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Abstract
The population of patients with hepatocellular carcinoma (HCC) overlaps to a 
high degree with those for chronic kidney disease (CKD) and end-stage renal 
disease (ESRD). The degrees of renal dysfunction vary, from the various stages of 
CKD to dialysis-dependent ESRD, which often affects the prognosis and 
treatment choice of patients with HCC. In addition, renal dysfunction makes 
treatment more difficult and may negatively affect treatment outcomes. This 
study summarized the possible causes of the high comorbidity of HCC and renal 
dysfunction. The possible mechanisms of CKD causing HCC involve uremia itself, 
long-term dialysis status, immunosuppressive agents for postrenal transplant 
status, and miscellaneous factors such as hormone alterations and dysbiosis. The 
possible mechanisms of HCC affecting renal function include direct tumor 
invasion and hepatorenal syndrome. Finally, we categorized the risk factors that 
could lead to both HCC and CKD into four categories: Environmental toxins, viral 
hepatitis, metabolic syndrome, and vasoactive factors. Both CKD and ESRD have 
been reported to negatively affect HCC prognosis, but more research is warranted 
to confirm this. Furthermore, ESRD status itself ought not to prevent patients 
receiving aggressive treatments. This study then adopted the well-known 
Barcelona Clinic Liver Cancer guidelines as a framework to discuss the indicators 
for each stage of HCC treatment, treatment-related adverse renal effects, and 
concerns that are specific to patients with pre-existing renal dysfunction when 
undergoing aggressive treatments against CKD and ESRD. Such aggressive 
treatments include liver resection, simultaneous liver kidney transplantation, 
radiofrequency ablation, and transarterial chemoembolization. Finally, focusing 
on patients unable to receive active treatment, this study compiled information on 
the latest systemic pharmacological therapies, including targeted and immuno-
therapeutic drugs. Based on available clinical studies and Food and Drug 
Administration labels, this study details the drug indications, side effects, and 
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dose adjustments for patients with renal dysfunction. It also provides a compre-
hensive review of information on HCC patients with renal dysfunction from 
disease onset to treatment.
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Core Tip: The varying degrees of renal dysfunction, from the various stages of chronic 
kidney disease to dialysis-dependent end-stage renal disease, often affect the choice of 
treatment and prognosis of patients with hepatocellular carcinoma (HCC). This 
complicates HCC treatment. This review encompasses the presumptive causes of the 
high degree of comorbidity of HCC and renal dysfunction, the impact of renal 
dysfunction on HCC prognosis, and the concerns that are specific to patients with pre-
existing renal dysfunction for each stage of HCC treatment.

Citation: Yeh H, Chiang CC, Yen TH. Hepatocellular carcinoma in patients with renal 
dysfunction: Pathophysiology, prognosis, and treatment challenges. World J Gastroenterol 
2021; 27(26): 4104-4142
URL: https://www.wjgnet.com/1007-9327/full/v27/i26/4104.htm
DOI: https://dx.doi.org/10.3748/wjg.v27.i26.4104

INTRODUCTION
Hepatocellular carcinoma (HCC) is a common malignancy worldwide and accounts 
for substantial morbidity and mortality[1,2]. However, the etiology, incidence, and 
mortality of HCC are geographically uneven. Most HCC cases are found in East Asia 
and Sub-Saharan Africa. Although the incidence rates are relatively lower in Western 
countries, the mortality rates remain high[1]. The major risk factors for HCC include 
chronic hepatitis B virus (HBV), chronic hepatitis C virus (HCV), cirrhosis, alcoholic 
liver disease, and nonalcoholic steatohepatitis (NASH)[3]. Another leading cause of 
morbidity and mortality worldwide is renal dysfunction, which includes chronic 
kidney disease (CKD) and end-stage renal disease (ESRD). Caring for patients with 
renal diseases has greatly burdened health care systems[4]. Notably, patients with 
renal dysfunction have a higher prevalence of cancer, including liver cancer, compared 
with the general population[5,6]. Furthermore, such patients—especially those on 
maintenance dialysis for ESRD—were reported to have a higher prevalence of viral 
hepatitis compared with the general population[7]. In certain regions where both renal 
dysfunction and HCC are highly prevalent, the two conditions are highly comorbid
[8]. In the present study, we searched and organized the available evidence-based 
literature to provide a comprehensive review guided by the following research 
questions: (1) Does any correlation or causality exist between renal dysfunction and 
the development of HCC? (2) Would renal dysfunction, including CKD and ESRD 
status, affect the prognosis and treatment outcomes of HCC? And (3) What are the 
challenges of treating HCC in patients with renal dysfunction in all categories of the 
Barcelona Clinic Liver Cancer (BCLC) system algorithm?

Despite the lack of a validated international consensus on the management of 
patients with both renal dysfunction and HCC, we aimed to summarize information 
that is critical to the development of preventive and therapeutic strategies for this 
specific population.

ASSOCIATION AND POSSIBLE PATHOPHYSIOLOGICAL MECHANISMS 
BETWEEN RENAL DYSFUNCTION AND HCC
A high incidence of cancer has been reported in patients with renal dysfunction. Both 
CKD and ESRD were reported to be bidirectionally connected to cancer: Renal 
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dysfunction can serve as a risk factor for cancers including HCC, whereas cancer and 
related treatments can directly or indirectly lead to or aggravate renal dysfunction[6]. 
In addition to the mutual relationship between renal dysfunction and cancer, renal 
dysfunction and HCC share common risk factors that complicate the association 
between the two diseases. These risk factors can be categorized into vasoactive factors 
and those related to environmental toxins, viral hepatitis, and metabolic diseases 
(Table 1). The complex pathways linking renal dysfunction and HCC are depicted in 
Figure 1. The following subsections summarize the studies that provide evidence for 
each of these links.

Renal dysfunction as a cause of or risk factor for HCC
Cancer risk has been reported to be elevated in patients with renal dysfunction. 
Numerous studies have demonstrated an increased risk of liver cancer in patients with 
ESRD on dialysis[9-11]. Limited data are available on whether less advanced CKD, 
where dialysis is not needed, can increase the risk of liver cancer[12,13]. Several 
hypotheses have been proposed for these correlations, including a dysregulated 
immune system, defective DNA repair mechanism, impaired antioxidant defense, 
accumulation of carcinogenic compounds caused by reduced renal elimination, and 
the uremia milieu[14]. Because it is well-established that kidney transplant recipients 
have an increased cancer risk because of the aggressive administration of immunosup-
pressive agents[15], it is reasonable to have a separate discussion for post-kidney-
transplantation status.

CKD without dialysis − accumulation of uremic toxins and elevated serum levels of 
cytokines: The well-documented phenomenon of patients with impaired renal 
function having increased cancer risk raises the following question: Could uremic 
toxin accumulation, one of the direct consequences of renal dysfunction, be car-
cinogenic?

P-Cresyl sulfate (PCS), a protein-bound uremic toxin prototype that cannot be 
efficiently removed through routine dialysis procedures, has been found to be 
fibrogenic in the kidney and vascular system of mice through epithelial-to-
mesenchymal transition (EMT)[16-18]. EMT is an irreversible process through which 
epithelial cells lose their cell polarity and cell–cell adhesion and acquire migratory 
properties to become mesenchymal cells. EMT has also been implicated in the 
development of liver fibrosis and cirrhosis[19-22]. It has been widely accepted that 
transforming growth factor-beta (TGF-β) plays a crucial role in hepatic EMT through 
stellate cell activation and excessive matrix synthesis[19,20,23,24]. The sequential 
progression from chronic liver fibrosis to cirrhosis culminates in the development of 
HCC, which is a major cause of death in patients with compensated cirrhosis[25,26]. A 
study in Taiwan found that PCS increased the incidence of liver fibrosis in people with 
HBV and HCV[27]. Although limited data exist on whether the PCS can directly 
induce EMT in the liver, we postulate that PCS accumulation secondary to renal 
dysfunction influences liver fibrosis, cirrhosis, and eventually the risk of HCC. Hwang 
et al[28] conducted a population-based study to examine the mechanism behind the 
high incidence of HCC in ESRD, and they found PCS to be positively correlated with 
HCC occurrence[28]. However, in that study, ESRD was no longer associated with a 
higher incidence of HCC than in the general population after matching was conducted 
for hepatitis and liver cirrhosis. Those authors concluded that the high incidence of 
HCC in patients with ESRD was caused by a high viral hepatitis rate rather than by 
uremia per se[28]. This does not violate our aforementioned assumption, despite 
appearing to do so, that PCS indirectly contributes to HCC occurrence through liver 
inflammation and cirrhosis. Further studies are warranted to clarify the link between 
PCS and HCC.

Cytokines constitute another topic worthy of discussion. Renal dysfunction is also 
known to increase the level of cytokines in the body, such as interleukin (IL)-1, IL-6, 
and tumor necrosis factor-α (TNF-α)[29-32]. Several studies have reported that IL-6, 
TNF-α, and other cytokines are associated with more severe problems in liver necrosis, 
tissue repair and regeneration, and the accumulation of mutations caused by aberrant 
cell proliferation, thus increasing the transformation potential of hepatocytes and the 
risk of HCC[33,34]. More studies focusing on the underlying pathophysiology are 
required to determine whether these cytokines lead to hepatic carcinogenesis, either 
directly or indirectly. In addition to proinflammatory properties, uremia has been 
recognized to compromise normal immune response by enhancing the apoptosis of 
activated immune cells[35-37]. The immune alterations associated with uremia 
possibly contribute to cancer occurrence. However, data on site-specific cancers such 
as HCC are lacking, and further studies are required to delineate the relationships 
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Table 1 Shared risk factors for hepatocellular carcinoma and chronic kidney disease

Risk factors

Arsenic

Cadmium

Aflatoxin

Environmental toxins

Aristolochic acid

Hepatitis B virusViral hepatitis

Hepatitis C virus

Non-alcoholic fatty liver disease

Nonalcoholic steatohepatitis

Metabolic syndrome and related disorders

Diabetes mellitus

Vasoactive factors Renin-angiotensin system activation

Figure 1 Association between hepatocellular carcinoma and chronic kidney disease. This figure summarizes the confirmed and presumptive links 
between hepatocellular carcinoma and renal dysfunction. HCC: Hepatocellular carcinoma; CKD: Chronic kidney disease.

between uremia, immune dysfunction, and HCC.

