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Abstract
Thiopurines are immunomodulators used in the treatment of acute lymphoblastic 
leukemia and inflammatory bowel diseases. Adverse reactions to these agents are 
one of the main causes of treatment discontinuation or interruption. Myelosup-
pression is the most frequent adverse effect; however, approximately 5%-20% of 
patients develop gastrointestinal toxicity. The identification of biomarkers able to 
prevent and/or monitor these adverse reactions would be useful for clinicians for 
the proactive management of long-term thiopurine therapy. In this editorial, we 
discuss evidence supporting the use of PACSIN2, RAC1, and ITPA genes, in 
addition to TPMT and NUDT15, as possible biomarkers for thiopurine-related 
gastrointestinal toxicity.

Key Words: Thiopurines; Gastrointestinal adverse effects; Biomarkers; PACSIN2; RAC1; 
ITPA
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Core Tip: Adverse reactions to thiopurines are one of the main causes of treatment 
discontinuation or interruption. In addition to myelosuppression, approximately 5–20% 
of patients develop gastrointestinal toxicity; the identification of biomarkers to prevent 
and/or monitor these adverse reactions is important for the proactive management of 
long-term thiopurine therapy. In this editorial, we discuss evidence supporting the use 
of PACSIN2, RAC1, and ITPA genes, in addition to TPMT and NUDT15, as possible 
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INTRODUCTION
Mechanisms of action and adverse effects of thiopurine
Thiopurines, such as mercaptopurine (MP) and its prodrug azathioprine (AZA), are 
immunomodulatory drugs used in the treatment of pediatric acute lymphoblastic 
leukemia (ALL) and nonmalignant conditions, such as inflammatory bowel diseases 
(IBDs)[1,2]. These immunomodulators undergo a complex biotransformation that 
leads to the production of different thionucleotides (TGNs), such as thioguanosine 
mono-, di-, and triphosphate (tGMP, tGDP, and tGTP) and deoxythioguanosine 
mono-, di-, and triphosphate (tdGMP, tdGDP, and tdGTP) (Figure 1). These purine 
antimetabolites exert their cytotoxic activity through different mechanisms, such as 
inhibition of de novo purine synthesis, interference with the incorporation of guanosine 
nucleotides into DNA and RNA, and induction of apoptosis due to inhibition of the 
Ras-related C3 botulinum toxin substrate 1 (Rac-1) protein, a Rho-GTPase[3]. Under 
physiological conditions, Rac-1-GTP activates the MEKK/IκB/NF-κB and STAT3 
survival pathways in activated lymphocytes, resulting in an increase in the antiap-
optotic protein Bcl-xL, whereas during thiopurine treatment, the binding of tGTP to 
Rac-1 impairs these pathways, enhancing apoptosis[3]. Thiopurines are also processed 
through catabolic pathways, in which xanthine oxidase and thiopurine methyltrans-
ferase (TPMT) are the main enzymes involved, producing inactive metabolites such as 
thiouric acid and methylmercaptopurine, respectively. TPMT also catalyzes the S-
methylation of intermediates resulting from MP conversion to TGN, leading to the 
production of secondary methylated nucleotides (MMPNs) (Figure 1). The role of 
MMPN metabolites is not fully characterized; however, they could contribute to the 
inhibition of de novo purine synthesis. Factors affecting the TGN/MMPN ratio could 
influence thiopurine efficacy and toxicity. For example, the amount of TGN in white 
blood cells is responsible for the immunosuppressive effects; when TPMT activity is 
compromised, TGN levels increase, leading to dangerous myelosuppression[3].

