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Abstract
BACKGROUND 
The nature of input data is an essential factor when training neural networks. 
Research concerning magnetic resonance imaging (MRI)-based diagnosis of liver 
tumors using deep learning has been rapidly advancing. Still, evidence to support 
the utilization of multi-dimensional and multi-parametric image data is lacking. 
Due to higher information content, three-dimensional input should presumably 
result in higher classification precision. Also, the differentiation between focal 
liver lesions (FLLs) can only be plausible with simultaneous analysis of multi-
sequence MRI images.

AIM 
To compare diagnostic efficiency of two-dimensional (2D) and three-dimensional 
(3D)-densely connected convolutional neural networks (DenseNet) for FLLs on 
multi-sequence MRI.

METHODS 
We retrospectively collected T2-weighted, gadoxetate disodium-enhanced arterial 
phase, portal venous phase, and hepatobiliary phase MRI scans from patients 
with focal nodular hyperplasia (FNH), hepatocellular carcinomas (HCC) or liver 
metastases (MET). Our search identified 71 FNH, 69 HCC and 76 MET. After 
volume registration, the same three most representative axial slices from all 
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sequences were combined into four-channel images to train the 2D-DenseNet264 
network. Identical bounding boxes were selected on all scans and stacked into 4D 
volumes to train the 3D-DenseNet264 model. The test set consisted of 10-10-10 
tumors. The performance of the models was compared using area under the 
receiver operating characteristic curve (AUROC), specificity, sensitivity, positive 
predictive values (PPV), negative predictive values (NPV), and f1 scores.

RESULTS 
The average AUC value of the 2D model (0.98) was slightly higher than that of the 
3D model (0.94). Mean PPV, sensitivity, NPV, specificity and f1 scores (0.94, 0.93, 
0.97, 0.97, and 0.93) of the 2D model were also superior to metrics of the 3D model 
(0.84, 0.83, 0.92, 0.92, and 0.83). The classification metrics of FNH were 0.91, 1.00, 
1.00, 0.95, and 0.95 using the 2D and 0.90, 0.90, 0.95, 0.95, and 0.90 using the 3D 
models. The 2D and 3D networks' performance in the diagnosis of HCC were 1.00, 
0.80, 0.91, 1.00, and 0.89 and 0.88, 0.70, 0.86, 0.95, and 0.78, respectively; while the 
evaluation of MET lesions resulted in 0.91, 1.00, 1.00, 0.95, and 0.95 and 0.75, 0.90, 
0.94, 0.85, and 0.82 using the 2D and 3D networks, respectively.

CONCLUSION 
Both 2D and 3D-DenseNets can differentiate FNH, HCC and MET with good 
accuracy when trained on hepatocyte-specific contrast-enhanced multi-sequence 
MRI volumes.

Key Words: Artificial intelligence; Multi-parametric magnetic resonance imaging; 
Hepatocyte-specific contrast; Densely connected convolutional network; Hepatocellular 
carcinoma; Focal nodular hyperplasia

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Our study aimed to assess the performance of two-dimensional (2D) and 
three-dimensional (3D) densely connected convolutional neural networks (DenseNets) 
in the classification of focal liver lesions (FLLs) based on multi-parametric magnetic 
resonance imaging (MRI) with hepatocyte-specific contrast. We used multi-channel 
data input to train our networks and found that both 2D and 3D-DenseNets can differ-
entiate between focal nodular hyperplasias, hepatocellular carcinomas or liver 
metastases with excellent accuracy. We conclude that DensNets can reliably classify 
FLLs based on multi-parametric and hepatocyte-specific post-contrast MRI. 
Meanwhile, multi-channel input is advantageous when the number of clinical cases 
available for model training is limited.

