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Abstract
Due its close relationship with obesity, nonalcoholic fatty liver disease (NAFLD) 
has become a major worldwide health issue even in childhood. The most accepted 
pathophysiological hypothesis is represented by the “multiple hits” theory, in 
which both hepatic intracellular lipid accumulation and insulin resistance mainly 
contribute to liver injury through several factors. Among these, lipotoxicity has 
gained particular attention. In this view, the pathogenic role of different lipid 
classes in NAFLD (e.g., sphingolipids, fatty acids, ceramides, etc.) has been 
highlighted in recent lipidomics studies. Although there is some contrast between 
plasma and liver findings, lipidomic profile in the NAFLD context provides novel 
insights by expanding knowledge in the intricate field of NAFLD pathophy-
siology as well as by suggesting innovative therapeutic approaches in order to 
improve both NAFLD prevention and treatment strategies. Selective changes of 
distinct lipid species might be an attractive therapeutic target for treating NAFLD. 
Herein the most recent evidence in this attractive field has been summarized to 
provide a comprehensive overview of the lipidomic scenario in paediatric 
NAFLD.
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Core Tip: Insightful data from lipidomics studies have recently expanded knowledge 
about nonalcoholic fatty liver disease pathophysiology. In fact, different lipids have 
been found to exert specific pathogenic roles in liver injury through several pathways 
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(in particular by impairing insulin signalling). Given the cardiometabolic burden of 
nonalcoholic fatty liver disease even in childhood, lipidomics findings might improve 
strategies for nonalcoholic fatty liver disease treatment by providing novel therapeutic 
targets.

Citation: Di Sessa A, Riccio S, Pirozzi E, Verde M, Passaro AP, Umano GR, Guarino S, 
Miraglia del Giudice E, Marzuillo P. Advances in paediatric nonalcoholic fatty liver disease: 
Role of lipidomics. World J Gastroenterol 2021; 27(25): 3815-3824
URL: https://www.wjgnet.com/1007-9327/full/v27/i25/3815.htm
DOI: https://dx.doi.org/10.3748/wjg.v27.i25.3815

INTRODUCTION
An increasing prevalence of nonalcoholic fatty liver disease (NAFLD) up to 25% has 
been found in adults, but alarming paediatric data have also been reported[1-3]. Due 
to the obesity epidemic, NAFLD has become the most prevalent liver chronic disease 
in childhood, affecting 3%-10% of the general paediatric population and up to 50% of 
obese children with a relevant cardiometabolic burden[2,4]. It includes different 
degree of hepatic steatosis ranging from simple fat accumulation to steatohepatitis and 
fibrosis, but its pathogenesis remains to be fully elucidated[1].

To date, “multiple hits” have been recognized in the NAFLD pathophysiology, with 
a pivotal role of the hepatic intracellular lipid accumulation and insulin resistance 
favouring liver damage through several factors such as lipotoxicity, oxidative stress, 
inflammation, genetics, gut axis, metabolic, and dietary factors[3,5]. Among these 
pathogenic factors, lipotoxicity has gained particular remarkable attention[6]. Lipid 
induced oxidative stress, inflammation, and cell death have been largely studied as 
major players of this process, and their interplay represent a critical step in both 
NAFLD development and progression[6-8]. Of note, it must be considered that the 
chronic inflammation closely related to lipotoxicity represents one of the most 
important features of several metabolic diseases such as obesity and type 2 diabetes, 
resulting in a dangerous “vicious circle” with dramatic clinical implications[6]. In fact, 
lipotoxicity affects a broad range of tissues such as adipose tissue, heart, brain, 
pancreatic islets, and skeletal muscle with a complex interrelation favouring the 
development of metabolic syndrome[6].

Although intrahepatic fat accumulation has been widely accepted as the hallmark of 
NAFLD, overwhelming evidence showed that both quantity and quality of accu-
mulated hepatic lipids play a pathogenic role in NAFLD[7,9-12]. In particular, specific 
lipid classes such as sphingosine, diacylglycerols, and ceramides act as liver damaging 
agents through multiple pathways[6,7,9,13,14].

