnified FICE 493 images 46 images 85.9 84.8 87.0 86.7 85.1

Hirasawa et al
[99], 2018

Differentiation of 
cancerous areas from 
noncancerous areas

WLI 13584 
images

2296 images, 
69 patients

92.2 92.2 - 30.6 -

Kanesaka et al
[138], 2018

Detection of EGC Magnified NBI 126 images 81 images 96.3 96.7 95.0 98.3 -

Horiuchi et al
[103], 2020

Differentiation of EGC 
from gastritis

Magnified NBI 2570 images 258 images 85.3 95.4 71.0 82.3 91.7

Yoon et al
[101], 2019

Detection of EGC and 
prediction of EGC 
invasion depth

WLI 11686 
images, 800 
patients

- 79.2 77.8 79.3 77.7

Horiuchi et al
[105], 2020

Detection of EGC Magnified NBI 2570 images 174 videos, 
82 patients

85.1 87.4 82.8 83.5 86.7

Li et al[139], 
2020

Differentiation of EGC 
from noncancerous 
lesions

Magnified NBI 2088 images 342 images 90.9 91.2 90.6 90.6 91.2

Nagao et al
[102], 2020

Prediction of invasion 
depth

WLI, nonmagnifying NBI 
and indigo-carmine dye 
contrast imaging (Indigo)

16557 
images, 1084 
patients

- 94.4 89.2 98.7 98.3 91.7

Namikawa et 
al[104], 2020

Differentiation of 
cancerous areas from 
noncancerous areas

WLI, nonmagnifying NBI 
and indigo-carmine dye 
contrast imaging (Indigo)

18410 
images

1459 images 95.9 99.0 93.3 92.5 -

EGC: Early gastric cancers; FICE: Flexible spectral imaging color enhancement; NBI: Narrow-band imaging; NPV: Negative predictive value; PPV: Positive 
predictive value; WLI: White light imaging.

appropriate treatment modality, especially for suspected early GCs (EGC)[89-91]. 
Classified based on the 7th TNM classification of tumors[92,93], EGC is categorized as 
tumor invasion of the mucosa (T1a) or invasion of the submucosa (T1b) stages. While 
endoscopic ultrasonography is useful for T-staging of GC by delineating each gastric 
wall layer[94,95], conventional endoscopy is still arguably superior to endoscopic 
ultrasonography for T-staging of EGC[96,97]. However, there remains room for 
improvement, such as by utilizing AI, to increase its accuracy. In 2012, Kubota et al[98] 
first explored the system with a relatively high sensitivity of 68.9% and 63.6% in T1a 
and T1b GCs, achieving high accuracy, especially in early tumors. The accuracy for T1 
tumors was 77.2% compared to that of 49.1%, 51.0%, and 55.3% for T2, T3 and T4 
tumors, respectively. Another system developed by Hirasawa et al[99] achieved a high 
sensitivity of 92.2% of CNN, though at the expense of a low positive predictive value 
(30.6%). Zhu et al[100] later demonstrated a CNN-computer assisted diagnosis system 
that achieved much higher accuracy (by 17.25%; 95% confidence interval: 11.63-22.59) 
and specificity (by 32.21%; 95% confidence interval: 26.78-37.44) compared to human 
endoscopists. These preliminary findings showed that AI is a potentially helpful 
diagnostic procedure in EGC detection and pointed towards developing an AI system 
that can differentiate between malignant and benign lesions.

Given that the difference in EGC depth in endoscopic images is subtler and more 
difficult to discern, Yoon et al[101] identified that more sophisticated image classi-
fication methods but not merely conventional CNN models are required. The team 
developed a system that classifies endoscopic images into EGC (T1a or T1b) or non-
EGC. This system used the combination of the CNN-based visual geometry group-16 
network pretrained on ImageNet and a novel method of the weighted sum of 
gradient-weighted class activation mapping. This system focused on learning the 
visual features of EGC regions rather than those of other gastric textures, achieving 
both high accuracy of 91.0% and high area under the curve of 0.981. In another study 
in 2020, Nagao et al[102] used the state-of-the-art ResNet50 CNN architecture to 
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develop a system via training the images from different angles and distances. This 
system predicted the invasion depth of GC with an image-based accuracy as high as 
94.5%.