Effect of ESRD on chronic dialysis status: Studies have suggested that the overall 
cancer risk in chronic dialysis patients is significantly higher than that in the general 
population, for both HCC and cancers of other primary sites[10,12,13]. Whether such 
carcinogenic effects originate from the dialysis procedure itself or other ESRD-related 
factors remains to be determined[38]. Wong et al[39] found an increased dialysis time 
to be a significant risk factor for common solid organ cancers regardless of age. They 
demonstrated that a dose-dependent relationship exists between the duration of 
maintenance dialysis and overall cumulative cancer risk, and this relationship was 
independent of the dialysis modality. The findings were attributed to the immunode-
ficient and chronic inflammatory status in uremia and to the substances the patient 
was exposed to during dialysis, including nitrites, chloramines, and other unknown 
elements[39]. Another study on the pattern of excess cancer in dialysis and 
transplantation reported that dialysis was associated with a small increase in immune 
deficiency–related cancers, including liver cancer; however, the risk of liver cancer was 
not particularly high in patients on dialysis [standardized incidence ratio (SIR) 2.2, 
95% confidence interval (CI): 1.2-3.7] relative to other types of immune defic-
iency–related cancers. Moreover, the overall findings for such cancers would be 
unchanged if liver cancer was excluded from the group[5]. Because both HBV and 
HCV are prevalent in patients on hemodialysis[40-42], studies have attributed HCC 
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incidence in part to exposure to oncogenic virus infection in dialysis populations 
through blood transfusion and contamination. Furthermore, a nationwide study in 
Taiwan revealed that liver cancer was the second most common cancer found in 
patients receiving dialysis and that the SIR of liver cancer in chronic dialysis patients 
was also higher than that of their healthy counterparts[9]. This result is inconsistent 
with the relatively lower frequency of liver cancer found in an international collab-
orative study[10]. A high frequency of liver cancer among the dialysis population 
might be explained by HBV and HCV infection being endemic to Taiwan[9]. In the 
aforementioned studies, except for the effects of infection-related factors, whether the 
dialysis procedure itself increases HCC risk remains inconclusive.

Kidney transplantation: Kidney transplantation is known to be associated with a 
marked increase in cancer risk at various sites[12]. In the late 1960s, the immunosup-
pressive agents administered to patients who underwent a transplant were discovered 
to increase the risk of cancer; compared with that in recipients of a cardiac or hepatic 
transplant, the aforementioned risk is a major outcome factor in recipients of a kidney 
transplant because of their longer survival owing to dialysis being widely available
[43]. However, studies that have discussed HCC separately have reported mixed 
results on whether kidney transplant increases the incidence, reporting either no trend
[5] or only a moderately increased risk[12,44]. Therefore, studies have provided 
limited support for the theory that kidney transplantation and the related application 
of immunosuppressive agents increases the risk of HCC.

Miscellaneous factors: HCC is more prevalent in men than in women. Both androgen 
and estrogen sex steroids can contribute to the gender disparity in HCC prevalence, 
where their effects are distinct to each sex[45]. Higher levels of androgen signaling are 
associated with an increased risk of HBV-related HCC[46,47], whereas higher estrogen 
pathway activity plays a protective role in female hepatocarcinogenesis. The estrogen 
axis is critical for maintaining a lower serum IL-6 level, thus reducing liver cancer risk 
in women[48,49]. A large cohort study[50] found CKD to increase liver cancer 
mortality in women and, to a lesser extent, in men; the gender disparity is likely 
explained by CKD-related hypogonadism, but this remains to be examined. The 
following sections discuss other possible risk factors shared by HCC and CKD, 
including environmental toxins, metabolic diseases, and genetic factors and their 
connections with CKD. However, the causal effects between these factors with CKD 
and HCC are still being debated.

Dysbiosis, which refers to the qualitative and quantitative alteration of gut 
microbiota, has been commonly observed in CKD patients. The imbalance of 
pathogenic flora and symbiotic flora was also implicated in the progression of CKD, 
increased cardiovascular risk, uremic toxicity, and inflammation[51]. An enhanced 
permeability of the intestinal barrier, allowing the passage of endotoxins and other 
bacterial products into the blood, was also reported in CKD[52]. Notably, dysbiosis is 
another possible risk factor for HCC that has been identified in recent years. Entero-
hepatic circulation is accompanied by low-grade exposure to gut microbiota–derived 
metabolites and products, often termed microbiota-associated molecular patterns 
(MAMPs)[53]. Changes in the intestinal barrier cause leakiness, leading to hepatic 
exposure to MAMPs. Accumulating evidence from the last decade, mostly from 
animal studies in rodents, suggests a key role of gut microbiota in the progression of 
chronic liver disease and in the development of HCC. The HCC risk induced by 
several types of carcinogens has been found to be profoundly reduced in gut-sterilized 
mice[54-56]. In a study exploring the differences between the gut microbiota of 
patients with nonalcoholic fatty liver disease (NAFLD)-related cirrhosis with and 
without HCC and in healthy controls, gut microbiota profile and systemic inflam-
mation were significantly correlated and can occur together in the process of hepato-
carcinogenesis[57]. It remains unclear whether chronic inflammation driven by the 
translocation of MAMPs from a leaky gut is the dominant contributor to HCC or 
whether the carcinogenic effect is limited to specific cases such as NAFLD, as does 
whether dysbiosis could serve as a causal link bridging CKD to HCC[58]. Further 
studies targeting dysbiosis may elucidate the association between CKD and HCC.

HCC and associated comorbidities causing renal dysfunction
A study found a significant prevalence of CKD in patients with cancer, particularly a 
higher rate of hematologic malignancy and liver cancer[59]. Hepatorenal syndrome 
(HRS), either with or without cirrhosis, is a major cause of CKD in patients with HCC. 
Direct invasion of the renal parenchyma by tumor cells is a rare cause but has been 
reported in the literature.
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HRS: HRS is a unique type of kidney failure that usually occurs in advanced cirrhosis. 
HRS is characterized by functional impairment of the kidneys caused by vasocon-
striction of the renal arteries in the absence of tubular dysfunction, proteinuria, or 
other histologic changes in the kidneys[54]. The exact mechanism of HRS is not 
completely understood, but its hallmark is severe vasodilation of the splanchnic 
arteries owing to portal hypertension, which compromises the effective arterial blood 
volume and arterial pressure[60]. HRS has two subtypes, which differ in terms of 
disease course and the presence of detectable precipitating factors[61]. Type 1 HRS is 
characterized by the rapid progression of renal failure, with the serum creatinine value 
increasing to greater than 2.5 mg/dL within 2 wk. It is often triggered by a precip-
itating event, such as bacterial infection, hypotension, or multiple organ failure. By 
definition, the renal dysfunction caused by type 1 HRS often falls into the category of 
acute kidney injury (AKI) or an acute deterioration of CKD termed acute-on-chronic 
kidney injury. By contrast, type 2 HRS is associated with gradual or insidious renal 
failure with a moderate rise in serum creatinine to 1.5-2.5 mg/dL. One of the major 
clinical manifestations of type 2 HRS is refractory ascites, for which a specific trigger is 
often lacking. With a median survival of 6 mo, Type 2 HRS has a superior prognosis 
compared with type 1 HRS, which has a median survival of less than 2 wk. The 
relatively moderate disease course is more consonant with the present article’s focus 
on CKD.

Advanced cirrhosis, a critical precursor lesion of liver cancer, can cause portal 
hypertension, which may subsequently lead to HRS and result in kidney function 
deterioration[62]. In a 49-year-old man with HCC, ascites, and measured portal 
hypertension but no cirrhosis of the liver, the hypertension was secondary to 
microscopic invasion of the central and small portal veins[63]. Therefore, isolated liver 
cancer with high tumor burden has also been found to cause portal hypertension and 
HRS regardless of the presence of comorbid cirrhosis.

Direct tumor metastasis to the kidney: Renal metastasis of HCC is exceedingly rare. A 
literature search yielded only a few cases of renal metastasis from HCC[64]. Most renal 
metastases are small, bilateral, and multifocal; however, large and solitary metastatic 
tumors do occur. These tumors may cause difficulty in diagnosis because they often 
have no specific radiologic findings to distinguish them from primary renal neoplasms
[65]. In some cases, metastatic tumors do not necessarily result in declined renal 
function. Nevertheless, in one case of HCC metastasis to the kidney mimicking renal 
cell carcinoma, a prolonged elevated serum creatinine level of 2.24 mg/dL was 
observed[66]. Therefore, direct invasion of the renal parenchyma by metastatic tumor 
cells still constitutes a differential diagnosis of renal dysfunction that should not be 
ignored in patients with HCC.

Paraneoplastic syndrome: Paraneoplastic syndromes arise from the tumor secretion of 
hormones, peptides, or cytokines or from immune cross-reactivity between malignant 
and normal tissues. These disorders may affect diverse organ systems, most notably 
the endocrine, nervous, dermatological, rheumatological, and hematological systems
[67,68]. HCC may present with a wide range of paraneoplastic phenomena, which may 
precede local manifestations of the tumor, including hypercholesterolemia, erythro-
cytosis, hypoglycemia, and hypercalcemia. Hypercalcemia is a well-known paraneo-
plastic metabolic condition associated with numerous malignancies. In HCC, 
hypercalcemia accounts for 7.8% of paraneoplastic syndromes, and it mainly occurs as 
a terminal event[69]. Most malignancies associated with hypercalcemia have been 
verified to be caused by parathyroid hormone (PTH)-related peptide. The metastasis 
of malignancies to the bone can also cause osteolysis and lead to hypercalcemia. In 
rare cases, hypercalcemia may result from ectopic PTH production by tumors. Patients 
with hypercalcemia typically present with volume depletion, which might lead to a 
reduction in glomerular filtration rate (GFR) and calcium clearance[70]. Hypercalcemia 
may also provoke AKI or hypertension, or aggravate the tubular necrosis frequently 
found in cases of AKI[71]. Case reports on HCC-induced hypercalcemia have been 
published, but little information about renal function has been reported in these 
studies[72]. A case of combined HCC and neuroendocrine carcinoma with ectopic 
secretion of PTH was documented[73]; the authors observed impaired renal function 
(creatinine = 2.16 mg/dL), and continuous renal replacement therapy was applied to 
treat acute renal failure induced by hypercalcemia. However, the patient died during 
the study period. It is relatively certain that HCC may cause AKI through the paraneo-
plastic effect of hypercalcemia; nevertheless, more clinical observations and studies are 
warranted to determine whether HCC-related hypercalcemia causes sustained, even 
irreversible, renal dysfunction.
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Risk factors shared by HCC and renal dysfunction
In the investigation of the relationship between CKD and HCC, some common risk 
factors have been found. The overlap of these risk factors leads to a high degree of 
comorbidities between HCC and renal dysfunction. These risk factors may cause the 
two diseases separately; however, little evidence exists for whether these factors serve 
as a causal link from HCC to CKD or vice versa. Hence, in this article we attempt to 
list these risk factors to provide clinicians and researchers with a useful summary. 
These risk factors can be further divided into several categories, including those of 
toxic, infectious, metabolic, and vascular origins (Table 1).

Environmental toxins: According to epidemiological and animal studies, several 
environmental toxins, including arsenic, cadmium, mycotoxins, and aristolochic acid 
(AA), are associated with both renal impairment and liver cancer[50].

In renal proximal tubules, arsenic or cadmium can cause the depletion of 
intracellular glutathione stores. This leads to the incremental production of free 
radicals and results in inflammation and apoptosis[74,75]. A high arsenic level in 
drinking water was discovered to be a cause for ESRD, independent of other 
documented risk factors[76]. Continual cadmium exposure can also progress to renal 
Fanconi syndrome and ultimately CKD[75]. By contrast, arsenic and cadmium carcino-
genesis targets the liver[77]. Dimethylarsinic acid and trimethylarsine oxide, the 
organic metabolites of inorganic arsenic, have been found to cause oxidative DNA 
damage and enhance cell proliferation in rats[78,79]. In humans, arsenic exposure has 
also been potentially linked to HCC and other liver tumors or paraneoplastic lesions; 
for example, hepatomegaly, hepatoportal sclerosis, fibrosis, or cirrhosis often occurs 
after chronic arsenic exposure[80-82]. According to an in vitro experiment, cadmium is 
specifically internalized by Kupffer cells, which could lead to the release of various 
proinflammatory cytokines such as IL-6 and TNF-α[83,84]. Studies have also examined 
the potential effects of long-term cadmium exposure on the expression of cytochrome 
P450 (CYP) enzymes in the liver and its impact on the activation and clearance of 
therapeutic drugs, alcohol, and environmental substances. Under chronic cadmium 
exposure, DNA adducts associated with CYP-mediated metabolism are produced; 
they accumulate in liver cells and result in mutations, altered gene expression, and 
eventually carcinogenesis[85-87]. In epidemiological studies, elevated blood and urine 
cadmium levels have been found to play a role in HCC, although a direct effect has not 
been confirmed[77,88].

