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Abstract
The use of artificial intelligence-based tools is regarded as a promising approach 
to increase clinical efficiency in diagnostic imaging, improve the interpretability of 
results, and support decision-making for the detection and prevention of diseases. 
Radiology, endoscopy and pathology images are suitable for deep-learning 
analysis, potentially changing the way care is delivered in gastroenterology. The 
aim of this review is to examine the key aspects of different neural network 
architectures used for the evaluation of gastrointestinal conditions, by discussing 
how different models behave in critical tasks, such as lesion detection or charac-
terization (i.e. the distinction between benign and malignant lesions of the 
esophagus, the stomach and the colon). To this end, we provide an overview on 
recent achievements and future prospects in deep learning methods applied to the 
analysis of radiology, endoscopy and histologic whole-slide images of the 
gastrointestinal tract.
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Core Tip: Artificial intelligence in general, and machine learning (ML) in particular, 
have great potential as supporting tools for physicians in the evaluation of neoplastic 
diseases and other conditions of the gastrointestinal tract. Radiology, endoscopy and 
pathology images can be read and interpreted using ML approaches in a wide variety 
of clinical scenarios. These include detection, classification and automatic segment-
ation of tumor lesions, tumor grading, patient stratification and prediction of treatment 
response.
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INTRODUCTION
Among all the emerging technologies that are shaping the future of medicine, artificial 
intelligence (AI) is arguably the one which will most alter the way care is delivered in 
the short and medium term. There is agreement in the field that AI will deeply impact 
healthcare, allowing for better diagnostics, better treatments, a more efficient use of the 
medical resources, and a more personalized management of patients[1,2]. In 
particular, diagnostic techniques based on medical images are spearheading this 
revolution[3], because their scope (the analysis of images, which, in general, are 
already digital), is highly accessible for computing systems. In comparison, other 
specialties such as emergency medicine or cardiac surgery, are less approachable by 
computers, and penetration of IA in these medical disciplines will be slower and later.

In the field of gastroenterology, several imaging modalities are used for evaluation 
of the digestive tract and the diagnosis of gastrointestinal (GI) tumors. These include 
radiology, endoscopy and histologic sections of GI specimens. In automatic analyses of 
GI images, a subtype of AI called machine learning (ML) is mainly involved. However, 
other branches of AI, such as natural language processing (NLP), have also been 
applied in the field of gastroenterology.

The aim of this review is to synthesize the available evidence on the application of 
AI to the analysis of radiology, histology and endoscopic images of the GI tract. Other 
applications of AI in the field of digestive disease, such as NLP, have been reviewed 
elsewhere[4,5] and are out of the scope of this article.

AI IN A NUTSHELL
AI is an umbrella term referring to different techniques used to solve a given problem 
by a computing method that mimics human intelligence. This includes automatic 
image identification, classification and interpretation, as well as recognition and 
processing of natural language. As such, AI encompasses a wide range of technologies, 
which vary in their complexity, versatility, and applicability to different types of 
problems.

Of particular interest is ML, which refers to a specific form of AI that endows 
computers with the ability to learn from and improve with experience, by-passing the 
need of being explicitly programmed to perform a specific task[6]. This learning 
process can be supervised or unsupervised, depending on the existence of labels in the 
sample dataset used to train the ML algorithms. Supervised learning consists of 
training an algorithm with classified or labeled examples, while unsupervised learning 
involves training with unstructured, unlabeled bulk data, and requires that the 
algorithm extracts the inherent structure thereof[7]. Typical techniques used in 
supervised learning approaches include support vector machine (SVM), naïve Bayes 
and random forest (RF). For its part, popular clustering algorithms used for 
unsupervised learning include k-means, k-medoids and Gaussian mixtures.

Both learning schemes can be used to train artificial neural networks (ANN), a 
subtype of ML algorithms which have a structure loosely inspired by the human brain. 

https://www.wjgnet.com/1007-9327/full/v27/i27/4395.htm
https://dx.doi.org/10.3748/wjg.v27.i27.4395
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They are made up of several node units, known as neurons, which are mostly 
structured in successive layers. The products of one layer go through weighted 
connections to the entries of the next layer, until a final output is produced. As an 
example, Figure 1 shows a three-layered neural network: When ANN are composed of 
many layers of nodes between the input and output, they are called deep neural 
networks (DNN), and using these models is called deep learning (DL). Thanks to their 
complexity, DNNs are able to model more complex relationships and execute more 
difficult tasks.