To date, the growing interest in lipidomic studies has provided meaningful data 
regarding lipid profiles involved in the pathogenesis of liver injury and its modulation 
as a potential therapeutic target[8,11,12-14]. In view of the clinical relevance of these 
findings in the NAFLD treatment scenario, evidence is currently available in adults 
and in children[15-19] (Tables 1 and 2).

We aimed to summarize the most recent findings regarding lipidomic studies in 
paediatric NAFLD by providing an overview of the different lipid class and their 
potential therapeutic implications.

LIPIDS IN NAFLD 
Triacylglycerols (TAG) are the most representative lipidic class accumulated in the 
liver of NAFLD patients. Nevertheless, they would seem to be protective against 
lipotoxicity due to lipid overload. Lipotoxicity is mainly caused by increasing levels of 
saturated fatty acids (SFAs), free cholesterol, glycerophospholipids, sphingolipids, and 
deficient levels of phospholipids, u-3 polyunsaturated fatty acids (PUFAs), or PUFA-
derived specialized proresolving mediators[20,21]. Monounsaturated fatty acids 
(MUFAs), lysophosphatidylcholine (LPC), and ceramide are also increased while 
phosphatidylcholine (PC) is reduced in nonalcoholic steatohepatitis (NASH)[22,23].

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
https://www.wjgnet.com/1007-9327/full/v27/i25/3815.htm
https://dx.doi.org/10.3748/wjg.v27.i25.3815
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Table 1 Comparison between adult and paediatric lipidomic findings in nonalcoholic fatty liver disease

Lipid class Changes in adult NAFLD patients Changes in paediatric NAFLD patients

SFAs Increased in liver[31] and in plasma[24] Increased in liver and in plasma[32]

MUFAs Increased in liver[35,36] and in plasma[25] Increased in liver and in plasma[32]

PUFAs Increased total PUFAs in liver[31] and n-6 LCPUFA in liver 
phospholipids[35]. Decreased LCPUFA of the n-6 and n-3 
series in liver TAG, n-3 LCPUFA in phospholipids, total 
PUFA[35,36], n-3 PUFA[35], n-6 PUFA[32]

Increased in liver and in plasma[32]

PUFAs derived Increased 5-HETE, 8-HETE, 11-HETE, and 15-HETE in 
NAFLD and NASH patients[27]. Increased 11,12-diHETrE, 
dhk PGD2, 20-COOH AA in NASH patients[26]

Increased EDPs, EEQs, EETs with progression of 
steatosis; reduced with progression of fibrosis[32]

TAG Increased in liver[31] and in plasma[25] Increased (TG[O]); TG (O-52:0), TG (O-52:1), TG (O-52:2), 
TG (O-52:3), TG (O-54:1), TG (O-54:2), TG (O-56:1) and 
TG (O-56:2) in serum[19]

DAG Increased in liver[31] and in plasma[25] No available data

FC Increased in liver[31] No available data

PC Reduced in the liver[31], conflicting data for changes in serum
[28,29]

Reduced serum alkyl/alkenyl-phosphatidylcholine 
(PC[O]) levels[19]

LPC No statistically significant changes in plasma and serum[28,
29]

No available data

PE Decreased in liver[22] and increased in serum of NASH 
patients[28]

Increased PE in serum[19]

LPE Decreased in serum of patients with NAFLD and NASH[28] Increased LPE (20:3) and LPE (22:5); decreased [LPE(O)]) 
in serum[19]

PS Reduced in liver[22], increased in plasma[29] No available data

PI Reduced in liver[22], increased in plasma[29] No available data

PL No change in liver[56]; decreased in plasma of NASH patients
[25,57]

No available data

SM Conflicting results in NAFLD and NASH patients[22,28,29,31,
37,51]

Increased SM (d39:0), SM (d41:0) in serum[19]

CE Increased in liver and in plasma[51,64,65] Increased in serum[20]