Aflatoxins (AFs) are highly toxic secondary metabolites that are synthesized by 
Aspergillus flavus and Aspergillus parasiticu[89]. Afs are the most toxic of all mycotoxins, 
causing considerable health problems and economic loss through the contamination of 
food and animal feed. Cereal crops, oil crops, and dairy products are frequently 
contaminated. Afs can be divided into AFB1 and AFB2, which emit blue fluorescence, 
and AFG1 and AFG2, which emit green fluorescence under chromatographic and 
fluorescence analysis[89]. Similar to cadmium, aflatoxin is metabolized by CYP 
enzymes into aflatoxin-8,9-exo-epoxide. The exo-epoxide can form derivatives with 
DNA, RNA, and proteins, including the p53 tumor suppressor gene. Moreover, the 
exo-epoxide can bind DNA to form the predominant promutagenic 8,9-dihydro-8-(N7 
guanyl)-9-hydroxy AFB1 adduct (AFB1-N7-Gua), which may secondarily form the 
more mutagenic AFB1-formamidopyrimidine. These derivatives generate a risk of 
malignancy over time[89,90]. A review of the epidemiological evidence also indicated 
that AF is a critical contributor to the high incidence rates of HCC in Asia and Sub-
Saharan Africa[91]. In vitro and in vivo studies have revealed that AFB1 and AFM1 
cause kidney toxicity through oxidative stress by altering the expression of proline 
dehydrogenase and L-proline levels, leading to downstream apoptosis[89]. More 
population-based research is warranted to verify whether Afs are associated with 
renal dysfunction in humans. However, theoretically aflatoxin is likely to be a 
common risk factor shared by CKD and HCC.

Another factor worthy of discussion is AA. AA is traditionally known as the main 
culprit of Chinese herb nephropathy, a type of rapidly progressive renal failure 
characterized by severe anemia, glycosuria, leukocyturia, mild hypertension, and 
asymmetric kidneys[92]. Apart from being responsible for renal toxicity, AA has also 
been implicated in the genesis of urothelial carcinoma. AA-derived DNA adducts and 
TP53 mutations have been found in ureteric tissues, indicating the carcinogenic 
potential of AA on the urothelium[93,94]. AA can also result in significant DNA 
adduct formation and mutation in the liver, albeit at a lower level than in the kidneys
[95]. Several epidemiological studies have implicated AA in the development of HCC 
in Asia, but more data are required to evaluate the impact of AA exposure on HCC 
occurrence worldwide[96,97].
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Viral hepatitis: Chronic HBV and HCV infections are known to be dominant risk 
factors for HCC. HBV is the most frequent underlying cause of HCC. Case-control 
studies have demonstrated that chronic HBV carriers have a five- to fifteen-fold 
increased risk of HCC compared with the general population[98]. Approximately 70% 
to 90% of HBV-related HCCs develop in patients with cirrhosis, but HBV can also 
cause HCC in the absence of cirrhosis[99]. Generally, two processes are involved in the 
hepatocarcinogenesis of HBV infection. Direct mechanisms of hepatocyte 
transformation include a role for HBV DNA integration, virus mutations, transcrip-
tional activation of growth regulatory genes by HBV-encoded proteins as well as 
effects on apoptosis, cellular signaling, and DNA repair. The progression of chronic 
hepatic disease and its associated inflammation, regenerative hyperplasia, and 
transcriptional deregulation to neoplasia contribute to the indirect pathogenesis of 
HCC[100,101]. By contrast, the mechanisms underlying HCV-associated carcino-
genesis are mainly indirect effects of virus-deregulating host cellular processes, 
including virus-induced inflammation, oxidative stress, and host immune responses; 
the resulting genomic instability and mitochondrial damage; and the accompanying 
increased hepatocyte proliferation and steatosis[102].

In addition, HBV and HCV infection are also established risk factors for CKD. 
According to epidemiological studies, hepatitis B surface antigen positivity in serum is 
associated with higher risks of CKD and proteinuria[103]. HBV-related nephropathies 
include membranous glomerulonephritis, polyarteritis nodosa, and membranoprolif-
erative glomerulonephritis (MPGN)[104]. Moreover, a clinical study reported that 
HBV causes apoptosis in renal tubular Fas upregulation[105]. HCV has been 
associated with the development of MPGN and cryoglobulinemia, and it has also been 
found to increase the risk of CKD[106,107]. Taken together, the aforementioned studies 
have indicated that both HBV and HCV can be considered critical shared factors in the 
high comorbidity of HCC and CKD. However, more research is required to verify 
whether these two infections are causally linked with HCC and CKD.

Metabolic diseases: Abundant epidemiological evidence suggests a correlation 
between noninsulin-dependent diabetes mellitus (NIDDM, or type 2 diabetes mellitus) 
and cancers, including HCC[108-110]. Several mechanisms likely explain such an 
association. Insulin or its precursors may stimulate mitogenesis or carcinogenesis in 
hepatocytes[111]. Augmented inflammation as measured by TNF-α and IL-6 levels has 
been found in diabetes[112,113]. Diabetes may also increase the risk of HCC through 
the development of NASH. Up to 40% of patients with type 1 or type 2 diabetes 
develop diabetic nephropathy, which is the leading cause of CKD in patients starting 
renal replacement therapy in developed countries[114]. Consequently, NIDDM is a 
non-negligible factor contributing to the high comorbidity of HCC and CKD. Likewise, 
fatty liver disease is a common risk factor for both HCC and CKD. The prevalence of 
NAFLD is 10%–30% in adults and tends to be higher in developed countries because of 
the prevalence of obesity and metabolic syndrome[115,116]. NASH belongs to the 
spectrum of NAFLD and is characterized by hepatic inflammation. In a study 
conducted to clarify the etiology of non-B, non-C HCC, a total 1374 patients with HCC 
were enrolled from 1995 to 2009. NASH was noted to be a critical risk factor for HCC, 
and cirrhosis was detected in 65% of NASH-HCC cases[117]. Studies have defined 
various factors involved in the necroinflammatory response of NASH, including 
cytokines, hormones, and neurotransmitters[118]. Rodent animal studies have 
demonstrated that NASH induced by a high-fat diet is associated with elevated TNF-α 
and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) with 
hepatocyte proliferation[113,119]. Hypoadiponectinemia possibly participates in 
NASH-HCC carcinogenesis, as verified by a adiponectin knock-out mice model[120]. 
Intriguingly, NAFLD was also found to be a driver of CKD[121]. The presence and 
severity of NAFLD were noted to be strongly and positively correlated with the 
prevalence and incidence of CKD, independent of obesity, hypertension, NIDDM, or 
other common risk factors[122]. Targher et al[123] found that higher levels of patatin-
like phospholipase domain–containing protein 3 GG genotype are independently 
associated with a lower estimated GFR (eGFR) and increased 24-h proteinuria in 
patients with NAFLD. This single nucleotide polymorphism may be useful for 
identifying those patients with NAFLD who are also prone to developing CKD[123].

Vasoactive factors − activation of the renin–angiotensin system: The systemic 
renin–angiotensin system (RAS) regulates blood pressure and maintains normal 
kidney function. In addition to the traditionally known circulating RAS, scientists have 
uncovered the existence of a local angiotensin-generating system in several tissues, 
including the heart, liver, and kidney. The tissue RAS can act locally as a paracrine or 
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autocrine factor to meet the needs of individual tissues, independently of or in 
cooperation with the circulating counterpart[124]. The crucial role of the RAS in the 
pathogenesis of CKD has been well documented since the 1980s in experimental and 
clinical studies[125]. An activated RAS aggravates both systemic and glomerular 
capillary hypertension, causing hemodynamic injury to the vascular endothelium and 
glomerulus. Angiotensin II and the downstream product, aldosterone, also exert direct 
proinflammatory and profibrotic actions, which may promote kidney damage[126,
127]. Angiotensin-converting-enzyme inhibition has exhibited considerable 
therapeutic efficacy in the control of systemic hypertension and the prevention of 
progressive kidney injury[128,129].

An increasing body of evidence has suggested that the RAS also contributes to liver 
fibrosis and hepatocarcinogenesis, although probably less so than it does for the 
kidneys[130]. The main source of the RAS comes from hepatocytes and Kupffer cells, 
but it has also been found in the bile duct epithelium of the liver[54]. In the liver, 
angiotensin II regulates cell growth, inflammation, and fibrosis. The expression of 
angiotensin receptors was found to increase activated hepatic satellite cells (HSCs) 
following injury. By acting through angiotensin receptors, angiotensin II can be 
mitogenic for human-activated HSCs, elicit a marked dose-dependent increase in 
intracellular calcium levels, and induce cell contraction. Angiotensin II also stimulates 
DNA synthesis and cell proliferation[131]. Angiotensin receptor blockers block the 
profibrotic and proinflammatory effects of angiotensin II on HSCs, including the 
expressions of inflammatory cytokines and growth factors (such as TGF-β1, IL-1β, NF-
κB, and connective tissue growth factor) and the production of the extracellular matrix
[132,133]. RAS might participate in the development of HCC because of the aforemen-
tioned proliferative and profibrotic effects. Moreover, angiotensin II was found to 
enhance vascular endothelial growth factor (VEGF), a potent angiogenic factor that 
plays an essential role in tumor growth and metastasis[134]. All these findings suggest 
that the RAS becomes involved in not only kidney injury but also HCC development.

EFFECT OF RENAL DYSFUNCTION ON THE OVERALL PROGNOSIS OF 
PATIENTS WITH HCC
Few studies have investigated the impact of comorbid renal dysfunction on the 
prognosis of patients with HCC. However, several studies have examined the 
influences of CKD or ESRD on specific treatment outcomes and prognosis, which are 
summarized in the next section. Before we discuss each of these topics in detail, we 
first provide a concise review of the literature on how renal dysfunction affects the 
prognosis of patients with HCC.

CKD increases the risk of death in cancer patients. A retrospective study invest-
igating the association between CKD and mortality in cancer patients found an inverse 
relationship between eGFR and adjusted hazard ratios (HRs)[59]. A single-center 
study that recruited 440 patients with both CKD and HCC reported that survival from 
stage 4 and stage 5 CKD was inferior to that of stages 1 and 2. In a prospective 
population-based analysis, CKD was related to increased cancer-related mortality in 
liver, kidney, and urinary tract malignancies, with adjusted HRs of 1.74, 3.3, and 7.3, 
respectively[50]. However, in that study, the percentage of cancer-related mortality 
decreased, whereas the percentage of cardiovascular mortality markedly increased in 
patients in more advanced CKD stages. Taken together, we infer from these findings 
that CKD negatively affects both overall and cancer-related mortality in liver cancer, 
but some heterogeneity is possible in the etiology of mortality among different stages.