Convolutional neural networks (CNN) are DNN specialized in image recognition 
and classification. CNNs automatically extract descriptors by using a special neural 
network whose weights are determined by a training set. Figure 2 shows the typical 
structure of a CNN. The scheme shows how the image is consumed by the feature 
extraction network, which is a neural network composed of subsequent pairs of 
convolutional and pooling layers. Convolutional layers filter and analyze different 
image features, which are convoluted with the input data. Then, a pooling layer is 
used to reduce the size of the image produced by the convolutional layer. This process 
is repeated as per the number of layer pairs in the extraction network. Finally, the 
classification is done by an ANN acting as a classifier network.

The performance of CNN in the analysis of natural images has already attained 
similar, and even superior levels compared to that of the human eye[8]. Indeed, thanks 
to the rise in computational power, the reduction of hardware costs, the substantial 
development of efficient network architectures and the increasing wealth of data, the 
last years have witnessed a spectacular surge in AI-driven applications related to 
medicine.

Today, AI is a hot research topic in many medical fields. As a token, the number of 
publications found in PubMed using the search term “AI” more than doubled in only 
3 years, rising from 6761 in 2016 to 15435 in 2019. The number of results per year after 
adding the term “gastroenterology” to that search also speaks for itself, increasing 
from 30 to 169 over the same time span (Figure 3).

This illustrates a growing interest among both academic and industry groups in the 
design and clinical validation of novel applications of AI. This task is facilitated by 
technology companies, which offer cloud-based services to remotely train DL models. 
It is expected that ML solutions will become increasingly available through their 
implementation in computer-aided detection (or diagnosis) (CAD) systems[9], thereby 
facilitating the widespread usage of these tools in clinical practice. These solutions are 
becoming progressively offered by the main medical technology vendors, as well as 
independent clinical software firms.

APPLICATIONS OF AI IN GI RADIOLOGY
Reports of the use of AI in GI radiology are abundant in the literature. Advances in 
ML have been applied to a wide range of clinical problems related with interpretation 
of images for diagnosis and decision-making in every anatomic site of the GI tract, 
from the esophagus to the rectum.

ML models have been trained to process quantitatively mineable features from a 
wide variety of radiologic modalities, such as computed tomography (CT), magnetic 
resonance imaging (MRI) and ultrasound (US). Within MRI, virtually any type of 
sequences, including structural such as T1-weighted and T2-weighted, and functional 
such as diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) 
maps, have been incorporated into AI-driven models. In addition, some of the most 
complex networks have been designed to interpret contrast-enhanced multiphasic CT 
and MRI images (i.e., dynamic contrast-enhanced MRI series) and even analyze, in a 
conjoined fashion, multimodal (CT, MR) studies.

Many AI applications focus on, or incorporate steps to automatically segment 
radiologic images, a task which is very time-demanding when done manually. An 
array of network architectures is available to provide segmented images of the same 
resolution of the original ones, but with pixel or voxel-based boundary delimitation of 
adjacent tissue types[10].

The use of ML and DL algorithms is, in many instances, accompanied by radiomic 
approaches. Radiomics, a term which was coined as late as 2012[11], refers to the 
quantitative and objective analysis of features in radiologic images by computational 
means, in order to gain insight into otherwise invisible, or hardly quantifiable 
information of potential clinical relevance. A cornerstone of radiomic assessments 
involves the analysis of image texture features. Radiologic textures (Figure 4) refer to 
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Figure 1 A neural network made up of 3 layers: An input layer, a hidden layer and an output layer. The input data is taken by the neurons (shown 
as blue circles) in the input layer, and produce an output which is consumed by the next layer (hidden layer). They, in turn, perform similar computations and provide 
an output to the output layer, which yields a final output.

Figure 2 Conceptual example of a simple convolutional neural network used for classification of a stomach tumor. 

differences in the grayscale intensities of adjacent pixels or voxels within a region of 
interest, and have been associated with intratumoral heterogeneity[12]. Radiomics is 
closely linked to IA, because it often uses ML methods to discover patterns in large 
datasets[13], although, alternatively, statistical approaches can be used instead.

In the following sections, we review the currently reported experience in the AI-
based analysis of GI radiology studies in different clinical scenarios.