20-COOH AA: 20-carboxy arachidonic acid; CE: Ceramides; DAG: Diacylglycerols; dhk PGD2: 13,14-dihydro-15-keto prostaglandin D2; diHETrE: 
Dihydroxy-eicosatrienoic acid; EDP: Epoxyeicosapentaenoic acid; EET: Epoxyeicosatrienoic acid; EEQ: Epoxyeicosatetraenoic acid; FC: Free cholesterol; 
HETE: Hydroxyeicosatetraenoic acid; LCPUFA: Long chain polyunsaturated fatty acid; LPC: Lysophosphatidylocholine; LPE: Lysopho-
sphatidylethanolamine; LPE(O): Alkyl/alkenyl-lysophosphatidylethanolamine; MUFAs: Monounsaturated fatty acids; NAFLD: Nonalcoholic fatty liver 
disease; NASH: Nonalcoholic steatohepatitis; PC: Phosphatidylcholine; PE: Phosphatidylethanolamine; PI: Phosphatidylinositol; PL: Plasmalogens; PS: 
Phosphatidylserine; PUFAs: Polyunsaturated fatty acids; SFAs: Saturated fatty acids; SM: Sphingomyelin; TAG: Triacylglycerols; TG(O): Alkyl-
diacylglycerols.

Of interest, lipidomic studies conducted in both plasma and serum of NAFLD 
patients reported overlapping results with those found in the liver. In addition, 
increased levels of total SFA in phospholipids[24], metabolites of lipoxygenase, 5- 
hydroxyeicosatetraenoic acid (HETE), 8-HETE[25], 15-HETE, 5,6 dihydroxy- eicosa-
trienoic acid[26], palmitoleic acid in cholesteryl ester[27], PC and sphingomyelin[28], 
phosphatidylserine, and phosphatidylinositol[29] were found in plasma and serum of 
NAFLD patients. On the other hand, decreased levels of eicosanoic acid (C20: 0), cis-
11-octadecenoic acid (C18: 1n-7), docosahexaenoic acid in phospholipids[24], 12,13-
dihydroxy-9-octadecenoic acid[26], and lysophospatidylethanolamine[28] have been 
described.

Fatty acids
The increased share of free fatty acids reaching the liver in NAFLD has been related to 
three main mechanisms: lipolysis of adipose tissue, de novo lipogenesis, and diet[30].

Both hepatic[31] and plasma[24] findings from adults and children[32] with NAFLD 
showed an increased content of SFAs. Of concern, SFAs seem to be one of the major 
players involved in lipotoxicity. In fact, evidence linked inhibition (genetic or pharma-
cological) of the enzyme converting SFAs to MUFAs, namely stearoyl-CoA desaturase-
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Table 2 Main findings of lipidomic studies in paediatric nonalcoholic fatty liver disease

Ref. Study design 
and methods Population (n) Main findings

Wasilewska et 
al[20], 2018

Prospective 
study

80 children at median age 12 (7-17 yr) Higher total serum CE concentration in NAFLD patients, compared to the 
controls and of certain CEs (C14:0, C16:0, C16:1, C18:0, C18:1, C22:0, C24:0). 
Total CE concentration was positively correlated with HOMA-IR and insulin 
levels

Draijer et al
[8], 2020

Case-control 
study

21 children with obesity and steatosis 
and 21 with only obesity. Mean age of 
NAFLD patients: 14.8 yr; mean age of 
non-NAFLD patients 14.7 yr

Statistically significant alterations in 5 major lipid classes [TG(O), PE, PE(O), 
LPE(O), PC(O)] and 12 individual lipid species

Kalveram et al
[32], 2021 

Prospective 
study

40 children with biopsy-proven 
NAFLD. Mean age 14.2 ± 2.3 yr

Hepatic epoxyeicosanoids levels increased with higher degrees of steatosis. 
CYP epoxygenase activity increased, protein level, and activity of sEH 
decreased. In contrast, hepatic epoxyeicosanoids decreased with higher stages 
of fibrosis, with a decrease of CYP epoxygenase activity and protein 
expression

CE: Ceramides; CYP: Cytochrome P450; HOMA-IR: Homeostasis model assessment; NAFLD: Nonalcoholic fatty liver disease; LPE(O): Alkyl/alkenyl-
lysophosphatidylethanolamine; PC(O): Alkyl/alkenyl-phosphatidylcholine; PE: Phosphatidylethanolamine; PE(O): Alkyl/alkenyl-phospha-
tidylethanolamine; sEH: Soluble epoxide hydrolase; TG(O): Alkyl-diacylglycerols.