Thiopurines have a narrow therapeutic index, with an increased risk of severe 
toxicity and treatment discontinuation[4]. Direct cytotoxic damage can occur in prolif-
erating cells of different tissues and organs. In particular, thiopurines have been 
associated with the dose-dependent hematological toxicity observed in approximately 
80% of ALL cases; in IBD patients, the incidence of bone marrow toxicity is lower 
(approximately 10%)[5,6].  Neutropenia and leukopenia are the most frequent 
outcomes of myelosuppression, related to an increased risk of infection, and the main 
reasons for therapy discontinuation or interruption that can lead to disease 
aggravation in both ALL and IBD[7-9]. Thiopurine-induced gastrointestinal (GI) 
toxicity occurs in approximately 5%-20% of ALL and IBD patients; the main symptoms 
are nausea, vomiting, stomatitis, abdominal pain or cramping, gastritis, gastric ulcer, 
GI bleeding, and diarrhea[10,11]. Moreover, these immunosuppressors are associated 
with the risk of neurological complications, hepatotoxicity, pancreatitis, arthralgia, and 
skin rush[10,12-16].

In the clinic, white blood cell counting is commonly performed to monitor the 
immunosuppressive effects of these drugs; however, recently, pharmacogenetic 
biomarkers for predicting thiopurine-induced hematological adverse events have been 
identified. From a pharmacogenetic point of view, TPMT is one of the best charac-
terized genes[17]. Both TPMT protein expression and enzymatic activity are affected 
by the presence of variants in the TPMT gene. More than 44 TPMT variant alleles have 
been described; TPMT*2 (rs1800462, 238G>C, pAla80Pro), TPMT *3B (rs1800460, 
460G>A, p. Ala154Thr), TPMT*3C (rs1142345, 719A>G, p. Tyr240Cys), and TPMT*3A 
(rs1800460 and rs1142345 haplotypes) are the most frequent variants in Europeans and 
can explain up to 95% of TPMT deficiencies[18-20]. As reported above, decreased 
TPMT activity leads to higher TGN levels and lower MMPN in white blood cells; these 
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Figure 1 Thiopurine metabolic pathway and possible biomarkers for drug-related toxicity. Dashed arrows indicate the impact of PACSIN2 on 
TPMT activity and the interaction between PACSIN2 and Rac-1. AZA: Azathioprine; ITPA: Inosine triphosphate pyrophosphatase; IMPDH: Inosine-5′-monophosphate 
dehydrogenase; GMPS: GMP synthase; GST: Glutathione-S-transferase; Me-TIMP: Methyl-thioinosine monophosphate; Me-TITP: Methyl-thioinosinetriphosphate; 
MP: Mercaptopurine; MMP: Methyl-mercaptopurine; NUDT15: Nudix hydrolase 15; PACSIN2: Protein kinase C and casein kinase substrate in neurons protein 2; 
TGDP: Thioguanine diphosphate; TGMP: Thioguanine monophosphate; TGTP: Thioguanine triphosphate; TIMP: Thioinosine monophosphate; TITP: Thioinosine 
triphosphate; TNG: 6-Thioguanine nucleotide; TPMT: Thiopurine S-methyltransferase; TXMP: Thioxanthine monophosphate; 6-TU acid: Thiouric acid; XO: Xanthine 
oxidase.

variants are indeed associated with a higher risk of myelosuppression[21]. Variable 
number tandem repeats (VNTRs) in the TPMT promoter are associated with reduced 
TPMT expression levels and a higher risk of MP hematological toxicity[22]. 
Furthermore, genetic variants in nudix hydrolase 15 (NUDT15) have been identified as 
additional pharmacogenetic markers for the prediction of thiopurine-induced 
toxicities, especially in Asian individuals. NUDT15 removes a pyrophosphate group 
by canonical GTP and drug-derived tGTP active metabolites. The most studied 
NUDT15 variants are rs116855232 (c.415C> T, p. Arg139Cys), rs147390019 (G>A, p. 
Arg139His), rs186364861 (G>A, p. Val18Ile), and rs746071566 (36_37insGGAGTC 
insertion, p.Val18_Val19insGlyVal). Variant alleles encode NUDT15 with 
compromised activity, leading to a higher tGTP/tGMP ratio and incorporation of TGN 
into DNA[23,24]. Indeed, these variants have been associated with MP and AZA 
intolerance[23,25]. On these bases, different guidelines for thiopurine dose adjustment 
based on TPMT and NUDT15 genotypes have been released to reduce the occurrence 
of drug-related side effects[26].