Esophageal neoplasia
Esophageal cancer (EC) is a very aggressive neoplasm, with two main histological 
subtypes: Squamous cell carcinoma (ESCC) and adenocarcinoma. Currently, EC is 
preferably treated with chemoradiation (CRT), with a positive correlation between the 
histopathological response and overall survival[14]. However, common derived 
parameters from CT and positron emission tomography (PET) have shown a limited 
accuracy in treatment prediction and response assessment. In this scenario, radiomics 
and DL methods have shown initial promise in prediction of response to treatment in 
patients with EC. Radiomic signatures in PET images have been used to predict 
prognosis in patients with esophageal adenocarcinoma[15] and in patients with ESCC
[16]. Also, 18F-fluorodeoxyglucose (FDG) PET/CT metrics and textural features 
showed utility in predicting response to induction chemotherapy followed by 
neoadjuvant CRT in a mixed cohort including patients with either type of EC[17].

Prognosis prediction of patients with EC has also been addressed from the 
viewpoint of CT. For instance, Ou et al[18] used multivariable logistic regression, RF 
and SVM classifiers on radiomic biomarkers extracted from CT data to predict resect-
ability of ESCC[18]. Also, Jin et al[19] evaluated the potential of an integrated model 
combining radiomic analyses on CT images and dosimetric parameters in predicting 
response to CRT in patients with esophageal adenocarcinoma or ESCC. The combined 
model achieved an accuracy of over 0.7, and displayed a better prediction performance 
than the model using radiomic features alone[19]. Later, Hu et al[20] investigated the 
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Figure 3 PubMed results by year using the search terms. A: Artificial intelligence; B: Artificial intelligence gastroenterology.

role of radiomic features and DL models in predicting response to neoadjuvant CRT in 
patients with ESCC eligible for surgery. Manual radiomic feature extraction and 
feature mapping by CNN were done on pre-treatment CT images. DL modeling based 
on SVM classifiers showed a greater capacity in assessing tumor heterogeneity and 
outperformed handcrafted radiomic markers in predicting pathologic complete 
responses of the tested cohort. Of note, the combination of radiomics and DL did not 
result in a better predictive performance than DL alone[20]. CT radiomics features 
have also been successfully used to identify programmed death-ligand 1 and CD8+ 
tumor infiltrating lymphocyte expression levels in patients with ESCC. Such analyses, 
performed on pretreatment CT images, allowed for better patient stratification and 
selection of candidates for immune checkpoint inhibitor therapy[21]. Finally, other 
encouraging applications of CT radiomics analysis in ESCC are pretreatment local 
staging[22] and assessment of lymph node status[23,24] with advantage over morpho-
logical features and size criteria.

In addition, radiomics analysis has also been applied to MRI, although this 
technique is challenging to perform in the esophagus due to motion artifacts. 
Preliminary results of radiomics analyses using pretreatment T2-weighted sequences 
show promise in the prediction of treatment response to CRT in patients with ESCC
[25].

Gastric adenocarcinomas and GI stromal tumors
Radiomic analyses with different techniques have been applied to improve malignant 
tumor detection and characterization in the stomach. In this regard, a nomogram 
including multiphasic CT radiomics features was able to predict the presence of gastric 
adenocarcinomas[26].
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Figure 4 Texture analysis of rectal adenocarcinoma. A: Original, axial T2-weighted image; B: Region of interest delineation of rectal tumor mass (orange) 
and normal tissue (blue); C and D: Parametric images and histograms of two different texture descriptors, showing differences between normal (blue) and tumor 
(brown) regions; C: Grey-level nonuniformity; D: High gray-level run emphasis. GLN: Grey-level nonuniformity; HGRE: High gray-level run emphasis.

The aggressiveness potential of gastric adenocarcinomas can be predicted by ML 
and radiomic analyses on CT and MRI of the stomach. Texture analysis performed in 
portal venous phase CT scans discovered feature correlates of lymphovascular and 
perineural invasion potential in patients with tubular gastric adenocarcinomas treated 
with total gastrectomy. Classifications done with eight different ML models were 
evaluated, among which naïve Bayes and RF exhibited the best performance in 
predicting the existence of lymph nodes metastasis, vascular and perineural invasion
[27]. Similarly, quantitative assessment of intratumoral heterogeneity of gastric 
adenocarcinomas by entropy parameters extracted from ADC maps could be 
correlated with overall stage and prognostic factors of malignant behavior, including 
vascular and perineural invasion[28]. Another very recent study has shown the 
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potential role of a double-energy CT radiomics nomogram for prediction of lymph 
node metastases in gastric adenocarcinomas, with advantages over the current clinical 
model. In addition, the nomogram demonstrated a significant correlation with patient 
survival[29]. Also, AI and radiomics analyses have been applied to the prediction of 
treatment response of metastatic gastric adenocarcinomas. An ANN predictive model 
using radiomics analyses of pretreatment contrast-enhanced computed tomography 
(CECT) demonstrated significant differences between responders and non-responders, 
in a cohort of patients treated with pulsed low dose radiotherapy[30].