In terms of the prognosis of HCC patients with ESRD on long-term dialysis, studies 
have reported inconsistent results. In a single-centered observational study comparing 
the mortality rates of 1298 patients with HCC who were (n = 172) or were not (n = 
1126) on long-term hemodialysis, those on hemodialysis had a 2.036-fold greater 
chance of death than did patients not on hemodialysis. However, cancer-related 
mortality was not reported and that study was limited by its retrospective nature and 
short follow-up duration[135]. In another single-center study including 2500 patients 
with HCC, with only a minority group (1.2%) having ESRD on maintenance dialysis, 
no significant overall survival difference between dialysis and nondialysis patients 
was found, although those receiving dialysis had a significantly higher serum bilirubin 
level, lower serum sodium level, more ascites, and worse performance status[136]. 
Because 63% of patients undergoing dialysis in that study had undergone nonpal-
liative management [resection, local ablation, or transarterial chemoembolization 
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(TACE)] for HCC, the authors attributed the unexpectedly good outcomes of the 
dialysis group to early and aggressive treatment. The authors further concluded that 
dialysis per se does not predict poor outcomes in patients with HCC and should not be 
considered a contraindication for active anticancer treatment. In summary, dialysis 
should not hamper the indicated group from receiving anticancer therapy according to 
currently available data, and whether dialysis affects the prognosis of HCC remains to 
be determined.

CHALLENGES OF TREATING HCC IN PATIENTS WITH RENAL DYSFUNC-
TION
Most patients with HCC have concomitant liver diseases such as chronic hepatitis or 
cirrhosis. Therefore, the benefits of treating the tumor must be weighed against the 
potential damage to liver function. This complexity in the management of HCC calls 
for a multidisciplinary approach, including expertise in hepatology, hepatobiliary 
surgery, pathology, oncology, radiology, and specialized nursing[137]. The BCLC 
algorithm classifies patients into one of five stages, taking not only the tumor burden 
but also the extent of liver dysfunction and the patients’ performance status into 
consideration[138]. The tumor burden is quantified according to the number and size 
of nodules, along with the presence or absence of macrovascular tumor invasion or 
extrahepatic spread. The traditional Child–Turcotte–Pugh (CTP) score provides a 
subjective assessment of liver function but does not adequately capture the hepatic 
functional reserve. Alternatives include the Model for End-Stage Liver Disease 
(MELD) score and the albumin–bilirubin grade[139]. The algorithm then provides 
treatment recommendations for each stage. Ever since its release in 1999, the BCLC 
algorithm has been a widely used scoring strategy for HCC. In the very early (0) and 
early stage (A), patients with a solitary lesion or with up to three nodules less than 3 
cm in diameter (without macrovascular invasion or extrahepatic spread) and with 
preserved liver function are suitable for radical therapies—namely resection, 
transplantation, or percutaneous treatment. Patients in the intermediate stage (B) do 
not exhibit symptoms but have large, multifocal tumors without vascular invasion or 
any spread beyond the liver. If liver function is preserved, these patients could be 
candidates for TACE. Patients at the advanced stage (C) have symptomatic tumors 
[grades 1 and 2 according to the Eastern Cooperative Oncology Group (ECOG) 
Performance Status] or an invasive tumoral pattern of vascular invasion/extrahepatic 
spread. This group of patients may benefit from systemic medical treatment, which 
can be categorized into targeted therapy and immunotherapy depending on which of 
the various pharmacological mechanisms are at work. Finally, patients with terminal 
disease (D) have poor liver function or marked cancer-related symptoms (ECOG 
Performance Status > 2). These patients have an extremely poor prognosis and require 
palliative care[140].

As mentioned in the previous section, CKD was reported to be an independent risk 
factor for the survival of cancer patients[59]. Treating HCC is difficult in patients with 
CKD because renal impairment may limit therapeutic options when effective therapy 
is sought[137]. Currently, perhaps because of the paucity of data regarding HCC 
outcomes in patients with renal dysfunction, no international treatment consensus 
exists for this specific population. In the following subsections, we use the BCLC 
algorithm as a template to discuss special concerns when treating HCC patients with 
different stages of renal dysfunction compared with the general population. Through 
reviewing the available literature, we hope to provide the necessary information for 
developing a modified BCLC for patients with CKD or ESRD (Table 1).

Liver resection
Liver resection is the treatment of choice in noncirrhotic patients and one of the main 
curative options for early HCC in selected patients with cirrhosis[141-144]. In the last 
decades, improved surgical techniques and perioperative management as well as 
improved patient selection have enabled the indications for liver resection to be 
expanded[145-148]. In a nationwide study using the National Surgical Quality 
Improvement Program database to investigate the impact of CKD and ESRD on 
outcomes following major abdominal surgery, 24572 patients were included, of whom 
only 149 (0.6%) were on hemodialysis preoperatively. In the dialysis group, 30-d 
postoperative mortality and the overall complication rate (pneumonia and sepsis 
particularly) were significantly higher than those in the nondialysis group. 
Furthermore, any degree of preoperative renal impairment, even mild or asympto-
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matic disease, was associated with clinically significant increases in 30-d postoperative 
mortality and morbidity following major abdominal surgery[149]. Therefore, the 
safety and outcomes of liver resection in HCC patients with abnormal renal function 
deserve a detailed investigation.

Liver resection for HCC in patients with CKD: Few studies have reported on the 
efficacy and safety of hepatectomy for HCC patients with renal dysfunction. Toshima 
et al[150] retrospectively reviewed the clinical features of 722 patients with HCC 
undergoing curative hepatectomy between 1986 and 2009. Seventeen patients (2.4%) 
with preoperative serum creatinine levels > 2.0 mg/dL were defined as the renal 
dysfunction group. Clinicopathological characteristics and postoperative outcomes 
were compared between the renal dysfunction group (n = 17) and the nonrenal 
dysfunction group (n = 705). Overall survival (P = 0.177) and disease-free survival (P = 
0.942) after hepatectomy did not differ significantly. The incidence rates of massive 
ascites (35.3% vs 14.3%; P = 0.034) and pleural effusion (52.9% vs 17.6%; P = 0.001), 
defined as massive effusion (ME), were significantly higher in the renal dysfunction 
group than in the nonrenal dysfunction group. Hypoalbuminemia (≤ 2.8 g/dL; P = 
0.031), heavy blood loss (≥ 1000 mL; P = 0.012), and intraoperative blood transfusion (P 
= 0.007) were risk factors for ME. The authors concluded that preoperative 
improvement of anemia and reduction of blood loss by meticulous surgical techniques 
may prevent major complications in patients with renal dysfunction who require 
hepatectomy for HCC. In another study, data from 735 patients undergoing primary 
liver resection for HCC between 2002 and 2014 were analyzed[151]. Short- and long-
term outcomes were compared between a renal dysfunction group, defined by a 
preoperative eGFR of < 45 mL/min/1.73 m2, and a nonrenal dysfunction group. The 
incidence rates of postoperative pleural effusion (24% vs 11%; P = 0.007) and major 
complications (31% vs 15%; P = 0.003) were significantly higher in the 62 patients with 
renal dysfunction compared with the nonrenal dysfunction group. In patients with 
renal dysfunction with CTP score A, the 90-d mortality rate (1.9%) and median 
survival time (6.11 years) were comparable to those of patients without renal 
dysfunction. By contrast, patients with renal dysfunction with CTP score B had a very 
high 90-d mortality rate (22.2%), and a significantly shorter median survival time 
compared with patients without renal dysfunction (1.19 vs 4.84 years; P = 0.001). The 
authors concluded that liver resection is safe for CTP-A patients with renal 
dysfunction, who have comparable oncological outcomes to patients without renal 
dysfunction; however, liver resection for CTP-B patients with renal dysfunction should 
be subject to stricter consideration. These findings jointly indicate that CKD status may 
not necessarily affect overall survival but may lead to more surgical complications. 
The safety and efficacy of hepatectomy for HCC in patients with CKD could be 
acceptable if the appropriate patient group is carefully selected, along with judicious 
pre- and postoperative care.

Liver resection for HCC in patients with ESRD on dialysis: Compared with studies 
on the CKD population, studies on HCC patients with ESRD on dialysis undergoing 
hepatic resection are more abundant, probably because these patients’ characteristics 
are well defined and more effectively targeted. To clarify the role of liver resection in 
treating HCC in patients with ESRD, Cheng et al[152] conducted a retrospective study 
to compare the clinicopathological characteristics and operative results of 12 patients 
with ESRD receiving resection for HCC with those of the other 456 patients without 
ESRD[152]. The 5-year disease-free survival rates for ESRD and non-ESRD groups 
were 35.0% and 34.2% (P = 0.31), whereas the 5-year overall survival rates were 67.8% 
and 53.3% (P = 0.54), respectively. The author commented that liver resection for HCC 
is justified in select patients with ESRD. In another retrospective study comparing the 
clinical features of 26 patients with ESRD and HCC with 1198 HCC patients without 
ESRD undergoing liver resection[153], elevated BUN and creatinine were the only two 
main independent factors differentiating patients with ESRD and HCC from their 
counterparts with HCC, and overall and disease-free survival rates were similar 
between the two groups. Lee et al[136] conducted a retrospective matched-control trial 
to compare long-term survival between patients with HCC (n = 2472) who were 
undergoing (n = 30) vs not undergoing dialysis[136]. The patients undergoing dialysis 
had dual HBV and HCV infection, lower serum α-fetoprotein level (AFP), worse 
performance status, and higher MELD scores than did the matched controls and 
patients not undergoing dialysis. No significant difference existed in long-term 
survival when patients undergoing dialysis were compared with patients who were 
not or with the matched controls (P = 0.684 and 0.373, respectively). Yeh et al[154] used 
Taiwan’s National Health Institute Research Database to compare the disease-free 
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survival, overall survival, and perioperative complications between 596 nonuremic 
controls and 149 patients with uremia and HCC who were also undergoing liver 
resection. The survival outcomes were comparable between the uremia–HCC cohort 
and controls, regardless of the extent of hepatic resection. However, the aforemen-
tioned had a higher risk of postoperative infections requiring invasive interventions as 
well as an increased risk of life-threatening heart-associated complications relative to 
the controls. In summary, ESRD on dialysis does not seem to exert a particular 
influence on the survival outcomes of patients receiving liver resection for HCC. With 
careful operative techniques and perioperative care, comparable overall and disease-
free survival can be achieved in select patients with ESRD and HCC undergoing liver 
resection. ESRD on dialysis is not expected to be an obstacle to hepatectomy in the 
indicated patient group.

Transplantation
Liver transplantation (LT) is considered the gold standard surgical therapy for early-
stage HCC co-occurring with cirrhosis or chronic liver disease. The Milan criteria 
function as the most reliable border for transplantation feasibility both in Western and 
Asian HCC guidelines[155]. The expected 5-year survival rates of LT for HCC that 
meets the conventional Milan criteria (single tumor ≤ 5 cm or multiple tumors ≤ 3 
nodules ≤ 3 cm in size, without vascular invasion) are 65%-80%, and patients meeting 
the Milan criteria have a significant survival advantage over patients who do not. LT is 
recommended as the first-line option for HCC within the Milan criteria but is 
unsuitable for resection. However, given the distinguished clinicopathological features 
of patients with renal dysfunction, whether the survival advantage of LT can be 
extended to this specific population is a more complicated matter. Can patients with 
renal dysfunction receive LT similar to the general population? How should one assess 
the feasibility of simultaneous liver kidney transplantation (SLKT)? The following 
paragraphs address these questions.