In addition to pharmacogenetic markers, TGN levels could be monitored in 
erythrocytes to avoid severe myelosuppression during therapy. In particular, TGN 
levels higher than 450 pmol/8 × 108 red blood cells (RBCs) and higher than 1000 
pmol/8 × 108 RBCs have been shown to be associated with myelotoxicity in IBD and 
ALL patients, respectively, while levels of MMPN above 5700 pmol/8 × 108 RBCs have 
been shown to be related to a higher hepatotoxicity risk in IBD patients[27,28].

BIOMARKERS FOR THIOPURINE-INDUCED GASTROINTESTINAL AD-
VERSE EVENTS
Although genome-wide association studies (GWAS) have indicated that TPMT activity 
is predominantly a monogenic trait[29], a percentage of wild-type TPMT carriers 
present reduced TPMT activity, suggesting the existence of other regulatory 
mechanisms able to modulate its function[30,31]. In 2012, Stocco et al[32] demonstrated 
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that the expression levels and the single nucleotide polymorphism (SNP) rs2413739 of 
the protein kinase C and casein kinase substrate in neurons 2 (PACSIN2) gene were 
associated with TPMT activity in HapMap cell lines and in a cohort of ALL pediatric 
patients enrolled at St. Jude Research Children Hospital (SJRCH, Memphis, United 
States), suggesting a possible role of PACSIN2 as a TPMT modulator[32]. The authors 
found that the intronic variant rs2413739 (C>T) was associated with an increased risk 
of severe GI toxicity during consolidation therapy in two independent cohorts of ALL 
pediatric patients treated according to the SJRCH Total 13B protocol and to the 
Associazione Italiana Ematologia Oncologia Pediatrica/Berlin-Frankfurt-Münster 
(AIEOP-BFM) 2000 protocol[32]. Patients received 75 mg/m2 MP daily and 2 g/m2 
high-dose methotrexate (HD-MTX) i.v. twice a week for 2 wk at SJRCH, whereas those 
undergoing the AIEOP-BFM 2000 protocol were treated daily with 25 mg/m2 MP and 
received four HD-MTX (2-5 g/m2) infusions once every 2 wk. To further validate these 
results, Franca et al[33] investigated the possible role of PACSIN2 rs2413739 in an 
additional cohort of ALL pediatric patients treated according to the AIEOP-BFM 2009 
protocol, with the same consolidation phase as AIEOP-BFM ALL 2000, and in a cohort 
of IBD pediatric patients undergoing AZA therapy. In the ALL cohort, the PACSIN2 T 
allele was associated with decreased TPMT activity during maintenance therapy, 
particularly in patients heterozygous for TPMT rs1142345 and rs1800460. Moreover, 
the PACSIN2 TT genotype was associated with a higher risk of GI toxicity during the 
consolidation phase. The latter association was borderline, likely because of the limited 
number of clinical data available (n = 81); however, it was in line with the findings of 
Stocco et al[32]. Far more complex to understand is thiopurine-induced GI toxicities in 
IBD patients, where the occurrence of adverse effects can overlap with clinical 
manifestations of the disease. Interestingly, Franca et al[33] showed that IBD patients 
carrying the PACSIN2 T allele and undergoing AZA treatment presented a more active 
disease, measured as pediatric ulcerative colitis activity/pediatric Crohn's disease 
activity (PUCAI/PCDAI) indices > 10, according to standard clinical practice. No 
association between the rs2413739 variant and either TPMT activity or TGN/MMPN 
levels was found, suggesting a thiopurine-independent effect on the clinical phenotype
[33]. Enzymatic activity was significantly higher in the ALL patients than in the IBD 
patients[33]. The different impact of PACSIN2 SNP rs2413739 on TPMT activity could 
be partially explained by patient age: The ALL cohort comprised children under 10 
years, while the IBD patients were mainly teenagers. The authors hypothesized that 
the PACSIN2 genetic impact on TPMT activity could be more evident in younger 
patients, who seemed to have increased TPMT activity[34,35]. Moreover, concomitant 
treatment with MTX in the ALL cohort could contribute to discrepancies in the results; 
MTX could impact S-adenosyl methionine levels, a TPMT cofactor responsible for the 
stability of the protein[36]. Since Franca et al[33] did not detect significant changes in 
TGN levels in PACSIN2 T allele carriers, they hypothesized a thiopurine-independent 
effect of PACSIN2 on GI toxicity and a tissue-specific role of PACSIN2 in the intestine. 
Notably, the Genotype-Tissue Expression Portal (GTEx) shows that PACSIN2 and 
TPMT expression levels are increased in blood and in the esophageal mucosa of 
healthy PACSIN2 rs2413739 T allele carriers but not in the small intestine and colon of 
these subjects, supporting the idea that the enhanced GI toxicity observed in TT 
patients is not related to differential expression of TPMT in the GI tract[37]. Other 
evidence regarding PACSIN2 suggests its role as a regulator of intestinal mucosal 
homeostasis and inflammation. Intriguingly, an underinvestigated mechanism of IBD 
pathogenesis is VE-cadherin-directed vascular barrier disruption[38], and PACSIN2 
has been recognized as a regulator of cell–cell adhesion in the endothelium through 
the inhibition of asymmetric VE-cadherin internalization from adherens junctions[39]. 
Stocco et al[32] performed an agnostic gene expression analysis in the human B 
leukemia cell line NALM6 and identified autophagy as one of the pathways 
significantly affected by PACSIN2 knockdown, thus suggesting a possible role of this 
gene in autophagy, another mechanism involved in IBD pathogenesis[32,40,41]. 
Moreover, the human protein ATLAS report shows that lower levels of PACSIN2 are 
related to a reduced survival probability in colorectal adenocarcinoma patients, 
leaving open the question of whether PACSIN2 is a marker of therapeutic response or 
a contributing factor to intestinal cancer progression[42]. Dedicated studies to clarify 
the issue of PACSIN2 and GI pathology are needed; however, all this evidence 
supports the hypothesis that PACSIN2 could be a susceptibility factor for intestinal 
tissue damage.