In addition, ML has been successfully applied to diagnosis and clinical decision-
making of therapeutic strategies in patients with GI stromal tumors (GIST). As 
reported by Wang et al[31], ML showed the ability to differentiate between gastric 
schwannomas and GISTs by assessing CT images[31]. In that study, radiologists 
performed worse than all of the five different ML models tested, which included RF, 
logistic regression and decision trees. Also, analysis of CECT scans by a residual 
neural network has proved useful to predict the risk of recurrence after curative 
resection of localized primary GIST[32]. This offers new avenues for non-invasively 
distinguishing between patients with high risk of recurrence, for which adjuvant 
treatment with imatinib is recommended, and low-risk patients eligible for curative 
resection who are not likely to benefit from imatinib adjuvant therapy.

Colorectal cancer
AI has been extensively researched in the detection, characterization and staging of 
colorectal cancer (CRC)[33]. Several ML techniques have shown utility in the 
automated detection of polyps by CT colonography[34,35]. Also, radiomic analyses of 
colorectal CT images were successful in classifying CRC lesions according to their 
KRAS gene mutation status[36].

Currently, MRI is considered the most accurate test for rectal cancer staging[37]. A 
faster region-based CNN was trained to detect metastatic lymph nodes in T2-weighted 
and DWI images of the pelvis. The N staging provided by this network was very 
consistent with that done by radiologists, while average diagnostic time was markedly 
shorter (20 ms vs 600 ms, respectively)[38,39].

In addition, radiomic models aided by SVM were useful in predicting liver 
metastases of colon cancer. A combined model which included radiomic features of 
preoperative CT scans with two clinical variables (tumor site and diameter of tumor 
tissue) showed a higher prediction performance than either the clinical features or the 
radiomic signatures taken separately[40].

Radiomics analyses of CT, MRI and PET/CT images have been extensively used to 
predict treatment outcome and survival in patients with CRC. A recent systematic 
review analyzed 81 studies focused on this task, finding only 13 high-quality reports 
demonstrating a good performance in predicting treatment response, which mainly 
involved MRI studies of rectal cancer. Of note, the authors concluded that radiomics 
research in this field needs more clinical validation, rather than new algorithms[41]. 
Van Helden et al[42] discovered radiomic predictors of response to palliative systemic 
therapy and survival of patients with metastatic CRC, using pre-treatment 18F-FDG 
PET/CT images processed with semiautomatic segmentation[42].

Also, in this line, a recent report investigated the prognostic value of a ML model 
based on liver CT radiomics analyses to predict survival of patients with metastatic 
CRC[43]. Interestingly, CT-based prediction models were superior to their clinical 
counterparts for 1-year survival prediction.

Radiomic analyses may be useful to guide treatment of locally advanced rectal 
cancer (LARC). A radiomic signature comprising 10 texture features from T2-weighted 
images were modeled by a RF algorithm and used to evaluate treatment responses of 
subjects with LARC after neoadjuvant chemotherapy. The signature showed good 
prediction of patient response to treatment, with a good discrimination power among 
complete responders, partial responders and non-responders, with areas under the 
curve (AUC) in the 0.83-0.86 range[44].

In another study, Cui et al[45] developed and validated a radiomic signature based 
on 12 features extracted from multiparametric MR images [T2-weighted, dynamic 
contrast enhanced (DCE) and ADC maps] to predict complete response in patients 
with LARC after neoadjuvant CRT. The combination of all three image types showed a 
better predictive value than either of them alone, with an AUC of over 0.94[45]. This 
was hypothesized to result from the different aspects of tumor behavior reflected by 
each modality, such as tumor intensity, vascularization and cellularity, respectively.
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Segmentation of radiologic images
Segmentation is a key step in the diagnosis and evaluation of tumor diseases, as well 
as in the treatment volume calculation for radiotherapy planning. However, manually 
delineating the relation between tumors and adjacent structures is a very time-
consuming task for radiologists, requires a considerable level of expertise, and often 
lacks adequate inter-observer reproducibility.