Citation: Stollmayer R, Budai BK, Tóth A, Kalina I, Hartmann E, Szoldán P, Bérczi V, 
Maurovich-Horvat P, Kaposi PN. Diagnosis of focal liver lesions with deep learning-based 
multi-channel analysis of hepatocyte-specific contrast-enhanced magnetic resonance imaging. 
World J Gastroenterol 2021; 27(35): 5978-5988
URL: https://www.wjgnet.com/1007-9327/full/v27/i35/5978.htm
DOI: https://dx.doi.org/10.3748/wjg.v27.i35.5978

INTRODUCTION
Artificial intelligence (AI)-based analysis is one of the fastest evolving fields in medical 
imaging, thanks to the rapid development of medical physics, electronic engineering, 
and computer science. The need for computer-aided diagnostics has been further 
amplified by the continuously increasing demand for imaging studies and the arrival 
of new modalities that put extra pressure on radiologists while also increasing the 
probability of diagnostic errors[1]. Meanwhile, deep learning (DL)-based algorithms 
have started to gain attention among medical researchers, since they provide excellent 
reproducibility and the ability to quantify aspects of imaging data unobservable to the 
human eye, resulting in automatically generated statistical reports and predictions, 
such as the potential of malignancy or metastatic spread and automated volume 
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assessment, among other uses. Nowadays, AI has become compatible with the full 
spectrum of imaging modalities and has evolved the capacity to diagnose lesions in 
various organ systems with greater accuracy than a human reader[2]. The processed 
data often include two-dimensional (2D) slices or three-dimensional (3D) image 
volumes; moreover, in the case of magnetic resonance imaging (MRI) studies, the 
different sequences are condensed into a multi-channel input. Due to their efficiency, 
convolutional neural networks (CNNs) have replaced other machine learning (ML) 
approaches in most image classification and segmentation tasks[3,4]. Recently, densely 
connected CNNs (DenseNets) have become more popular than plain CNN 
architectures. DenseNets use shortcut connections between the convolutional layers to 
facilitate gradient flow and optimize the number of trainable parameters. In return, 
these networks yield improved accuracy and efficiency in medical image classification 
tasks[5].

Focal liver lesions (FLLs) are common incidental findings during imaging studies, 
and the work-up often requires further diagnostic procedures, such as dynamic 
contrast-enhanced ultrasound, computed tomography and liver biopsy. Meanwhile, 
the excellent soft-tissue contrast, volumetric image acquisition and avoidance of 
ionizing radiation make multi-phase dynamic post-contrast MRI the primary tool for 
detection and characterization of liver lesions. The use of hepatocyte-specific contrast 
agents (HSAs), such as gadoxetic acid and gadobenate dimeglumine, further improves 
the sensitivity and specificity of the diagnosis of FLLs, as the enhancement character-
istics of these lesions in the hepatobiliary phase (HBP) correlates with hepatocyte 
uptake[6,7]. Additionally, HSA-enhanced MRI is capable of detecting lesions smaller 
than 10 mm, making it an optimal modality for the early detection of liver metastases 
(METs)[8].

In the present study, we compared the performance of 2D and 3D-DenseNets in the 
classification of three types of FLLs, including focal nodular hyperplasia (FNH), 
hepatocellular carcinoma (HCC) and MET. To guarantee the highest possible 
prediction rate, we used HSA-enhanced multi-phase dynamic post-contrast MRI scans 
for the classification task. According to our knowledge, this is the first study to 
evaluate 2D and 3D-DenseNets for the diagnosis of FLLs and using multi-channel 
images combining four different MRI sequences. The reporting of this study follows 
the STROBE Statement checklist of items[9].

MATERIALS AND METHODS
Patient and MRI study selection
In our single-center study, we retrospectively collected multi-phasic MRI studies of 
patients with FNHs, HCCs or METs, that were acquired using Primovist (gadoxetate 
disodium), an HSA, from the picture archiving and communication system of the 
Medical Imaging Centre of our university. As this is a retrospective study, the need for 
written patient consent was waived by the Institutional Research Ethics Committee. 
The collected images were acquired between November 2017 and October 2020 using a 
Philips Ingenia 1.5 T scanner (Cambridge, MA, United States). T2-weighted (T2w) 
spectral-attenuated inversion recovery (commonly referred to as SPAIR), arterial 
phase (HAP), portal venous phase (PVP), and HBP scans were collected from each 
eligible patient for further analysis. Included lesions were either histologically 
confirmed or exhibited typical characteristics of the given lesion type with MRI. 
Patients younger than 18 years of age at the time of imaging were excluded from the 
study. Table 1 contains details of patient demographics, properties of each lesion class, 
and metastatic lesion origin.