1, to different processes such as hepatocyte apoptosis, lipotoxicity, and development of 
steatohepatitis[33]. Consequently, balancing between MUFAs and SFAs might repre-
sent a central player in the progression from isolated hepatic steatosis to progressive 
steatohepatitis and fibrosis[34].

MUFAs were also found to be increased in liver and plasma of both adult and 
paediatric patients with NAFLD[25,32,35-37]. This lipid class has been considered as 
less lipotoxic than SFAs because channelling free fatty acids into MUFAs allow their 
incorporation into triglycerides and storage in lipid droplets[34].

The long chain PUFAs such as eicosapentaenoic, docosahexanoic, and arachidonic 
acids were decreased in liver and plasma of patients with NAFLD[29,31,35,36]. This 
reduction could be due to impairments in dietary intake or the biosynthesis process. A 
pivotal pathogenic role in NAFLD progression (from simple steatosis to NASH) has 
been attributed to decreased activity of fatty acid desaturase 1, an enzyme involved in 
the PUFAs metabolism[6].

Through the activity of hepatic cytochrome P450 enzymes, PUFAs derived from 
monoepoxides are collectively termed epoxyeicosanoids[38-40]. Those deriving from 
arachidonic acid (epoxyeicosatrienoic acid), eicosapentaenoic acid (epoxyeicosatet-
raenoic acid), and docosahexaenoic acid (epoxyeicosapentaenoic acid) have anti-
inflammatory, antisteatotic, and antifibrotic properties[41]. In a recent paediatric study
[32], 40 youths with biopsy-proven NAFLD underwent lipidomic evaluations by 
analysing liver tissue and blood samples. Upregulated hepatic epoxyeicosatrienoic 
acid, epoxyeicosatetraenoic acid, and epoxyeicosapentaenoic acid levels were found in 
children with steatosis. This might be due to reduced activity and protein expression 
of soluble epoxide hydrolase, metabolizing epoxyeicosanoids to vicinal diols. On the 
contrary, at the stage of fibrosis the aforementioned epoxyeicosanoids were found to 
be decreased in liver and plasma because of a potential reduction of cytochrome P450 
epoxygenase expression. Therefore, the cytochrome P450 epoxygenase/soluble 
epoxide hydrolase pathway seem to represent a potential innovative pharmacologic 
target for NAFLD treatment.

Proinflammatory molecules are also derived from PUFAs. Puri et al[25] found 
increased plasma levels of arachidonic acid (5-HETE, 8-HETE, 11-HETE, and 15-HETE) 
lipoxygenase metabolites in NAFLD and NASH patients compared to lean normal 
controls. Moreover, plasma arachidonic acid-derived metabolites 11,12-dihydroxy- 
eicosatrienoic acid, 13,14-dihydro-15-keto prostaglandin D2, and 20-carboxy arachi-
donic acid levels were found to be significantly increased by Loomba et al[26] in 
subjects with NASH than those with NAFLD.

With respect to the wide cardiometabolic burden of NAFLD, changes in FA 
metabolism have also been linked to its related comorbidities including obesity, 
diabetes, and cardiovascular risk[20,28,29].

Neutral lipids
The hallmark of NAFLD is the accumulation of lipid droplets in the hepatocytes 
containing TAG[7]. TAGs were found to be increased in both plasma and liver of 
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patients with NAFLD compared to healthy controls[25,31]. They represent a less toxic 
form of storing lipids. The inhibition of diacylglycerol acyltransferase 2, the enzyme 
catalysing the final step in the assembly of TAG, reduced steatosis but at the same time 
increased hepatic free fatty acids, lipid peroxidation, oxidative stress, necroinflam-
mation, and fibrosis[42]. In mice defective for perilipin-5, a protein binding lipid 
droplet and regulating TAG storage, the reduction in the size of lipid droplets caused 
increased lipolysis and lipotoxicity[43].

Diacylglycerols (DAG) were also increased in plasma and liver of patients with 
NAFLD[25,31], and the ratio of TAG/diacylglycerols seemed to increase in the 
evolution from NAFLD to NASH[31].