Several DL models have been developed for automatic delimitation of tissue 
boundaries, many of which have been specifically tested in GI sites. Of note, automatic 
segmentation can be particularly challenging in the abdomen, due to the lack of clear 
boundaries between some organs which are displayed with similar intensities in this 
anatomy, such as the liver, the stomach, the spleen and the kidneys. Also, peristaltic 
and breathing motions make the assessment of the GI tract with US and MRI more 
difficult.

The complexity of networks involved in image segmentation varies. Today, the 
more recent and sophisticated networks are based on fully convolutional networks 
(FCN), which are optimal frameworks for semantic image segmentation. Popular 
FCN-based architectures include SegNet[46] and U-net, a CNN specialized in fast and 
accurate segmentation of biomedical images[47]. U-net networks can be trained with a 
relatively limited set of data and are a usual choice for many automatic segmentation 
approaches.

Automatic segmentation of rectal tumors has been attained using T2-weighted[48,
49], DCE[50] and multiparametric (T2, DWI) MRI[51]. Multi-organ, and even full-
abdomen segmentation are feasible, although they usually rely on multi-atlas label 
fusion[52]. This strategy requires registration and fusion of images acquired at 
different levels of the same patient and is prone to error due to inefficient image 
registration. Nonetheless, Gibson et al[53] recently proposed a registration-free method 
for multi-organ segmentation of CT images, based on a FCN called DenseVNet[53].

A useful application of automatic segmentation is the calculation of the clinical 
target volume of tumors in planning CT images for radiotherapy purposes. This 
approach has the advantage of yielding more reproducible measurements of treatment 
areas, leading to more consistent radiation doses, and has been explored in the 
assessment of EC[54] as well as rectal tumor lesions[55,56], among others.

APPLICATIONS OF AI IN ENDOSCOPIC TECHNIQUES
AI in GI endoscopy holds tremendous promise to augment clinical performance, 
establish better treatment plans, and improve patient outcomes.

In September 2019, the first multidisciplinary global gastroenterology AI meeting 
(First Global AI in Gastroenterology and Endoscopy Summit) was held in Washington, 
DC (United States), with a mandate to discuss and deliberate on practice, policy, 
ethics, data security, and patient care issues related to identification and implement-
ation of appropriate use cases in gastroenterology[57]. Among the many challenges 
related to the use of AI for gastroenterology applications, Summit attendees 
highlighted 7 future needs to advance the field of AI in this discipline (Table 1).

Today, a wide variety of AI applications in GI endoscopy are being proposed, 
developed, and, in some cases, validated in clinical trials. The most current AI 
algorithms for gastroenterology are in the field of computer vision, which refers to 
technologies that can “see and interpret” visual data, such as a live video stream from 
the endoscope.

Polyp detection
Computer-aided polyp detection (CADe) and computer-aided polyp diagnosis 
(CADx) are two applications of AI-assisted computer vision for colonoscopy, which 
are already extensively studied[58,59]. CADe and CADx have been the areas of most 
rapid progress so far in applying AI/computer vision to GI endoscopy. Given the 
central importance of screening and surveillance colonoscopy for CRC prevention, 
continued development and validation of CADe and CADx remains a top priority.

AI-assisted polyp detection studies must apply validated outcome parameters, such 
as adenoma detection rate, adenomas per colonoscopy, or adenoma miss rate, among 
others. Most of these studies are early-stage, but show promising clinical relevance. 
For instance, a recent study showed that an AI system based on DL and its real-time 
performance led to significant increases in polyp detection rate[60].
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Table 1 Future needs to advance the field of artificial intelligence in gastroenterology

No. Future needs

1 Identification of relevant and well-defined use cases

2 Development of high-quality metrics

3 Creation of large-scale imaging datasets

4 Clarity on the regulatory path to market

5 Use of appropriate AI methods

6 Clarification of patient privacy issues

7 Education of gastroenterologists on the risks and benefits of AI

AI: Artificial intelligence.

Computer vision and image classification 
Prioritization of additional use cases for computer vision in GI endoscopy must 
consider the prevalence of the targeted disease state, the possible clinical impact of the 
proposed algorithm, and the potential solvability of the clinical problem by AI.

The most common GI cancers share a common natural history. In this manner, CRC, 
gastric cancers, and ECs have precursor lesions that can be diagnosed by traditional 
endoscopic modalities. Additionally, inflammatory bowel disease (IBD) represents a 
relatively high prevalence group of conditions with an elevated risk of CRC but with 
dysplastic precursor lesions that are difficult to recognize endoscopically.