Data preparation and dataset creation
MRI scans were exported as DICOM files, that were then anonymized to remove the 
patients' social security numbers, birth date, sex, age, body weight, and date of the 
imaging study. Anonymized PVP and HBP files were resampled and spatially aligned 
to the corresponding T2w volume using BSpline as a non-rigid registration method via 
an open-source visualization and medical image computing software, called 3D Slicer (
www.slicer.org). 3D Slicer was also used for annotation cropping and file conversion
[10,11]. Lesions were annotated by cubic regions of interest (referred to as ROIs). The 
lesions were then cropped from the aligned HAP, PVP, HBP, and T2w volumes using 
the same ROI. The cropped volumes were saved as NIfTI files, which were then 
combined into one four-dimensional (4D) file for each lesion (Figure 1). Cropped 
lesions were randomly sorted into datasets. After 10-10 lesions were added to the test 
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Table 1 Patient demographics, imaging properties of each lesion class, and details of metastatic lesion origin

Patent properties FNH HCC MET Total

Number of patients 42 13 14 69

Age in years at imaging, mean ± SD 45 ± 12 66 ± 5 57 ± 10 54 ± 14

Sex

Male 11 8 8 27

Female 31 5 6 42

Lesion properties

Number 71 69 76 216

Primary type

        CRC 21

        Leiomyosarcoma 18

        GI adenocc. or cholangiocc. 15

        Breast cc. 11

        Pancreas cc. 7

        Neuroendocrine ileum cc. 3

        Papillary thyroid cc. 1

cc.: Carcinoma; CRC: Colorectal cancer; FNH: Focal nodular hyperplasia; GI: Gastrointestinal; HCC: Hepatocellular carcinoma; MET: Metastasis; SD: 
Standard deviation; T: Tesla.

Figure 1 Steps of input data preparation for the three-dimensional densely connected convolutional neural network. A: Three-dimensionally 
rendered whole volumes at the level of the lesion (indicated by the white frame); B: Cropped cubic volumes containing the lesion; C: The four cubic volumes are 
concatenated into one four-dimensional file; each volume is represented by a different color. T2w: T2-weighted; HAP: Hepatic arterial phase; PVP: Portal venous 
phase; HBP: Hepatobiliary phase.

and validation dataset from each class, the remaining tumors were added to the 
training dataset. NIfTI files were sliced up into axial PNG images. The resulting T2w, 
HAP, PVP, and HBP PNG files were concatenated (Figure 2) using a custom-written 
computer program in Python. The training and validation datasets contained three 
axial slices of each lesion (i.e. three most representative axial slices of the NIfTI files), 
while the test set consisted of only one slice from each lesion.
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Figure 2 Steps of input data preparation for the two-dimensional densely connected convolutional neural network. A: Cubic magnetic 
resonance image volumes containing the lesion; B: Axial slices acquired from the cropped volumes; C: The four axial slices are concatenated into one three-
dimensional image; each slice is represented by a different color. T2w: T2-weighted; HAP: Hepatic arterial phase; PVP: Portal venous phase; HBP: Hepatobiliary 
phase.

Data processing, training, and testing
Parameters of concatenated files were modified via transform functions. Image pixel 
intensity was scaled between -1.0 minimum and 1.0 maximum values. Data 
augmentation transforms were applied to the training samples, including random 
rotation (70° range along two axes) and zoom (0.7–1.4 scaling) to enrich training data. 
PNGs were resized to 64 × 64 resolution. Transformed images were converted to 
tensors (2D images were converted into 3D tensors, with the additional dimension 
equaling the number of network input channels), which were then fed to DenseNet264 
that used 2D convolutional layers[5].