LT carries the risk of complications, which occur both immediately after 
transplantation and in the long term[156]. The main complications in the immediate 
postoperative period are related to graft dysfunction and rejection and to the surgical 
technique, infections, and dysfunction involved in the pulmonary, renal, or 
neurological systems. In the long term, complications are typically a consequence of 
prolonged immunosuppressive therapy, and they include diabetes mellitus, systemic 
arterial hypertension, de novo neoplasia, and organ toxicities[157]. AKI is a main 
complication of LT, especially in the early postoperative period. The reported 
incidence of AKI after transplantation varies widely because of the different diagnostic 
criteria used, ranging from 19.26% to 94%[158-161]. Hemodynamic changes during 
surgery, blood loss, and other stress may cause prerenal AKI or even acute tubular 
necrosis immediately after surgery[162,163]. Patients who developed AKI tended to 
have a markedly higher mortality rates[164,165]. It is unclear whether AKI after LT is 
the primary driver of poorer mortality outcomes or whether this is merely a 
correlation[166]. CKD is also a common complication after LT with an incidence 
ranging between 20% and 80%[167,168]. Numerous observations have implicated 
calcineurin-inhibitor (CNI) as a major risk factor of CKD in recipients of a transplant
[169-171], and some studies have advocated the use of tacrolimus or mycophenolate 
mofetil instead of cyclosporin to reduce the incidence of chronic renal dysfunction 
after transplantation[170,172]. However, other studies have been unable to show that 
CNI fully explained post-transplant renal abnormalities[171,173]. Therefore, the 
hypothesis that CNI use is a major cause of renal dysfunction after LT remains 
unverified, and CNI’s effect may be overestimated.

Patients with renal dysfunction have been reported to experience poor surgical 
outcomes following LT. An early study using the National Institute of Diabetes and 
Digestive and Kidney Diseases LT Database investigated the effect of renal insuffi-
ciency in patients with fulminant hepatic failure or chronic liver disease (cirrhosis); 
that study found that renal insufficiency in fulminant hepatic failure and renal insuffi-
ciency requiring dialysis or SLKT in cirrhosis predicts lower patient and graft survival 
rates after a transplant[174]. In another study reviewing the postoperative courses of 
115 liver transplant recipients for liver cirrhosis, the population was divided into two 
groups based on the threshold of preoperative serum creatinine < 1.0 mg/dL[175]. 
Patients with preoperative serum creatinine > 1.0 mg/dL had significantly longer 
intensive care unit stays, higher rates of acute renal failure requiring dialysis, and a 
greatly increased mortality rate. In a study comparing the LT outcomes of patients 
with low and high MELD scores, renal function was the most crucial variable 
associated with morbidity and length of hospital stay[176]. The data not only called for 
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special attention during the perioperative period of renal dysfunction but also cast 
doubt on whether patients with renal dysfunction are ideal candidates for LT.

Several early studies have found that SLKT could be feasible in patients who have 
both advanced hepatic and renal dysfunction. In a study compared 16 patients with 
SLKT and 32 patients with LT matched by age, sex, date, and indication for 
transplantation; that study reported that both groups had similar levels of reoperation 
due to bleeding, bacterial infections, liver rejection, arterial hypertension, and median 
creatinine levels at the 1st and 3rd years[177]. However, early post-transplant dialysis 
was higher in SLKT than in LT. Survival rates at the 1st, 3rd, 5th, and 7th years were 
similar in both groups (87.5%, 74%, 74%, and 66% vs 81%, 75%, 75%, and 75% in LT 
and LKT, respectively). That author inferred that SLKT is an effective therapeutic 
option in patients with end-stage liver and kidney disease, with most early and late 
complications and long-term survival being similar to those observed in LT. In one 
study evaluating the success of SLKT, 20 patients (aged 14-64 years) received a total of 
21 LT and 31 kidney transplantation procedures[178]. SLKT was performed in 14 
patients, of whom five required further replacement of one or the other of the grafted 
organs. That study revealed that patients with liver cirrhosis had a very poor 
prognosis due to their poor overall clinical state at the time of terminal renal failure, 
whereas patients without liver cirrhosis were more appropriate candidates for SLKT. 
The author concluded that in general, the indication for SLKT ought to be considered 
earlier in this case than in the case of transplantation involving only one organ. 
Notably, a study found that pretransplantation renal dysfunction and exposure to 
dialysis might affect SLKT treatment outcomes[179]. Adult recipients receiving LT (n = 
2700) or SLKT (n = 1361) with moderate renal insufficiency between 2003 and 2013 
were included, and the study cohort was stratified into four groups based on serum 
creatinine level (Scr < 2 mg/dL vs Scr ≥ 2 mg/dL) and on dialysis status at both listing 
and transplant. SLKT administration led to a greater decrease in post-transplant 
mortality compared with LT administration across all four groups, but only reached 
statistical significance (HR 0.77; 95%CI: 0.62–0.96) in recipients not exposed to dialysis 
and with Scr ≥ 2 mg/dL at transplant. The study indicated the possible advantage of 
SLKT in patients with both severe liver disease and renal abnormalities. Some studies 
have indicated that the liver immunologically protects the kidneys after combined 
liver–kidney transplantation[180,181]. Therefore, patients with end-stage hepatic and 
renal anomalies may indeed benefit from SLKT. However, this technique faces 
limitations in being administered widely among HCC patients with renal dysfunction. 
For example, significant heterogeneity exists in the criteria for SLKT when it comes to 
noncirrhotic or compensated liver diseases and when it comes to liver transplant 
candidates with a moderate-to-severe reduction in GFR. To promote discussion and 
unify the criteria for the indication of SLKT by liver transplant groups, the Spanish LT 
Society (La Sociedad Española de Trasplante Hepático) held the 6th Consensus Document 
Meeting on October 20, 2016, in which experts from the 24 authorized Spanish LT 
programs participated[182]. According to the consensus, SLKT is recommended in 
patients with liver transplant criteria plus one of the following: (1) CKD in chronic 
dialysis or eGFR > 30 mL/min; or (2) CKD with eGFR between 30 and 40 mL/min and 
some signs of poor renal prognosis — such as proteinuria > 1 g/d (> 3 mo) and/or 
diabetic nephropathy — and/or histological findings of poor prognosis in renal biopsy 
(more than 30% glomerulosclerosis or more than 30% interstitial fibrosis). SLKT is also 
recommended in patients who are candidates for LT with acute kidney disease 
requiring dialysis for 6 consecutive weeks, either continuously or intermittently.

Several more recent studies have specifically focused on the outcomes of patients 
receiving SLKT for HCC. A study included 2606 patients (mean age: 53 years) 
receiving SLKT for primary biliary cirrhosis (PBC, n = 76), primary sclerosing 
cholangitis (n = 81), HBV (n = 98), HCV (n = 945), alcoholic liver disease (n = 495), 
alcohol and HCV (n = 152), cryptogenic cirrhosis (n = 289), NASH (n = 221), or HCC (n 
= 249); that study reported that HCV, NASH, and HCC had worse outcomes for liver 
graft (72%, 66%, and 72% vs 82%; HR: 2.5-3.1), kidney graft (71, 65%, and 71% vs 80%; 
HR: 2.3-2.8), and patient survival (74, 69, and 69% vs 82%; HR: 2.4-2.7) compared with 
PBC[183]. In another retrospective analysis of SLKT from the United Network for 
Organ Sharing registry[184], the authors compared the outcomes of HCC with other 
transplant indications. HCC was not associated with post-transplant survival among 
all patients (HR: 1.15; 95%CI: 0.84-1.58) or the propensity score-matched cohort (HR: 
0.97; 95%CI: 0.64-1.47). SLKT-HCC patients had similar rates of acute rejection (13.3% 
vs 10.5%, P = 0.36) and liver graft failure requiring retransplantation (3.2% vs 2.3%, P = 
0.44). The author commented that liver transplant candidates with advanced renal 
dysfunction and HCC may be considered for SLKT[184]. SLKT seems to be a treatment 
of choice for HCC patients with advanced renal dysfunction. However, more studies 
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specifically targeting patients with HCC as the main indication for SLKT are 
warranted to support the safety and efficacy of this treatment.

Radiofrequency ablation
Since the early 1990s, radiofrequency ablation (RFA) has been introduced to clinical 
practices and has rapidly become the first-choice local treatment for small (≤ 3 cm) 
HCC lesions. Based on the BCLC staging system, RFA is applied for the treatment of 
patients having very early (Stage 0) and early stage (Stage A) HCC (Figure 2)[138]. For 
most appropriate patients selected, this treatment is safe and efficient. However, 
reports of complications are common. Livraghi et al[185] and Takaki et al[186] reported 
mortality rates between 0.1% and 0.3%[185,186]. The major complication rate was 
estimated at 2.2% to 2.8%. The causes of death were bowel perforation, peritonitis, 
tumor rupture, and liver failure due to biliary stricture. The most frequent major 
complications were hemorrhage and tumor seeding, followed by liver abscess, bowel 
perforation, hemothorax, and liver failure. Minor complications included acute skin 
burn, self-limiting intraperitoneal bleeding, subcapsular or intrahepatic hematoma, 
arterioportal shunt, biliary portal shunt with hemobilia, transient liver 
decompensation, and direct renal tissue damage. In less common cases, the procedure 
may cause renal dysfunction or related side effects. Thermal injury could lead to 
hemolysis and rhabdomyolysis[187-189], and the extensive breakdown and 
transcellular shift of potassium may lead to varying (and even life-threatening) 
degrees of hyperkalemia, either in patients with normal baseline renal function or 
CKD[190]. This clinical implication is anticipated in case of prolonged ablation, and 
laboratory monitoring during extensive or prolonged RFA procedures is 
recommended to detect hemolysis early. Laboratory tests including hematocrit, serum 
potassium, urine hemoglobin, and serum creatine phosphokinase level should be 
considered[188]. Hemolysis and rhabdomyolysis could also result in AKI[188,189,191,
192]. Most patients experience moderately impacted renal function and a slight 
increase in serum creatinine without deterioration. However, the hemoglobin-
mediated obstruction of renal tubules might cause more severe AKI, oliguria, and 
sometimes even death. One case report even documented progression to CKD[193].

Few original studies or systematic reviews have discussed whether pre-existing 
renal dysfunction before RFA is related to treatment outcomes, although much more 
evidence indicating treatment outcomes in patients with ESRD on dialysis receiving 
RFA for HCC have been emerging. To examine the efficacy and safety of RFA in 
treating HCC in patients with HD, a study enrolled 108 HD patients with naïve HCC 
at 15 institutions between 1988 and 2014[194]. Fifty-eight patients with appropriate 
indications treated with either hepatectomy (n = 23) or RFA (n = 35) were compared 
with respect to their clinical features, complications, and prognosis. The two 
treatments did not significantly differ in their overall survival and disease-free 
survival rates. The author concluded that RFA had a therapeutic efficacy in HD 
patients with naïve HCC that is comparable to liver resection. Another study included 
14 carefully selected HD patients with HCC (five naïve, nine recurrent) who 
underwent a total of 19 RFA treatments, and revealed no major complications, 
suggesting that the safety and effectiveness of RFA were not compromised in this 
specific population[195]. RFA seems to be a promising option for small HCC in 
patients undergoing regular HD. By contrast, a study using the Japanese Diagnosis 
Procedure Combination database compared the treatment outcomes in matched-pair 
samples of 437 dialyzed and 1345 nondialyzed patients[196]. In-hospital mortality and 
hemorrhagic complications were significantly higher in dialyzed patients with ESRD 
than in nondialyzed patients. In patients on HD for ESRD, mortality was significantly 
lower for those aged ≤ 70 years than for those aged older than that (P = 0.02). Patient 
age may be a useful indicator when considering RFA for HCC in patients with ESRD 
on HD. Hyperkalemia was also reported in a patient with ESRD on regular HD after 
RFA for HCC[197]. Therefore, the indications for RFA in dialysis-dependent patients 
should be considered carefully.