A major barrier to progress in ML in GI endoscopy is the relative absence of high-
quality, labeled images for training AI algorithms. To overcome this, there is an urgent 
need to develop rules and recommendations regarding appropriate formats and 
quality standards for endoscopy image and video, along with accepted protocols for 
categorizing such images, storing metadata, and transferring and storing images while 
protecting private health information.

Image classification using AI has been developed to detect gastric cancer in 
endoscopic images with an overall sensitivity of 92.2%[61]. Another study applied a 
CNN to quantify the invasion depth of gastric cancer based on endoscopy data[62]. 
Similarly, a CNN was constructed to characterize EC, achieving a sensitivity as high as 
98%[63].

GI bleeding 
DL is especially relevant to video capsule endoscopy, given the large amount of data 
(around 8 h of video) and low efficiency of manual review by the physician. AI tools 
have also been shown to detect small-bowel bleeding and other relevant images most 
likely to be clinically relevant. The first studies involving CAD of bleeding from video 
capsule endoscopy images used color and texture feature extraction to help distin-
guish areas of bleeding from area of nonbleeding[64]. More recent studies, including 
those published by Jia and Meng[65], and Hassan et al[66], used DL-based features to 
achieve sensitivities and specificities as high as 99% for the detection of GI bleeding.

Shung et al[67] recently published a systematic review summarizing the use of ML 
techniques to predict outcomes in patients with acute GI bleeding. Fourteen studies 
with 30 assessments of ML models were included in their analysis. They predicted that 
ML performed better than clinical risk scores for mortality in upper GI bleeding 
(UGIB). Overall, the AUC for ANNs (median, 0.93; range, 0.78-0.98) was higher than 
other ML models (median, 0.81; range, 0.40-0.92)[67].

The emergence of automated lesion recognition endoscopy software combined with 
the boost in robotic techniques in surgery[68] has captured the attention of GI 
endoscopists and surgeons. For example, clinical risk-scoring systems offer invaluable, 
but not always practical, help for better stratification of patients at risk of UGIB and 
hemodynamic instability. Seo et al[69] developed an ML algorithm that predicts 
adverse events in patients with initially stable non-variceal UGIB[69]. Primary 
outcomes analyzed in this study included adverse events such as mortality, low blood 
pressure and rebleeding within 7 d. The authors compared four ML algorithms 
(logistic regression with regularization, RF classifier, gradient boosting classifier and 
voting classifier) with clinical Glasgow–Blatchford and Rockall scores. They found that 
the RF model achieved the highest accuracy and offered significant improvement over 
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conventional methods used for mortality prediction.

IBD and AI 
Recently, AI solutions have been explored to better define mucosal healing in IBD[70]. 
With the incidence and global burden of IBD still on the rise, involving a large number 
of young patients with normal life expectancy, there is a constant need for more 
accurate ways to stratify risks and predict prognosis in these patients. Because the 
concept of mucosal healing is a rather new concept, the authors expect that AI tools for 
healing evaluation through endoscopic monitoring, which have recently been 
developed, could play a key role in better standardizing it[70].

Waljee et al[71] used RF methods to develop and validate prediction models of 
remission in patients with moderate to severe Crohn’s disease. In 401 participants, 
they showed an AUC of 0.78 at week 8 and an AUC of 0.76 at week 6. Also, Klang et al
[72] reported on the training of a CNN to detect Crohn’s disease ulcers, using 17,640 
capsule endoscopy images from 49 patients[72].

Assessment of ulcerative colitis (UC) can sometimes be very difficult. In early stages 
of the disease, erythema can be attributed to a number of other conditions, delaying 
UC diagnosis. On the other hand, foci of dysplasia in advanced disease are often 
missed due to the small amount of colonic mucosa sampled in surveillance 
colonoscopy. Thus, the development of AI solutions aimed at helping assess UC 
activity is a hot research topic.

For instance, Gutierrez et al[73] proposed an automated end-to-end system using DL 
to binary predict the Mayo Clinic Endoscopic subscore, which showed a high degree 
of precision and robustness, with an AUC of 0.84[73]. In this connection, Kirchberger-
Tolstik et al[74] recently reported a non-destructive biospectroscopy technique assisted 
by neural networks to assess the severity of the disease according to the Endoscopic 
Mayo Score, with a mean sensitivity of 78% and a mean specificity of 93%[74].