In the case of the 3D-DenseNet264 network, NIfTI voxels were resampled to 
isovolumetric shape, voxel intensities were rescaled between -1.0 minimum and 1.0 
maximum value and NIfTI files were resized to 64 × 64 × 64 spatial resolution. The 
four NIfTI files were concatenated (T2w, HAP, PVP, HBP) to be used as multi-channel 
input for the 3D CNN. We used random 90° rotation (along two spatial axes), random 
60° rotation (along x and y axes), random zoom (between 0.8 and 1.35), and random 
flipping on the training samples. MR volumes were converted to 4D tensors (number 
of channels, x-, y- and z-dimensions) that were used as network input. We used 
DenseNet264 models through the Pytorch-based open-source Medical Open Network 
For Artificial Intelligence (i.e. MONAI) framework[12]. We used categorical cross-
entropy loss to measure the prediction error of the network during training and an 
Adam optimizer to update model parameters[13]. Networks were trained for 70 
epochs. Using a Tesla T4 graphical processing unit, the 2D network was trained for 18 
min, while the 3D CNN was trained for 41 min. Validation set area under the receiver 
operating characteristic curve (AUROC) values were calculated after each epoch, and 
the model with the highest average AUC value was saved as the final model.

The trained models were used to make predictions on an independent test dataset 
consisting of 10 lesions from each class. The tumor type with the highest probability, 
according to the last softmax layer of the convolutional networks, was chosen as the 
predicted lesion type via an argmax function, encoding the predicted diagnosis as 1, 
while the predicted incorrect classes as 0. Specificity, sensitivity, f1 score, positive 
predictive value (PPV), negative predictive value (NPV) were calculated for each class 
based on these outputs.

Classification performance was also measured using AUC values of each class, 
calculated from the softmax layer probability outputs. DeLong’s test was used to 
determine the statistical significance between the test performance of the 2D and 3D 
classifiers[14].
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RESULTS
The 2D model achieved the highest average validation set AUC after the 46th epoch, 
while the best average AUC value of the 3D network was reached after the 62nd epoch. 
These models were saved and then used to make test set predictions (Figure 3).

The finalized 2D and 3D networks were evaluated on the same independent test set, 
consisting of 10 lesions from each tumor type. On the independent test set, the 
finalized 2D model achieved 0.9900 [95% confidence interval (CI): 0.9664–1.0000], 
0.9600 (95%CI: 0.8786–1.0000) and 0.9950 (95%CI: 0.9811–1.0000) AUC values for FNH, 
HCC and MET respectively, with an average AUC of 0.9783 (95%CI: 0.9492–1.0000). 
The finalized 3D model achieved 0.9700 (95%CI: 0.9077–1.0000), 0.9050 (95%CI: 
0.7889–1.0000) and 0.9550 (95%CI: 0.8890–1.0000) AUC values for FNH, HCC and MET 
diagnosis, and an average AUC value of 0.9433 (95%CI: 0.8942–0.9924) on the test 
dataset (Figure 4). No statistically significant difference was found between the 
diagnostic performance of the 2D and 3D classifiers based on the ROC curve 
comparison for the three classes (Z = 0.7007, P = 0.4835 for FNH; Z = 0.7812, P = 0.4347 
for HCC; Z = 1.3069, P = 0.1913 for MET). The 2D input data achieved excellent results 
in the distinction between all three lesion classes, similar to the 3D network (Table 2). 
Both networks achieved excellent PPV, sensitivity, f1 score, NPV, and specificity 
values for all three classes. The highest diagnostic accuracy was achieved by both 
networks for FNH and MET, while both networks demonstrated lower AUC values 
for HCC (Table 2). PPV, sensitivity, f1 score, specificity and an NPV of 0.9091, 1.0000, 
0.9524, 0.9500, 1.000 values were achieved by the 2D model for FNH diagnosis. The 3D 
network performed FNH classification with similar PPV (0.9000), sensitivity (0.9000), 
f1 score (0.9000), specificity (0.9500) and NPV (0.9500) values as the 2D network. 
During HCC classification both the 2D and 3D models reached acceptable metrics with 
PPVs of 1.000 and 0.8750, sensitivities of 0.8000 and 0.7000, f1 scores of 0.8889 and 
0.7778, specificities of 1.000 and 0.9500, lastly NPVs of 0.9091 and 0.8636. For the differ-
entiation of METs from FNHs and HCCs the use of the 2D DenseNet resulted in a PPV 
of 0.9091, sensitivity of 1.000, f1 score of 0.9524, specificity of 0.9500 and NPV of 1.000, 
while the 3D DenseNet achieved values of 0.7500, 0.9000, 0.8182, 0.8500 and 0.9444 for 
PPV, sensitivity, f1 score, specificity and NPV respectively. On average, both the 2D 
and 3D trained models could distinguish FNHs, HCCs and METs reliably with PPVs 
of 0.9394 and 0.8417, sensitivities of 0.9333 and 0.8333, f1 scores of 0.9312 and 0.8320, 
specificities of 0.9667 and 0.9167, NPVs of 0.9697 and 0.9194.