TACE
Transarterial therapy is a standard treatment for unresectable HCC and patients unfit 
for surgical resection due to compromised hepatic reserve or nonliver general 
comorbidities[138,198], following which regular contrast-enhanced imaging for 
residual disease is recommended. The chemotherapeutic agents used in TACE cause 
tumor necrosis through the combined effects of targeted chemotherapy and arterial 
embolization[199]. However, the use of a water-soluble iodinated contrast medium in 
TACE may induce renal failure, especially in high-risk patients with liver cirrhosis-
associated nephropathy[200]. AKI is a common complication found after TACE in 
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Figure 2 Current treatment algorithmsfor patients with hepatocellular carcinoma and chronic kidney disease. This figure is based on the Barcelona Clinic Liver Cancer algorithm, which classifies patients into five stages taking not 
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only the tumor burden but also the extent of liver dysfunction and the patients’ performance status into consideration. Described in the table are the indications for each stage of hepatocellular carcinoma treatment, the treatment-related renal adverse 
effects, and special concerns for patients with pre-existing renal dysfunction in the applying aggressive treatments and the use of the systemic target and immunotherapy. The disease-free survival is compared to the general population without renal 
impairment. ECOG: The Eastern Cooperative Oncology Group performance status; HCC: Hepatocellular carcinoma; CKD: Chronic kidney disease; ESRD: End stage renal disease; RRT: Renal replacement therapy; AKI: Acute kidney injury; PT: Patient; 
LT: Liver transplantation; SLKT: Simultaneous liver kidney transplantation; DFS: Disease-free survival; NS: Nephrotic syndrome; TMA: Thrombotic microangiopathy; FSGS: Focal segmental glomerulosclerosis; CCR: Creatinine clearance (mL/min 
calculated per the Cockcroft-Gault formula); eGFR: Estimated glomerular filtration rate (mL/min/1.73 m2); PK: Pharmacokinetics.

patients with HCC, and patients with post-TACE AKI have a higher risk of developing 
complications such as progression to CKD, ESRD, and death[200-204]. Preoperative 
CTP score, age, proteinuria, hemoglobin, serum total bilirubin, serum uric acid, 
aminotransferase level, post-TACE gastrointestinal bleeding, and previous post-TACE 
AKI history have been reported to be predictors of post-TACE AKI in HCC patients
[201,205,206].

Given the nephrotoxicity inherent in the intervention, the application of TACE for 
HCC in patients with underlying renal dysfunction is challenging. According to a 
retrospective study that investigated the outcomes of TACE in patients with HCC and 
CKD, more post-therapy complications, including acute renal failure and sepsis, were 
found in the CKD group than in the non-CKD group[207]. Overall survival in the CKD 
group was significantly poor (10.9  ±  8.5 vs 23.5  ±  16.3 mo, P <  0.01). However, in 
another study conducted to clarify the benefits and risk of TACE in patients with HCC 
and CKD, 35 patients receiving TACE were enrolled and classified into a CKD group 
[including nondialysis CKD (NDCKD), n = 10 and ESRD, n = 9], and a non-CKD group 
(n = 16)[208]. The 2- and 5-year survival rates from initial diagnosis were comparable 
between the CKD and non-CKD groups. The 2- and 5-year survival rates were also 
similar in patients with NDCKD and those with ESRD. Of note is the strategy of 
“preventive HD” adopted in that study: All patients with CKD consulted a nephro-
logist, and HD was performed within 4 h after 20 of the 32 transarterial therapies in 
the 10 patients with NDCKD to prevent contrast-induced nephropathy in the CKD 
group. The authors concluded that TACE can be made feasible in patients with CKD 
by instituting periprocedural HD with survival rates that are similar to those of 
patients without CKD.

For patients already on regular hemodialysis for ESRD at the time of TACE, data are 
lacking because invasive treatment is rarely performed in this specific population. A 
Japanese pair-matched cohort using a nationwide database was recruited to evaluate 
the in-hospital mortality and complication rates following TACE in this population
[209]. A total of 1551 dialyzed and 5585 nondialyzed patients with ESRD were 
enrolled. The complication rates did not differ between dialyzed and nondialyzed 
patients, but the in-hospital mortality rate was, at 2.2%, twice as high in dialyzed 
patients. Among the dialyzed patients, the mortality rate was not significantly 
associated with sex, age, or Charlson Comorbidity Index. The author concluded that 
indications for TACE in HD-dependent patients should be considered cautiously by 
weighing the benefits against the risks.
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In summary, the available data regarding TACE in patients with pre-existing renal 
dysfunction are limited. More studies are warranted before we can definitely 
determine the safety and feasibility of TACE in patients with CKD or ESRD. Patients 
with advanced renal dysfunction may benefit from perioperative preventive HD, but 
further investigations are required to confirm the efficacy and safety of the measure. 
Because both the CKD and ESRD groups have reported worse prognoses after TACE 
compared with HCC patients without renal dysfunction, caution should be taken 
during the treatment planning process, and patients should be well-informed of the 
risks and complications involved.

Systemic therapy
If HCC is diagnosed at an early stage, a wide array of treatment options that increase 
overall survival and improve quality of life are available. However, because late 
diagnosis is common, 70% to 80% of advanced HCC cases will not benefit from tumor 
resection[3], and only one-third of patients are eligible for curative therapeutic 
approaches[210]. Current treatment options for patients with unresectable HCC 
include TACE and systemic medical treatments. Systemic treatments can generally be 
divided into two categories according to their mechanism of action: Targeted therapy 
[mainly tyrosine kinase inhibitor (TKI)] and immunotherapy. The following 
subsections concentrate on the mechanism of action, common adverse effects, and 
points of caution for people with renal dysfunction with respect to two groups of 
drugs.

Targeted therapy: The key signal transduction pathways participating in the 
pathogenesis of HCC include the Wnt-β catenin, EGFR-RAS-MAPK, and c-MET 
pathways as well as the insulin-like growth factor signaling, Akt/mTOR signaling, 
and VEGF and platelet-derived growth factor receptor signaling cascades[211]. TKIs 
are small molecules that inhibit the multiple receptor tyrosine kinases involved in 
tumor growth, angiogenesis, pathologic bone remodeling, drug resistance, and 
metastatic progression of cancer[204]. In 2007, a multi-kinase inhibitor (MKI) named 
sorafenib was approved as the first systemic agent for treating advanced unresectable 
HCC because a SHARP trial had suggested a survival benefit of approximately 3 mo
[212,213]. Sorafenib is an oral MKI that blocks tyrosine kinase receptors (VEGFR-2/3, 
PDGFR-β, c-Kit, FLT-3, and RET) and other targets (c-Raf and B-Raf)[214]. In the 
kidneys, glomerular podocytes express VEGF and glomerular endothelial cells express 
VEGF receptors[215,216]. Podocyte-specific deletion of a single VEGF allele caused 
proteinuria and capillary endotheliosis in rodents, and disrupted glomerular VEGF 
signaling was strongly implicated in the pathogenesis of human preeclampsia[208]. 
Sorafenib’s mechanism of action clearly indicates its ability to induce significant 
adverse effects on the kidneys, including proteinuria, nephrotic syndrome, and 
preeclampsia-like syndrome[217,218]. Cases of renal failure, thrombotic microan-
giopathy (TMA), and focal segmental glomerulosclerosis (FSGS) have also been 
documented[213,219]. In patients on sorafenib with pre-existing renal dysfunction, 
studies have found no trend in pharmacokinetic parameters for sorafenib or its 
metabolites among any renal function group[220,221]. Renal impairment appears to 
have no clinically relevant effect on the pharmacokinetics of sorafenib and its 
metabolites; therefore, no dose adjustment was indicated[221]. According to the Food 
and Drug Administration (FDA), the pharmacokinetics of sorafenib have not been 
thoroughly confirmed in patients on dialysis[222]. However, an Italian retrospective 
study investigating the safety and efficacy of sorafenib in patients with renal cell 
carcinoma and ESRD reported no unexpected major side effects, and the author 
concluded that sorafenib is not contraindicated in HD groups[223]. In a Japanese 
study, a 63-year-old man with ESRD on HD started sorafenib therapy (200 mg/d) 8 d 
after TACE[221]. The pharmacokinetic parameters of sorafenib and its active 
metabolite M-2 were within the reference levels of patients with normal renal function 
8 and 9 d after the initiation of sorafenib. The authors concluded that sorafenib was 
well tolerated at an initial dose of 200 mg/d for a patient with HCC undergoing HD, 
thus indicating that renal failure is not necessarily a contraindication for sorafenib 
therapy.

After the success of sorafenib, various clinical trials were designed in the hope to 
outperform the efficacy of it. Nevertheless, not until in recent decade had some trials 
demonstrated the comparable efficacy with sorafenib or survival benefits after first-
line treatment failure[224]. The notable novel agents include lenvatinib, regorafenib, 
cabozantinib, ramucirumab, and bevacizumab.
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Lenvatinib was approved for first-line therapy in advanced HCC following the 
results of the REFLECT trial, a randomized phase III noninferiority trial by Kudo et al
[225], which showed that lenvatinib was not inferior to sorafenib in overall survival in 
untreated advanced HCC[225]. Further multicenter findings have confirmed the 
efficacy of lenvatinib with or without previous TKI therapies[226,227]. Lenvatinib’s 
nephrotoxic profile is similar to that sorafenib, including proteinuria, renal failure, 
TMA, and FSGS[225,228-231]. The enrollment criteria in the original REFLECT trial 
included adequate renal function, which was defined as creatinine clearance (CCR) > 
30 mL/min as calculated using the Cockcroft–Gault formula[225]. In the FDA label, no 
dose adjustment is recommended for patients with mild (CCR 60-89 mL/min) or 
moderate (CCR 30-59 mL/min) renal impairment. Lenvatinib concentrations may 
increase in patients with differentiated thyroid cancer (DTC) or renal cell carcinoma 
(RCC) and severe (CCR 15-29 mL/min) renal impairment. It is recommended to 
reduce the dose for patients with DTC or RCC who also have severe renal impairment. 
However, there exists no recommended dose for lenvatinib in patients with HCC and 
severe renal impairment. Lenvatinib has not been studied in patients with ESRD[232].