Maeda et al[75] developed and evaluated a CAD system for predicting persistent 
histologic inflammation using endocytoscopy. To do so, they classified the endoscopic 
studies according to the histological findings of the corresponding biopsies, obtaining 
a predictive model with a high specificity and sensitivity[75]. In addition, Bossuyt et al
[76] constructed an algorithm tracking mucosal redness density in the red channel of 
endoscopic images along with vascular patterns. The results were accurately 
correlated with the activity of the disease at the endoscopic and histological level[76].

APPLICATIONS OF AI IN GI PATHOLOGY
Today, most pathology labs still rely on fully analogic workflows, including the use of 
optical microscopes. However, with the availability of digital slide scanners clearly on 
the rise, there is a growing interest in the development of AI applications for 
histopathological studies.

Computational analyses of whole-slide images (WSI) of histology sections are 
regarded as a very promising form of improving diagnostic accuracy, reducing 
turnaround times and increasing interobserver agreement. Some studies regarding ML 
applications in pathology are discussed in this section.

Esophageal neoplasia
AI can be used for detection and grading of tumor lesions in the esophagus, and in 
particular of Barrett´s esophagus (Figure 5). Early detection of this condition is 
essential to improve patient prognosis. Histopathology is currently the gold standard 
for the diagnosis of this entity, but its study is characterized by a low degree of 
interobserver agreement in dysplasia grading.

To overcome this problem, Sabo et al[77] developed two computerized morpho-
metry models based on size, shape, texture, symmetry and distribution analyses of the 
epithelial nuclei of the esophagus. The first neural network model showed an accuracy 
of 89% in the differentiation of normal esophagus vs esophagus with low-grade 
dysplasia. The second model distinguished between low-grade and high-grade 
dysplasia with an accuracy of 86%, demonstrating potential for assisting pathologists 
in the differential diagnosis of indistinguishable lesions[77]. Van Sandick et al[78] and 
Polkowski et al[79] also addressed this issue, by combining morphometric analyses in 
hematoxylin and eosin (H&E) stains with immunohistochemistry data for p53 and 
Ki67. This hybrid approach improved the accuracy of the differentiation between low-
grade and high-grade dysplasia up to 94%. Lastly, Sali et al[80] compared the 
performance of three different models in classifying precursor lesions of Barrett’s 
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Figure 5 Automatic detection of intestinal metaplasia in a sample of esophagus tissue stained with hematoxylin and eosin. Image analyzed 
with research software from Cells IA (https://cells-ia.com/).

esophagus, which differed in their training approach (supervised, weakly supervised 
and unsupervised). The CNN trained with an unsupervised approach extracted the 
most relevant image features for identifying and classifying the cancer precursors[80].

Inflammatory and infectious lesions of the stomach
Chronic gastritis is a very prevalent condition. Its diagnosis is established by 
evaluating the degree of chronic and active inflammation, presence of Helicobacter 
pylori (H. pylori), atrophy of the mucosa and intestinal metaplasia. Steinbuss et al[81] 
used the Xception CNN architecture for automatic classification of three types of 
gastritis, namely type A (autoimmune), type B (bacterial), and type C (chemical) 
gastritis, in histological sections of antrum and corpus biopsies, with an overall 
accuracy of 84%[81].

H. pylori cells can be visualized in histology sections of gastric biopsy samples using 
different staining techniques, such as H&E, Giemsa or Warthin-Starry silver stains 
(Figure 6). Klein et al[82] published a DL algorithm for automatic H. pylori screening in 
Giemsa stains, with a sensitivity of 100% and a specificity of 66%[82]. In parallel, Zhou 
et al[83] used a CNN to assist pathologists in the detection of H. pylori cells in H&E-
stained WSI, but failed to demonstrate significant improvements in diagnostic 
accuracy and turnaround times in comparison with unassisted case studies[83].

Gastric cancer
Early detection and histopathologic characterization of gastric tumors are essential to 
improve treatment outcomes. A number of recent studies have paid attention to lesion 
detection, classification and characterization in this anatomic site. For instance, Song et 
al[84] developed and trained a deep CNN to differentiate between benign and 
malignant gastric tumors, with a sensitivity of 100% and a specificity of 80.6%[84]. 
Also, a network developed by Sharma et al[85] classified gastric cancer cases according 
to immunohistochemical response and presence of necrosis, with accuracy rates of 
0.699 and 0.814, respectively[85].

Mori and Miwa[86] used a 6-layer CNN to study tumoral invasion depth in gastric 
adenocarcinoma images, with an accuracy of 85%, a sensitivity of 90% and a specificity 
of 81%[86]. Later, Iizuka et al[87] trained CNN and recurrent neural networks to 
classify stomach and colon WSI into adenocarcinoma, adenoma and non-neoplastic, 
with AUC values up to 0.97 and 0.99 for adenocarcinoma and gastric adenoma, respec-
tively[87].