In addition, these results are supported by the extraction of attention maps from the 
trained models using test set images. We implemented an open-source software (M3d-
CAM) to visualize the most important regions for diagnosis-making[15]. The extracted 
attention maps may correlate with the certainty with which a model classifies FLLs. By 
marking the areas within images, based on which the model makes a decision, 
attention maps form optimal bases of training dataset tailoring for certain radiological 
or other medical computer vision tasks by focusing on image regions that are difficult 
to analyze for the trained neural network (Figure 5).

DISCUSSION
FLLs are common findings during liver imaging, and the differentiation of benign and 
malignant types of FLLs is a significant diagnostic challenge, as imaging signs may 
overlap between different pathologies which can substantially alter the therapeutic 
decision. Therefore, precise and reproducible differential diagnosis of FLLs is critical 
for optimal patient management.

Today, the most accurate imaging modality to diagnose FLLs is multi-phase 
dynamic contrast-enhanced MRI. Extracellular contrast agents (ECAs) are commonly 
used to perform multi-phase dynamic post-contrast MRI studies to differentiate 
between lesions based on their distinct contrast enhancement patterns, such as HAP 
hyper-enhancement or washout in the PVP[16]. In comparison to ECAs, HSAs are 
taken up by hepatocytes and (in part) excreted through the biliary tract; thus, they can 
better differentiate between those lesions that consist of functionally active and 
impaired hepatocytes or those that are extrahepatic in origin[7]. This behavior of HSAs 
is utilized for making a distinction between FNH and hepatocellular adenoma, or to 
detect small foci of HCC and MET within the surrounding liver parenchyma[17,18].

In the current study, we evaluated different AI models on liver MRI images for the 
prediction of 216 FLLs compiled from three different types of lesions, namely FNHs, 
HCCs and METs. To ensure that the models could achieve the highest possible 
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Table 2 Evaluation metrics of the two-dimensional and three-dimensional densely connected convolutional neural networks

Input data PPV Sensitivity F1 score Specificity NPV

FNH 2D 0.9091 1.0000 0.9524 0.9500 1.0000

3D 0.9000 0.9000 0.9000 0.9500 0.9500

HCC 2D 1.0000 0.8000 0.8889 1.0000 0.9091

3D 0.8750 0.7000 0.7778 0.9500 0.8636

MET 2D 0.9091 1.0000 0.9524 0.9500 1.0000

3D 0.7500 0.9000 0.8182 0.8500 0.9444

Mean 2D 0.9394 0.9333 0.9312 0.9667 0.9697

3D 0.8417 0.8333 0.8320 0.9167 0.9194

2D: Two-dimensional; 3D: Three-dimensional; FNH: Focal nodular hyperplasia; HCC: Hepatocellular carcinoma; MET: Metastasis; NPV: Negative 
predictive value; PPV: Positive predictive value.