However, when using these AI systems for invasion depth diagnosis, distinguishing 
superficially depressed and differentiated-type intramucosal cancers from gastritis 
remains a challenge. The diagnostic accuracy of determining invasion depth is largely 
affected by its histological characteristics. For instance, the system developed by Yoon 
et al[101] achieved an accuracy of 77.1% for differentiated-type tumors in contrast to 
that of 65.5% for undifferentiated type. Horiuchi et al[103] made a substantial effort 
and developed another system that could differentiate EGC from gastritis using 
magnifying endoscopy with NBI (M-NBI). The system achieved an accuracy of 85.3% 
and sensitivity and negative predictive value of 95.4% and 91.7%. Another attempt 
was made by Namikawa et al[104], who developed a system that was trained by 
gastritis images and tested to classify GC and gastric ulcers. A continued development 
of AI systems that consider the differentiated type histology will shed light on the 
future of AI-assisted differentiation of T1a from T1b GC and that of T1a and T1b 
cancers from the later stages of GC.

To bring AI-assisted systems one step closer to real-time clinical applications, video-
based systems have also been explored. In 2020, Horiuchi et al[105] used the video-
based systems and achieved a comparable accuracy of 85.1% in distinguishing EGC 
and noncancerous lesions. Based on the CNN-CAD system, their system was trained 
with 2570 images (1492 cancerous and 1078 noncancerous images) and tested with 174 
videos. This preliminary success in the video-based CNN-CAD system pointed out the 
potential of real-time AI-assisted diagnosis, which could be a promising technique for 
detecting EGC for clinicians in the future. Early detection of GC means an early 
treatment of endoscopic dissection in accordance with the works promoted by the 
Japanese Gastric Cancer Association since 2014[106].

DISCUSSION
Over the past decade, AI has displayed its potential diagnosing GC to amplify human 
endoscopist capacities. Although the diagnosis of GC requires a holistic set of 
assessments, AI is applicable and helpful in some parts. A system that detects GC with 
high sensitivity regardless of its accuracy in determining invasion depth could provide 
great clinical assistance for physicians to decide if biopsy and endoscopic submucosal 
dissection are necessary. In the near future, there should be some other diagnostic 
procedures that can be explored with AI. For example, macroscopic characteristics, 
namely the “nonextension signs” commonly used to distinguish between SM1 and 
SM2 invasion depths of GCs[107] have yet to be explored with AI.

Clinically, there are also some distinct markers that endoscopists use to evaluate 
gastric surface and color changes. Distinguishing the markers such as changes in light 
reflection and spontaneous bleeding are clinical skills[108,109] that AI could 
potentially learn and interpret. In clinical practice, antiperistaltic agents are suggested 
for polyethersulfone preparation, and indigo carmine chromoendoscopy could help 
diagnose elevated superficial lesions with an irregular surface pattern[110] with which 
their efficacy could be evaluated by real-time AI endoscopy in the near future.

Although several studies have attempted to apply AI in different types of 
endoscopies, ranging from WLI to LCI to blue laser imaging, these studies can also 
continue to extend AI to NBI and other nonconventional endoscopies. For instance, 
endocytoscopy with NBI has shown higher diagnostic accuracy compared to M-NBI 
[78.8% (76.4%-83.0%) vs 72.2% (69.3%-73.6%), P < 0.0001][111]. An AI system that is 
trained with WLI images and tested with NBI images instead will also have clinical 
significance[112,113]. Proposed in 2016 was the Magnifying Endoscopy Simple 
Diagnostic Algorithms for EGC that suggested a systematic approach to WLI 
magnifying endoscopy. It is recommended that if a suspicious lesion is detected, M-
NBI should be performed to distinguish if the lesion is cancer or noncancer[114]. 
According to this algorithm, changing from WLI to M-NBI endoscopy is therefore 
critical for diagnosis, and the future development of AI systems can consider 
accounting for such changes.