Thiopurine-derived tGTPs are able to compete with GTP on Rac-1, a Rho-GTPase 
involved in cellular proliferation. It can be hypothesized that factors reducing Rac-1 
expression or activity could influence cell susceptibility to cytotoxic stimuli, thus 
contributing to thiopurine efficacy and toxicity. Interestingly, Rac-1 was able to bind 



Zudeh G et al. Biomarkers for thiopurine gastrointestinal adverse events

WJG https://www.wjgnet.com 6352 October 14, 2021 Volume 27 Issue 38

PACSIN2 through a physical interaction[3]; this protein–protein interaction seemed to 
be responsible for reciprocal regulation: Rac-1 activity controlled PACSIN2 cellular 
distribution, whereas PACSIN2 could negatively modulate Rac-1 activity[43]. In vitro 
data showed decreased activity of Rac-1 in the presence of the rs34932801 (G>C) SNP 
in the RAC1 promoter, and interestingly, this polymorphism was associated with MP 
hematologic toxicity in a cohort of European IBD patients[44]. Another study reported 
that Rac-1 expression levels decreased during thiopurine maintenance therapy in IBD 
patients and that MP responders presented lower Rac-1 expression and activity levels, 
whereas in nonresponders, these parameters were increased. On these bases, Rac-1 
was proposed as a potential biomarker of thiopurine effectiveness in IBD[45]. 
Intriguingly, conditional disruption of Rac-1 in phagocytes of mice resulted in 
protection from colitis[46]. In contrast, Rac-1 and STAT3 signaling have been 
considered contributing factors to IBD development[47], and it was found that both 
the expression and activity levels of Rac-1 were directly related to colon inflammation 
grade[46]. Sustained Rac-1-GTP activity in lamina propria T lymphocytes could be 
more difficult to counteract by thiopurines and lead to resistance of T lymphocytes to 
apoptosis and thus to their unrestrained accumulation, which subsequently results in 
the amplification of the inflammatory response in the GI tract. In this sense, in IBD 
patients, Rac-1 could represent a biomarker of thiopurine-induced GI toxicity and of 
disease severity and progression, without a clear discrimination between the two 
clinical phenotypes.