Figure 3 Comparison of the training evaluation metric curves and loss curves. The upper figure shows the area under the receiver operating 
characteristic curve (AUROC) values after each training epoch of the two-dimensional (2D) and three-dimensional (3D) densely connected convolutional neural 
networks (DenseNets). The best average AUC was obtained after the 46th (2D network) and 62nd (3D network) epochs. The lower figure indicates the loss values for 
each training epoch of the two networks. 2D: Two-dimensional; 3D: Three-dimensional; AUROC: Area under the receiver operating characteristic curve.

prediction rate, we narrowed down our data collection to only those four MRI 
sequences that provided the highest tissue contrast compared to the neighboring 
parenchyma or depicted distinctive imaging features of the lesion types. For the same 
reason, we used only HSA-enhanced scans for the analysis. We collected post-contrast 
images from HAP, PVP and HBP, and a T2w SPAIR image in the case of each lesion. A 
similar image analysis strategy was used by Hamm et al[19], who predicted 494 FLLs 
from six categories, including simple cyst, cavernous hemangioma, FNH, HCC, 
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Figure 4 Receiver operating characteristic curves of the two-dimensional and three-dimensional densely connected convolutional neural 
network 264 models’ performance on the test set. A: Two-dimensional; B: Three-dimensional. 2D: Two-dimensional; 3D: Three-dimensional; FNH: Focal 
nodular hyperplasia; HCC: Hepatocellular carcinoma; MET: Metastasis.

intrahepatic cholangiocarcinoma, and colorectal cancer METs using a 3D CNN model. 
The authors used HAP, PVP and delayed venous phase MRI images for the classi-
fication of the FLLs. They reported that the CNN model demonstrated 0.92 accuracy, 
0.92 sensitivity and 0.98 specificity. The disadvantage of this study compared to ours 
was that it did not include HBP images, with only ECA images used for the MRI scans.

There are a handful of studies that included conventional ML methods and 
achieved reasonably good results. Wu et al[20], for example, extracted radiomics 
features from non-enhanced multi-parametric MRI images of FLLs and used them in 
ML models to differentiate between hepatic haemangioma and HCC. The final 
classifier achieved an AUC of 0.89, a sensitivity of 0.822 and a specificity of 0.714. 
Jansen et al[21], in their 2019 paper, used traditional ML methods for the same problem 
achieving an average accuracy of 0.77 for five major FLL types.

Our models' performance in the test set was comparable to or even surpassed those 
from previous publications, as the AUC, sensitivity and specificity were excellent for 
both the 2D (0.9783, 0.9333 and 0.9667 respectively) and 3D (0.9433, 0.8333 and 0.9167 
respectively) architectures, which demonstrates the robustness of our data collection 
and analysis.

The quality and quantity of input data are pivotal when training neural networks. 
MRI liver tumor analysis using DL methods has steeply increased, but there is 
evidence lacking to support the use of 2D or 3D data. The additional dimension in 3D 
network inputs makes them computationally more demanding and the different data 
augmentation methods and hyperparameters must be well chosen to avoid artifacts. 
The 2D neural networks have the advantage of pretraining, which may improve classi-
fication accuracy[16,22,23]. Our study supports the results of Wang et al[24] and 
Hamm et al[19], emphasizing the need for multi-channel input volumes in order to 
achieve better accuracy. In contrast to these approaches, we have also utilized HBP 
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Figure 5 Visualization of the attention maps extracted from the two-dimensional and three-dimensional densely connected convolutional 
neural networks compared to the hepatobiliary phase input images. Two-dimensional (lower row) and three-dimensional (upper row) attention maps 
(column A-C) and hepatobiliary phase (column D) images were extracted from the 3rd dense block of the trained network. A-C: Two-dimensional (lower row) and 
three-dimensional (upper row) attention maps; D: Hepatobiliary phase images. Column A contains the attention maps for focal nodular hyperplasia (FNH), column B 
for hepatocellular carcinoma, and column C for metastasis diagnosis. The correct diagnosis is FNH in this case. Probabilities for different lesion classes are annotated 
below each attention map. The red areas are more important for the classification than other image regions. FNH: Focal nodular hyperplasia; HCC: Hepatocellular 
carcinoma; MET: Metastasis; HBP: Hepatobiliary phase.

images, thereby increasing the number of input channels to four in order to improve 
accuracy and additionally trained 2D CNNs, proving them to be just as effective 
classifiers as 3D models.