Regorafenib was approved as the second-line therapy for advanced HCC following 
the results of the RESORCE trial. This randomized, double-blind, placebo-controlled 
phase III trial demonstrated the effectiveness of regorafenib in patients progressing 
after sorafenib treatment. The study confirmed the potential of second-line agents and 
ushered in the era of second-line therapy[233]. Further multicenter studies have 
verified the efficacy and safety indicated in the RESORCE trial[234,235]. The 
nephrotoxic effects include proteinuria and renal failure[236,237]. In regorafenib 
monotherapy for previously treated metastatic colorectal cancer (CORRECT), an 
international, multicenter, randomized, placebo-controlled, and phase III trial reported 
diarrhea in 34% of patients, with 7% experiencing grade 3 or 4 diarrhea, leading to 
fluid and electrolyte depletion. The sequelae of fluid and electrolyte depletion may 
result in dehydration, renal failure, and potential cardiovascular compromise[238]. 
According to a pharmacokinetic modeling and simulation study, the pharmacokinetics 
of regorafenib are unlikely to be impacted by any stage of renal impairment[239]. The 
FDA label suggests that no dose adjustment is recommended for patients with renal 
impairment. The pharmacokinetics of regorafenib have not been studied in patients on 
dialysis and there exists no recommended dose for this patient population[240].

Cabozantinib is another TKI that blocks the receptors involved in oncogenesis and 
angiogenesis, including VEGFR 1, 2, and 3; hepatocyte growth factor receptor (MET); 
AXL; and the angiopoietin receptors TIE-2, RET, c-Kit, and FLT-3 in vitro and in vivo. 
Cabozantinib was also indicated to be a second-line treatment in the progression of 
HCC with acquired resistance to sorafenib[241]. In the CELESTIAL trial, cabozantinib 
achieved significantly superior overall survival compared with the placebo group and 
was thus approved by the FDA[242]. The nephrotoxic profile of cabozantinib is similar 
to those of sorafenib and lenvatinib, including renal failure, proteinuria, and TMA[243-
245]. However, in the CELESTIAL trial, grade 5 adverse events considered to be 
related to the drug were reported in six patients in the cabozantinib group (one event 
each of hepatic failure, bronchoesophageal fistula, portal-vein thrombosis, upper 
gastrointestinal hemorrhage, pulmonary embolism, and HRS)[242]. The enrollment 
criteria for the CELESTIAL trial included serum creatinine ≤ 1.5 times the upper 
normal limit or calculated CCR ≥ 40 mL/min using the Cockcroft–Gault formula 
occurring in conjunction with either urine protein/creatinine ratio ≤ 1 mg/mg or 24-h 
urine protein < 1 g[242]. Two clinical pharmacology studies were conducted to charac-
terize the single-dose pharmacokinetics of cabozantinib in individuals with renal and 
hepatic impairment, respectively[243]. Although mild-to-moderate renal impairment 
(eGFR ≥ 30 mL/min/1.73 m2) did not result in a clinically relevant difference in the 
pharmacokinetics of cabozantinib, the author concluded that cabozantinib should be 
used cautiously in individuals with mild or moderate renal impairment. According to 
the FDA label, no dose adjustment is recommended in patients with mild or moderate 
renal impairment[246]. No experience of cabozantinib in patients with severe renal 
impairment or requiring dialysis has been documented.

Ramucirumab is a fully human recombinant immunoglobulin G (IgG) 1 monoclonal 
antibody targeting the VEGF2 receptor. A randomized, multicenter, double-blind, 
placebo-controlled, and phase III trial (REACH) was conducted to examine the safety 
and efficacy of ramucirumab as a second-line agent for HCC[247]. In the REACH trial, 
although the second-line treatment with ramucirumab did not significantly improve 
survival over placebo in patients with advanced HCC, a subgroup analysis revealed 
better survival in patients with AFP ≥ 400 ng/mL[248,249]. This was later verified in 
the REACH-2 trial, which was the first positive phase III trial conducted in a 
biomarker-selected patient population with HCC[250]. Therefore, ramucirumab was 
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approved by the FDA as a second-line treatment for advanced HCC. The renal toxicity 
profile of ramucirumab includes proteinuria and nephrotic syndrome[251,252]. Renal 
failure and TMA have also been reported[250,253]. Notably, several predictors of 
ramucirumab-induced proteinuria have been identified, including systemic blood 
pressure, the number of cycles, and calcium channel blocker use[248,254]. Notably, in 
the REACH-2 trial, three deaths in the ramucirumab group were judged to be related 
to study treatment: one each from AKI, HRS, and renal failure[250]. The FDA label 
reports no clinically meaningful effect on the pharmacokinetics of ramucirumab in 
patients with renal impairment (CCR calculated using Cockcroft–Gault, 15-89 
mL/min), and thus, no dose adjustment is suggested[255]. The pharmacokinetics of 
ramucirumab in patients with ESRD are unknown.

Bevacizumab is a humanized anti-VEGF monoclonal antibody that was previously 
approved by the FDA as a first-line treatment for metastatic colorectal cancer in 
combination with chemotherapy. In a global, open-label, and phase III trial conducted 
in 2020, patients with unresectable HCC who had not previously received systemic 
treatment were randomly assigned at a 2:1 ratio to receive either atezolizumab 
(discussed later in the text) plus bevacizumab or sorafenib until unacceptable toxic 
effects or a loss of clinical benefit occurred[256]. The primary end points were overall 
survival and progression-free survival in the intention-to-treat population, as assessed 
at an independent review facility according to the Response Evaluation Criteria in 
Solid Tumors, version 1.1. The study revealed that in patients with unresectable HCC, 
atezolizumab combined with bevacizumab resulted in superior overall and 
progression-free survival outcomes than sorafenib did, which led to the combined 
therapy of atezolimumab plus bevacizumab being approved as the first-line treatment 
for unresectable HCC by the FDA. Similar to other anti-VEGF or VEGFR blocking 
agents, the renal toxicity profile of bevacizumab encompasses renal failure[257,258], 
proteinuria, and nephrotic syndrome[259,260]. Microvascular diseases such as TMA or 
hemolytic uremic syndrome are not particularly uncommon[261-263]. In addition, 
sporadic cases of interstitial nephritis have been documented, as verified by renal 
biopsy findings, improvement after steroid treatment, and cessation of the offending 
agents[264,265]. A case of minimal change disease was also reported[266]. Per the 
manufacturer’s instructions, no studies have investigated the pharmacokinetics of 
bevacizumab in patients with CKD because the kidneys are not major organs for 
bevacizumab metabolism or excretion[267]. Only one report has been published about 
the pharmacokinetics of bevacizumab in a dialysis-dependent patient with metastatic 
renal cancer, who received 5 mg/kg every 2 wk[268]. The drug was not dialyzable, 
and its pharmacokinetic parameters were similar to the reference values of patients 
with normal renal function. The author concluded that the drug can be administered 
any time before or after hemodialysis. The FDA label does not provide information on 
dose adjustment in patients with renal dysfunction[267].

Immunotherapy: Immunotherapy has been proven to be effective and safe in treating 
various solid tumors, prolonging overall survival, and offering a tolerable toxicity 
profile[269]. Immunotherapy negates tumor-expressed extracellular ligands that 
suppress intrinsic immune response and can be achieved through three main 
approaches[270]. One approach is to target the inhibitory proteins that prevent T cells 
from recognizing and eliminating cancer cells and allow regulatory cells to avoid 
autoimmune destruction by downregulating T-cell activation[269]. Examples of these 
molecules are cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), programmed 
cell death protein-1 (PD-1) in addition to its ligand PD-L1, and T cell immunoglobulin 
and mucin domain-containing protein 3 (TIM-3)[271,272]. Checkpoint inhibitors are 
antibodies that activate T-cell mediated antitumor responses by selectively blocking 
the checkpoint receptors PD-1, PD-L1, and CTLA-4[271]. Conversely, therapeutic 
cancer vaccines that use a tumor-associated antigen (TAA) originating either from 
whole-cell tumor lysates and recombinant tumor peptides or recombinant viruses 
encoding for TAAs bring new prospects in treating cancers. TAAs are transferred and 
presented by major histocompatibility complex class I molecules in atrial premature 
complexes to effectively induce the activation of cytotoxic T-lymphocytes[273,274]. 
Another strategy in immune-regulated antitumor response is that of adoptive cell 
transfer. Immune cells are extracted from patients’ peripheral blood and undergo 
genetic engineering to express chimeric antigen receptors. These cell membrane 
proteins bind to specific cancer antigens and stimulate the immune destruction of 
tumor cells[275].

In HCC, two categories of immune checkpoint inhibitors have been thoroughly 
examined in clinical trials, namely PD-1/PD-L1 and CTLA-4. Other promising 
markers are being investigated in animal models, and new agents are being tested in 
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clinical trials[272]. Currently, the FDA has approved checkpoint inhibitors for 
advanced HCC, including atezolizumab, pembrolizumab, nivolumab, and 
ipilimumab. The following paragraphs discuss the mechanism of action, common 
adverse effects, and points of caution for people with renal dysfunction in the use of 
these agents. The anticipating checkpoint molecule TIM-3 blockade and the related 
clinical trials are mentioned as well.

Atezolizumab is an engineered IgG1 monoclonal antibody targeting PD-L1. Patients 
with unresectable HCC who had not previously received systemic treatment were 
randomly assigned at a 2:1 ratio to receive either atezolizumab plus bevacizumab or 
sorafenib until unacceptable toxic effects or a loss of clinical benefit occurred[256]. 
Atezolizumab combined with bevacizumab resulted in superior overall and 
progression-free survival outcomes than did sorafenib, which led to the FDA 
approving the combined therapy of atezolizumab plus bevacizumab as the first-line 
treatment for unresectable HCC (see the preceding paragraph on bevacizumab). In a 
study focusing on the use of atezolizumab in patients with renal insufficiency, the 
efficacy and safety of atezolizumab in these special subpopulations from an expanded 
access program was reported[276]. Objective responses occurred in 0/6 (0%), 4/19 
(21%), 1/27 (3.7%), and 12/62 (19%) of evaluable patients with CCR < 30, 30-45, 45-60, 
and ≥ 60 mL/min, respectively, and stable disease course was observed in three 
patients with CCR < 30 mL/min. The author concluded that these findings verified the 
clinical benefit of atezolizumab in patients with compromised renal function. In one 
case report, a male patient with metastatic urothelial cell carcinoma and ESRD on 
dialysis was safely treated with atezolizumab[277]. The main kidney-related side effect 
caused by atezolizumab is acute tubulointerstitial nephritis, as reported in biopsy-
proven cases[278,279]. Based on the FDA label, mild or moderate renal impairment 
(eGFR 30-89 mL/min/1.73 m2) has no clinically significant effect on systemic exposure 
to atezolizumab; however, the effects of severe renal impairment (eGFR < 30 
mL/min/1.73 m2) or severe hepatic impairment on the pharmacokinetics of atezol-
izumab is unknown[280].