Another potential biomarker for thiopurine GI toxicity is the inosine triphosphate 
pyrophosphatase (ITPA) gene. ITPA is one of the enzymes involved in the thiopurine 
metabolic pathway. By hydrolyzing inosine triphosphate (ITP) and xanthosine 
triphosphate nucleotides (XTP) into their monophosphate derivatives (IMP and XMP, 
respectively), ITPA prevents the accumulation of these noncanonical metabolites in 
cells and their incorporation into DNA or RNA, where they can interact with 
DNA/RNA polymerase activity[48]. The thioinosine analog (tIMP), an intermediate of 
MP conversion to TGN, is converted to tITP, which is also an ITPA substrate 
(Figure 1). A study performed on a large childhood ALL cohort (n = 511), treated 
according to the AIEOP-BFM-2000 protocol, showed that the missense variant 
rs1127354 (C>A, p. Pro32Thr) in ITPA was associated with a higher risk of severe GI 
toxicity during induction/consolidation therapy[10]. This missense variant partially 
reduces ITPA enzymatic activity in heterozygotes and completely reduces ITPA 
enzymatic activity in variant homozygotes[49,50], stimulating the accumulation of 
unusual tITP with the potential to cause adverse metabolic effects[51]. Other studies in 
pediatric ALL patients showed contradictory results on the ITPA rs1127354 association 
with myelotoxicity[52-54]. Stocco et al[53] found significantly higher concentrations of 
MMPN in patients with the nonfunctional ITPA allele. The association between the 
ITPA polymorphism and MP metabolism or neutropenia in ALL patients treated with 
an MP dose adjusted on the basis of the TPMT genotype underlined the important role 
of this gene in thiopurine toxicity.

CLINICAL IMPLEMENTATIONS
The PACSIN2 rs2413739 SNP could be considered a potential biomarker for 
thiopurine-related GI toxicity, being associated with this clinical phenotype in three 
independent ALL cohorts and with increased active disease in a cohort of IBD patients. 
Further investigations are needed to understand the molecular basis of this genetic 
effect and the functional role of the PACSIN2 protein in the healthy and damaged GI 
epithelium before its possible translation into the clinic. Additionally, the contribution 
of RAC1 and ITPA SNPs, as potential biomarkers for thiopurine-related GI toxicity, 
requires further validation in patients undergoing therapy with these drugs. 
Currently, there are no clinical trials focusing on the role of these genes/proteins in GI 
toxicity in ALL and IBD patients.

If these candidates would be confirmed as markers for GI toxicity, several applic-
ations could be speculated in clinical practice. For example, in patients treated with 
thiopurines, clinicians could be warned of the patients’ genetic predisposition to GI 
damage (e.g., patients carrying the PACSIN2 rs2413739 or ITPA rs1127354 homozygous 
variant genotypes). Pharmacogenetic information could be used as an alert for 
physicians, identifying patients who need intensive monitoring for adverse effects or 
those who should undergo supportive care earlier, even when less severe episodes of 
toxicity occur.
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CONCLUSION
While highly effective, thiopurines are responsible for serious toxicities in ALL and 
IBD. This scenario points out the importance of identifying predictive biomarkers for 
detecting and monitoring the tissue-specific side effects of thiopurine. Data reported in 
this editorial underline the complexity of thiopurine pharmacokinetic mechanisms, 
which could be influenced by multiple genes and nongenetic factors able to exert their 
function on the whole body or through a tissue-specific mechanism of action.
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