The selected architecture of the DL model can substantially alter classification 
accuracy. It is a novelty of our analysis that compared to previous examinations we 
utilized a DenseNet architecture. DenseNets contain multiple dense blocks, where 
each layer is connected with the residuals from previous layers. DenseNets require 
fewer trainable parameters at the same depth than conventional CNNs, as newly 
learned features are shared through all layers[5]. Our results are among the first to 
indicate that this highly efficient network design can enhance the performance of AI 
models for the classification of multi-parametric MRI images of FLLs.

Our study's limitations are the low number of patients involved, the retrospective 
nature of the study, and that it was conducted within a single institute. Further 
improvement may be achieved by additional data collection (including additional 
lesion classes) and the use of more MRI volumes and different data augmentation 
methods as well as the use of pre-trained networks.

CONCLUSION
Based on our study, we can say that routinely acquired radiological image materials 
can be used for analysis with AI methods, such as CNNs. According to our results, 
densely connected CNNs trained on multi-sequence MRI scans can be promising new 
alternatives to single-phase approaches; furthermore, the use of multi-dimensional 
input volumes can help the AI-based diagnosis of FLLs. According to our results, 3D 
and 2D DenseNets can reach similar performance in the differentiation of FLLs based 
on a small dataset of MRI images. The use of gadoxetate disodium-enhanced MRI 
scans can also enhance the diagnostic performance of MRI-based hepatic lesion classi-
fication.

ARTICLE HIGHLIGHTS
Research background
Interest in medical applications of artificial intelligence (AI) has steeply risen in the last 
few years. As one of the most obvious beneficiaries of the advances in computer 
vision, radiology research has also put AI in a prominent position. Convolutional 
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neural networks are the state-of-the-art methods used in computer vision. Focal liver 
lesions (FLLs) are common findings during imaging, which can best be evaluated via 
hepatocyte-specific contrast-enhanced magnetic resonance imaging (MRI).

Research motivation
Though convolutional neural networks are widely used for medical image research 
purposes, the effect of input, such as data dimensionality and the effect of multiple 
input channels, has not yet been widely examined in this area. MRI volumes 
presumably hold more complex information about each lesion; as such, three-
dimensional inputs may be more difficult to process and properly use for classification 
tasks in comparison to two-dimensional axial slices. The combination of multiple MRI 
sequences in addition to the use of hepatocyte-specific contrast agents (HSAs) may 
also affect diagnostic accuracy.

Research objectives
Our research aimed to compare two- and three-dimensional DenseNets264 networks 
for the multi-phasic hepatocyte-specific contrast-enhanced MRI-based classification of 
FLLs.

Research methods
T2-weighted, arterial phase, portal venous phase, and hepatobiliary phase volumes of 
focal nodular hyperplasias, hepatocellular carcinomas and liver metastases were used 
to train the two models. Diagnostic performance was evaluated on an independent test 
set, based on area under the curve, positive and negative predictive values (NPVs), 
sensitivity, specificity and f1 score.

Research results
The study found that via the use of either two- or three-dimensional convolutional 
neural networks and the combination of multiple MRI sequences, the average area 
under the curve, sensitivity, specificity, NPV, positive predictive value and f1 scores of 
comparable level can be achieved.

Research conclusions
According to our findings, two- and three-dimensional networks can both be used for 
highly accurate differentiation of multiple classes of FLLs by combining multiple MRI 
phases and using HSAs.

Research perspectives
This study’s findings can help to clarify the potential applicability of two- and three-
dimensional multi-channel MRI images for the convolutional neural network-based 
classification of FLLs using HSAs.
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