Pembrolizumab is an anti-PD-1 monoclonal antibody. The antitumor effects of 
pembrolizumab were examined in a phase II trial in patients who were previously 
treated with advanced HCC (KEYNOTE-224)[281]. Subsequently, a randomized, 
double-blind, and phase III study (KEYNOTE-240) was conducted to further verify the 
efficacy and safety of pembrolizumab in this population[282]. The study indicated a 
favorable risk-to-benefit ratio for pembrolizumab in this population, but the overall 
and progression-free survival did not reach statistical significance per the specified 
criteria. Based on the aforementioned trials, the FDA granted accelerated approval to 
pembrolizumab for patients with HCC who have been previously treated with 
sorafenib. Several adverse renal effects have been noted during the use of pembrol-
izumab, including acute tubular injury, acute interstitial nephritis, and minimal 
change disease; moreover, kidney biopsy was recommended for suspected pembrol-
izumab-related cases of AKI[283-285]. According to the FDA label, regarding the risk 
of immune-mediated nephritis, changes in renal function should be monitored during 
use. The FDA also advised withholding pembrolizumab and administering corticost-
eroids for grade 2 nephritis or higher, and they also advised permanently discon-
tinuing the drug for severe (Grade 3) or life-threatening (Grade 4) nephritis. Renal 
impairment (eGFR ≥ 15 mL/min/1.73 m2) has no clinically significant effect on the 
clearance of pembrolizumab. Insufficient information exists regarding whether 
clinically important differences exist in the clearance of pembrolizumab in patients 
with eGFR < 15 mL/min/1.73 m2[286].

Nivolumab is another anti-PD-1 monoclonal antibody. An open-label, noncom-
parative, phase 1/2, and dose escalation and expansion trial (CheckMate-040) was 
conducted to assess the safety and efficacy of nivolumab in patients with advanced 
HCC with or without chronic viral hepatitis[287]. The FDA later granted accelerated 
approval to nivolumab for patients with HCC who have previously been treated with 
sorafenib. A randomized, multicenter phase III study (CheckMate-459) of nivolumab 
vs sorafenib in patients with advanced HCC is currently ongoing to examine the use of 
nivolumab as a first-line treatment[288]. The renal toxicity profile of nivolumab is 
similar to that of pembrolizumab, including AKI, acute tubular injury, and immune 
complex-mediated glomerulonephritis[284,289,290]. The FDA label contains special 
warnings, prescribes precaution for immune-mediated nephritis and renal dysfunction 
during use, and advises that patients should be monitored for changes in renal 
function. The drug should be withdrawn in cases of moderate or severe serum 
creatinine elevation and permanently discontinued in cases of life-threatening serum 
creatinine elevation. The effect of renal impairment on the clearance of nivolumab was 
evaluated through a population pharmacokinetics analysis in patients with mild 
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(eGFR: 60-89 mL/min/1.73 m2), moderate (eGFR: 30-59 mL/min/1.73 m2), or severe 
(eGFR: 15-29 mL/min/1.73 m2) renal impairment. No clinically important differences 
in the clearance of nivolumab were found between patients with renal impairment and 
those with normal renal function. The FDA suggests no dose adjustment in patients 
with renal impairment[291].

Ipilimumab is a CTLA-4 immune checkpoint inhibitor. The anti-HCC effect of 
ipilimumab was demonstrated in the nivolumab plus ipilimumab cohort in 
CheckMate-040, a multicenter, open-label, and phase 1/2 study (described in the 
preceding paragraph on nivolumab)[292]. The FDA granted accelerated approval to 
the combination of nivolumab and ipilimumab for patients with HCC who have 
previously been treated with sorafenib. As with those for other immunotherapy 
agents, evidence of the adverse renal effects of ipilimumab has indicated their 
presence in the forms of acute interstitial nephritis and AKI, constituting a cause for 
alarm[293]. However, the onset of kidney injury as indicated by CTLA-4 antagonist-
related renal injury occurs earlier (2–3 mo) than that indicated by PD-1 inhibitors (3–10 
mo)[284,294]. Furthermore, a case of ipilimumab-induced lupus nephritis was also 
reported[295]. Notably, ipilimumab has also been associated with electrolyte 
disturbances. Ipilimumab-induced hyponatremia caused by pituitary hypophysitis has 
been documented in case reports[296,297]. The FDA label suggests that patients should 
be monitored for changes in renal function. Furthermore, the drug should be 
withdrawn in cases of moderate or severe serum creatinine elevation and permanently 
discontinued in cases of life-threatening serum creatinine elevation. The effect of renal 
impairment on the clearance of ipilimumab was evaluated in patients with mild 
(eGFR: 60-89 mL/min/1.73 m2), moderate (eGFR: 30-59 mL/min/1.73 m2), or severe 
(eGFR: 15-29 mL/min/1.73 m2) renal impairment compared with patients with normal 
renal function (eGFR: ≥ 90 mL/min/1.73 m2) in a population pharmacokinetics 
analysis. No clinically important differences in the clearance of ipilimumab were 
found between patients with renal impairment and patients with normal renal 
function. The FDA recommended no dose adjustment for patients with renal 
impairment[298].

In addition to antibodies against CTLA-4 and PD-1/PD-L1, checkpoint inhibitor 
targeting TIM-3 is another potential and promising candidate of immunotherapy for 
cancer treatment[272,299]. TIM-3, a type I surface glycoproteins encoded by the gene 
on chromosome 5q33.2, was first discovered in 2001 and identified as an immune 
checkpoint that specifically expressed on interferon-γ-secreting CD4(+) T helper 1 and 
CD8(+) T cytotoxic cells in both mice and humans[300,301]. TIM-3 acts as a negative 
regulator of T cell function by triggering cell death upon interaction with its ligand, 
galectin-9. TIM-3 overexpression has been implicated in the suppression of T-cell 
responses and T-cell dysfunction; a state referred to as T-cell exhaustion[302]. TIM-3 
also has other ligands and is expressed on other cell types like dendritic cells[303], 
monocytes[304], and mast cells[305]. In chronic HBV infection, TIM-3 expression is 
elevated in T helper cells, cytotoxic T lymphocytes, dendritic cells, macrophages, and 
natural killer cells, accompanied by impaired function of these immunocytes[306]. The 
TIM-3/galectin-9 signaling pathway was found to mediate T-cell senescence in HBV-
associated HCC[307]. In addition to the immunomodulation effect, the expression of 
TIM-3 on tumor cells has been found to regulate the function of tumor cells directly
[308]. A mechanistic study showed that TIM-3 expressed by malignant hepatocytes 
served as a tumor cell-intrinsic receptor to promote tumor growth via triggering NF-
κB/IL-6/STAT3 axis[309]. Therefore, TIM-3 is a drug target for treating both chronic 
viral infection and HCC.

Several clinical trials about the use of anti-TIM-3 monoclonal antibodies in different 
types of cancer have been registered on ClinicalTrials.gov. MBG453, an anti-TIM-3 
monoclonal antibody, was tested for the safety and efficacy of a single agent or in 
combination with PDR001 (anti-PD-1 antibody) in adult patients with advanced 
malignancies in a phase I-Ib/II open-label multicenter study (NCT02608268). TSR-022 
is another anti-TIM-3 monoclonal antibody and its safety and efficacy are assessed 
alone in patients with advanced solid tumors (NCT02817633) or in combination with 
TSR-042 (anti-PD-1 antibody) (NCT03307785). Notably, a phase II trial studying the 
effect of TSR-022 with TSR-042 in the treatment of patients with locally advanced or 
metastatic liver cancer is recruiting and results are pending in October 2023 
(NCT03680508). There are also various TIM-3 inhibitors studied in the phase I trials, 
including Sym023 (NCT03489343), BMS986258 (NCT3446040), and RO7121661 
(NCT03708328).

In the mice model of nephrotoxic serum nephritis, TIM-3 was found up-regulated in 
kidneys and exerted a protective role. Administration of the anti-TIM-3 antibody 
aggravated nephritis as shown by significantly increased albuminuria, respective 
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histological changes, and expression of the renal injury molecule lipocalin-2[310]. 
Paradoxically, in the other mice model of diabetic nephropathy, TIM-3 was found to 
worsen the disease via the NF-κB/TNF-α pathway, and its performance in 
macrophage worsened podocyte injury both in vivo and in vitro studies[311]. Given 
that limited data is available, its exact role in the development of renal diseases 
remains unclear. Currently, the renal side effects of anti-TIM-3 antibodies in humans 
are still unknown. The renal safety profile from the clinical trials is still awaited.

Antivirals use during HCC treatment
Concomitant antiviral therapy is common during HCC treatment, especially the use of 
anti-HBV nucleoside or nucleotide analogues (NUCs). NUCs therapy could suppress 
HBV viral replication, achieve biochemical remission, and ameliorate liver inflam-
mation[312-315]. In addition, NUCs therapy could reduce the incidence of liver 
decompensation, particularly in HCC patients undergoing LT on immunosuppressant 
and TACE which are prone to cause HBV reactivation or flare[316-319]. Though there 
is emerging evidence shows NUCs could decrease HCC incidence and recurrence[315,
320-325], the extent to which NUCs therapy may reduce the risk for HCC has been 
debated[326-328]. Recent mainstay therapies for HBV include NUCs with high 
potency and high genetic barriers, such as entecavir (ETV), tenofovir disoproxil 
fumarate (TDF), and tenofovir alafenamide (TAF). However, when using in patients 
with renal dysfunction, there are special considerations that need to be watched.

ETV belongs to a nucleoside analogue with high potency. However, it has lower 
efficacy if lamivudine resistance presents previously[329]. Relatively safe renal safety 
profiles were reported both in rats and humans[330-333]. Since ETV is eliminated 
primarily from kidneys, renal dose adjustment is needed in patients with CCR less 
than 50 mL/min to avoid over-exposure to this drug[334,335].

TDF, a nucleotide analogue, is a prodrug of tenofovir that is absorbed from the 
intestine and cleaved to release tenofovir, which is then phosphorylated inside 
hepatocytes to form active tenofovir diphosphate targeting viral reverse transcriptase
[336]. The adverse effects of long-term use include elevated creatinine, Fanconi 
syndrome, and osteoporosis[337,338]. TDF is also eliminated by the kidneys in the 
majority and is not suggested in patients with CCR less than 50 mL/min by some 
society guidelines because of its nephrotoxicity to proximal renal tubules[339]. 
Furthermore, when using in the scenario of HCC treatment, renal functions of patients 
receiving repeated computed tomography exams should be closely followed in case of 
deterioration[340].

TAF is the other novel prodrug of tenofovir. In an in vitro study, TAF resulted in 
high levels of the pharmacologically active metabolite tenofovir diphosphate than TDF
[341]. A recent study showed comparable viral suppression and serologic response 
between TAF and TDF in non-cirrhotic HBV patients[342]. Besides, TAF has no 
proximal renal transporter-dependent cytotoxicity, which may lead to an improved 
renal safety profile[343]. Nevertheless, there was insufficient data in patients whose 
CCR below 15mL/min not receiving chronic hemodialysis and thus TAF is not 
recommended in this patient group[344].

CONCLUSION
The HCC patient population highly overlaps with those for CKD and ESRD. This 
article summarized the possible causes of the high comorbidity of HCC and renal 
dysfunction (Figure 1), including the possible mechanisms of CKD causing HCC, the 
pathophysiology of HCC affecting renal function, and the common risk factors shared 
by both HCC and CKD (Table 1). Both CKD and ESRD have been reported to 
negatively affect the prognosis of HCC. The article then adopted the well-known 
BCLC guidelines as a template (Figure 2) to discuss the indications for each stage of 
HCC treatment, the treatment-related adverse renal effects, and the concerns that are 
specific to patients with pre-existing renal dysfunction in the application of aggressive 
treatments such as liver resection, SLKT, RFA, and TACE, and in the use of the latest 
systemic target and immunotherapy approaches among the CKD and ESRD 
population. This article provides a comprehensive review of HCC patients with renal 
dysfunction from disease onset to treatment; the findings are expected to aid clinicians 
and scholars.
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