Lastly, Kather et al[88] trained a DL model to predict microsatellite instability from 
H&E-stained gastric cancer images, using a pathomics approach. This represents a 
very innovative approach, which extracts molecular and histochemical features solely 
based on H&E images and may circumvent the need to conduct genetic and/or 
immunohistochemical tests[88].

Colonic inflammatory disease, polyps and CRC 
Klein et al[89] evaluated the histomorphometric features of colon biopsies from 
patients with Crohn’s disease. These analyses revealed that differences in the number 
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Figure 6 Automatic detection of Helicobacter pylori infection in a gastric biopsy section stained with Warthin-Starry stain. Image analyzed 
with research software from Cells IA (https://cells-ia.com/).

of inflammatory cells, lymphocytic aggregates and collagen density can be used as 
predictors of clinical phenotypes with an accuracy of 94%[89].

CRC is among the most common malignancies and a major cause of cancer-related 
death worldwide. Today, it is known that the vast majority of CRC cases arise from the 
adenoma-carcinoma sequence[90], and early detection of these lesions is considered of 
utmost importance to reduce CRC incidence rates. Despite this, evidence concerning 
the application of DL techniques to detect and characterize precancerous lesions in 
WSI of this anatomic site is still scarce.

Rodriguez-Diaz et al[91] developed a DL model to locate areas of malignant 
transformation inside polyps using semantic segmentation, distinguishing between 
neoplastic and non-neoplastic polyps, with a sensitivity of 0.96 and a specificity of 0.84
[91]. Haj-Hassan et al[92] used a CNN to classify segmented regions of interest into 
three tissue types related to CRC progression (benign hyperplasia, intraepithelial 
neoplasia and carcinoma), with an accuracy of 99.17%[92]. Korbar et al[93] applied a 
residual network architecture to classify five polyp types (hyperplastic, sessile 
serrated, traditional serrated, tubular, and tubulovillous/villous) on WSI with an 
overall prediction accuracy of over 93%[93]. Also, several studies have proposed DL 
predictive models of survival for patients with CRC based on the extraction of 
prognostic markers in H&E images[94,95].

CONCLUSION
In this review, we have summarized the current evidence on the application of AI to 
the interpretation of radiology, endoscopy and histological images of the GI tract. At 
this moment, data on the use of AI in the assessment of radiology images of the GI are 
far more abundant than those from endoscopy and pathology studies. This difference 
is mainly a consequence of the asymmetrical availability of data and degree of digital 
transformation of each specialty. In any case, taken together, the available body of 
knowledge allows us to anticipate the central role that can be expected for AI in the 
personalized management of patients with high-risk GI tumors and other GI 
conditions.

On the downside, a large proportion of papers published to date are proof of 
concept approaches, based on retrospective analyses and single-center studies, usually 
involving limited data. As a result, and although there is growing evidence on its 
applicability in many clinical scenarios, the actual contribution of AI to clinical care in 
gastroenterology is still very limited.

The next several years will likely be a period of rapid development for AI tools in 
gastroenterology imaging. It is crucial that, as this field advances, there is a focus on 
technologies that provide real clinical benefits that have been validated in high-quality 
clinical trials. To this end, prospective, multicenter studies involving large sets of real-
world data that reflect the high variability of image quality among institutions, will be 
key to assess the actual clinical applicability of AI solutions in this field.
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As the development and uptake of AI in gastroenterology continues to grow, we 
will likely see a shift in the way diagnoses of GI conditions rely on AI. Evidence on the 
superior performance of computers over human experts in most diagnostic scenarios 
involving image interpretation will soon be notorious. This might ultimately lead to a 
deskilling of specialists, who would potentially suffer from too great a reliance on AI 
for their diagnoses, a situation which might be aggravated by the “black-box” nature 
of many AI applications. Indeed, radiomics and pathomics approaches, which use 
imaging features that are otherwise invisible to the eye, or highly subjective, have 
shown a clear value in identifying patient profiles with higher risk, even before clinical 
symptoms appear. This can facilitate personalized treatment and improve the 
prognosis of patients with GI conditions, but efforts should be made to increase the 
“explainability” of AI-rendered results to both physicians and patients, in order to 
facilitate broad readership and understandability of diagnoses.
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