In a paediatric study, Draijer et al[8] performed lipidomic analyses in plasma 
samples of 21 children with obesity and proton magnetic resonance spectroscopy-
detected hepatic steatosis compared to the lipidome of 21 samples of nonsteatotic 
subjects with obesity. The authors found an overall significant increase in NAFLD 
patients of serum alkyl-diacylglycerols [TG(O)], in particular 8 TG(O) species (TG(O-
52:0), (TG(O-52:1) TG(O-52:2), TG(O-54:1), TG(O-54:2), TG(O-52:3), TG(O-56:1) and 
TG(O-56:2)].

Finally, it should also be noted that the amount of hepatic free cholesterol increases 
with the progression to NASH, without an increase in cholesterol esters[31]. It is 
considered a cytotoxic lipid disrupting membrane integrity and inducing oxidative 
stress, mitochondrial dysfunction, and apoptosis[44].

Glycerophospholipids
Glycerophospholipids represent a significant lipidic fraction of the cell membrane. 
Reduced hepatic PC levels were observed in both NAFLD and NASH subjects[22,31]. 
However, conflicting data about alterations in serum were reported[6]. Low hepatic 
levels of PC influenced circulating very low-density lipoproteins, which are therefore 
reduced with consequent hepatic accumulation of TAG[45,46]. Low levels also 
increased de novo lipogenesis and formation of lipid droplets in hepatocytes by 
activation of sterol regulatory element-binding protein 1[47].

Liver phosphatidylethanolamine (PE) content was found to be decreased among 
subjects with NASH[22], while serum PE increased[28]. The enzyme phosphatidyleth-
anolamine n-methyltransferase catalyses the reaction converting PE to PC. Studies 
reported that a loss-of-function polymorphism in the phosphatidylethanolamine n-
methyltransferase gene predisposed to NAFLD susceptibility[48]. Lower hepatic 
PC/PE ratio was also reported in NAFLD individuals. Interestingly, a reduced PC/PE 
ratio in red blood cell membranes has been found to enhance predisposition to 
NAFLD[49]. As a consequence, loss of membrane integrity and higher permeability to 
proinflammatory factors were observed[50].

Paediatric data reported significantly increased PE serum levels and reduced 
specific etherphospholipid classes such as alkyl/alkenyl-phosphatidylethanolamine, 
alkyl/alkenyl-lysophosphatidylethanolamine [LPE(O)], and alkyl/alkenyl-phospha-
tidylcholine in subjects with NAFLD. When looking at individual lipid species, two 
LPE species such as LPE (20:3) and LPE (22:5) were found to be increased[19].

Phosphatidylserine and phosphatidylinositol were decreased in the liver[22] but 
increased in the plasma[29] of NAFLD patients. However, these results are conflicting 
in other studies[25,28,51].

LPC was increased in the liver of NASH patients[6], while no statistically significant 
changes in plasma and serum of LPC content were reported in patients with NAFLD 
or NASH[28,29]. LPC derived from PC by the action of lipoprotein associated 
phospholipase A2 at the intracellular level, whereas in the extracellular milieu by 
lecithincholesterol acyltransferase activity. In patients with NAFLD, phospholipase A2 
levels were found to be decreased, while those of lecithincholesterol acyltransferase 
increased[52,53]. LPC downregulates genes involved in fatty acid oxidation, upre-
gulates genes involved in cholesterol biosynthesis, and promotes apoptosis of 
hepatocytes[54]. Inhibitors of phospholipase A2 decreased palmitate-induced 
lipotoxicity and cell apoptosis[54,55].

In the liver of NAFLD patients no change in plasmalogen content was reported[56], 
while this class was decreased in the plasma of NASH patients[25,57]. Animal data 
demonstrated that a specific mechanism (involving peroxisome proliferator-activated 
receptor-alpha) sustained by endogenous hepatic plasmalogens may prevent liver 
steatosis and NASH[58].

Circulating plasmalogen levels, particularly 16:0 and 18:1, were found to be reduced 
in NAFLD individuals with the GG-genotype of patatin-like phospholipase domain-
containing 3 (PNPLA3) compared to those with the C or CG allele[28]. The PNPLA3 
gene is highly expressed in hepatic stellate cells of the liver and adipose tissue and 
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encodes adiponutrin, a protein exerting both lipase and acyltransferase activity[59]. 
Adiponutrin variant p.I148M [rs738409 (G)] enhanced PUFA content of TAGs and 
diacylglycerols and negatively affected both PC synthesis and lipid droplet hydrolysis
[60].