In the AI systems developed over the past decade, we summarize the following 
common limitations faced. First, there seems to be a common lack of high-quality 
datasets for machine learning development, a problem faced in clinical practice even 
without AI[115]. Simultaneously, some studies reported that low-quality images result 
in higher chances of misdiagnosis by the AI system[116], and most studies excluded 
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large numbers of poor-quality images[99-101]. The call for cross-validation with 
multicenter observational studies has also been discussed in several studies in hopes of 
picking out any potential overfitting and spectrum bias that is foreseeable in deep 
image classification models[117-119]. Some authors have argued that the AI system 
they have developed is institution-specific and that the validation with the dataset 
from external sources is necessary[103,105]. In this regard, multicenter studies have 
been widely used in other medical fields to evaluate deep learning systems[120-122], 
though there have been no such studies in the field of GC.

Another challenge that remains is seen in the imbalanced class distributions, a 
common classification problem in which the distribution of samples across the known 
classes is biased or skewed. For example, in the study reported by Hirasawa et al[99] in 
2018, there are few samples for the later stages (only 32.5% of samples were T2-T4 
cancers) than for early cancer (67.5% of samples). Such imbalanced classifications pose 
a challenge as machine learning models are primarily designed on the assumption of 
an equal number of samples for each class[123]. Without sufficient samples for certain 
classes of the training dataset, their existence might be misperceived as other classes as 
the AI model becomes more sensitive to classification errors. It may result in poor 
predictive performance, especially for the minority class and subsequently an overall 
increased misdiagnosis rate. For example, in the cases of the AI model for GC staging, 
a misdiagnosis of late-stage cancer for gastritis or nonmalignancy has dangerous 
implications[124-126] if the AI system was used for its diagnosis alone. However, in 
most cases, advanced-stage GC might have already metastasized to other parts of the 
body[127-129], and its diagnosis based only on the AI system alone is unlikely. 
Nonetheless, in the development of AI systems for such medical applications, these 
technical problems of imbalanced classification should not be overlooked. It has been 
discussed by other reviews how modifications can be made to AI models to recognize 
targets, no matter how frequent or rare they are, to minimize the possibility of misdia-
gnosis[130,131].

Overall, the potential for AI applications in GC is extensive yet highly specific. In an 
upcoming era of AI-assisted diagnosis, by combining image information, medical 
history and laboratory data, endoscopists can look forward to the continued 
development of new systems for varying purposes (Figure 2). AI systems are specific 
and unlikely to be generalized[132,133], and it is fallacious to compare a single 
statistical performance measure across different AI systems. The efficacy of an AI 
system depends on the intended role it plays in clinical practice. For example, an AI 
system with a high positive predictive value is desirable in determining which 
multicancer to send for biopsy, while high sensitivity suffices for a system that helps 
differentiate cancerous from noncancerous clinical signs, especially for amateur 
endoscopists. In the foreseeable future, AI can be incorporated in the differential 
diagnosis of the malignancy and stages of gastric lesions, using various endoscopic 
technologies and techniques.

CONCLUSION
Overall, the application of AI in gastroenterology is in its infancy. At present, there 
exist several retrospective models applied in both images and videos and using both 
WLI and NBI endoscopies that have proven to have better performance for the same 
tasks carried out by experienced endoscopists. However, there have not been any 
attempts of clinical trials. In contrast to the ongoing trials for detecting colorectal 
polyps[134-136], AI applications in GC and its corresponding diagnostic methods are 
still preliminary. The limitations of existing efforts point towards the importance of 
continued research in the field that can go a long way in making quicker, more 
accurate and precise evaluations of GC risk. While we witnessed its rapid and steep 
growth in the past decade, future studies are needed to streamline the machine 
learning process and define its role in the computer-aided diagnosis of H. pylori 
infections and GC in real-life clinical scenarios.
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Figure 2 Current status and future research direction for implementation of artificial intelligence-assisted endoscopy in clinical practice. 
In an upcoming era of artificial intelligence-assisted diagnosis, endoscopists can look forward to the continued development of new artificial intelligence systems for 
varying purposes. From determining multicancer via biopsy to real-time endoscopies, artificial intelligence has the potential of assisting physicians to improve their 
diagnostic accuracies.
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