An elegant paediatric study examining NAFLD genetic factors demonstrated that 
PNPLA3 rs738409 (G) represented the strongest determinant of the presence of 
NAFLD as compared to healthy controls and conferred the highest risk of severity of 
steatosis. Interestingly, a specific steatosis pattern (including an increased percentage 
of portal inflammation) was reported in homozygous PNPLA3 rs738409 (G) patients
[61].

In addition to NAFLD, a significant association of these compounds has been found 
in a larger cardiometabolic-related context such as obesity and cardiovascular disease
[51,57].

Sphingolipids
Sphingolipids are structural components of cellular membranes and signalling 
molecules in mammalian cells. Conflicting results were found about sphingomyelin 
(SM) trends in NAFLD and NASH patients[22,28,29,37,51]. Barr et al[62] found an 
increase in serum levels of certain sphingomyelin species, such as SM (36:3), 
(d18:2/16:0), (d18:2/14:0), (d18:1/18:0), (d18:1/16:0), (d18:1/12:0), and (d18:0/16:0) in 
NAFLD individuals compared to controls. Instead, reduced circulating levels of SM 
(d18:1/24:1), SM (d18:1/16:0), SM (d18:1/22:0), SM (d18:1/24:0), SM (d18:1/18:0), SM 
(d18:1/20:0), SM (d18:1/23:0), SM (d18:0/16:0), and SM (d18:0/20:4) were observed by 
Zhou et al[63] in NASH adult subjects compared to controls. Moreover, increased 
serum levels of two SM species such as SM(d39:0) and SM (d41:0) were found in the 
serum of NAFLD paediatric patients[19].

Higher ceramide levels were found in plasma and liver biopsies of NAFLD subjects
[51,64,65]. These lipids decreased insulin sensitivity in skeletal muscle and hepatocytes
[66] and enhanced several unfavourable biological processes such as oxidative stress, 
mitochondrial dysfunction, and cell apoptosis[66,67]. Moreover, they seem to regulate 
the synthesis of high-density lipoproteins. Animal data reported that myriocin, acting 
through ceramide biosynthesis inhibition–promoted insulin receptor and steatosis and 
enhanced apolipoprotein AI production rate, resulting in an increased high-density 
lipoprotein production rate[68].

In a prospective study[20] including 80 obese children, total ceramide concentration 
was significantly increased in the serum of obese and NAFLD patients than in the 
reference group. In addition, increased levels of distinct fatty acid ceramides, such as 
myristic, palmitic, palmitoleic, stearic, oleic, behenic, and lignoceric were observed in 
children with NAFLD compared to controls. Furthermore, a significant positive 
association of total ceramide levels with homeostasis model assessment and insulin 
levels was reported[20].

Taken together, these findings might pave the way for a wider risk assessment for 
these patients, as suggested by paediatric evidence indicating a significant association 
of distinct sphingolipids with NAFLD and with its cardiometabolic burden including 
obesity, cardiovascular disease, and metabolic derangements[20,69-71].

CONCLUSION
Lipidomic studies have added novelty by allowing an accurate characterization of 
lipidomic profile of both plasma and liver tissues in NAFLD[7,12,17]. Besides experi-
mental data providing additional insights about the pathophysiology of NAFLD and 
its progression, there is a growing body of evidence from human studies[8,14,20]. In 
particular, a clear effect for specific ceramides in impairing insulin signalling pathways 
has been found[10,13,15].

Interestingly, different lipid classes have been demonstrated to exert pathogenic 
distinct roles in NAFLD and in other metabolic diseases such as obesity, metabolic 
syndrome, and type 2 diabetes[14,15]. Thus, manipulation of the expression of certain 
lipids (e.g., selective lowering of specific ceramides) might represent a novel target for 
both prevention and treatment of these diseases. In fact, this attractive therapeutic 
approach might pave the way for novel strategies to counteract the increasing 
NAFLD-related cardiometabolic burden even in childhood.

Further research is needed to validate these findings and to provide a more compre-
hensive assessment of the exact pathogenic role of specific lipids in the NAFLD 
context.
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