
World Journal of
Gastroenterology

ISSN 1007-9327 (print)
ISSN 2219-2840 (online)

World J Gastroenterol  2021 October 28; 27(40): 6737-7004

Published by Baishideng Publishing Group Inc



WJG https://www.wjgnet.com I October 28, 2021 Volume 27 Issue 40

World Journal of 

GastroenterologyW J G
Contents Weekly Volume 27 Number 40 October 28, 2021

FRONTIER

Hepatocellular carcinoma risk after viral response in hepatitis C virus-advanced fibrosis: Who to screen 
and for how long?

6737

Ahumada A, Rayón L, Usón C, Bañares R, Alonso Lopez S

OPINION REVIEW

Higher doses of ascorbic acid may have the potential to promote nutrient delivery via intestinal 
paracellular absorption

6750

Sequeira IR

EVIDENCE REVIEW

Venous and arterial thromboembolism in patients with inflammatory bowel diseases6757

Stadnicki A, Stadnicka I

REVIEW

Understanding the immune response and the current landscape of immunotherapy in pancreatic cancer6775

Ostios-Garcia L, Villamayor J, Garcia-Lorenzo E, Vinal D, Feliu J

Artificial intelligence in gastroenterology: A state-of-the-art review6794

Kröner PT, Engels MM, Glicksberg BS, Johnson KW, Mzaik O, van Hooft JE, Wallace MB, El-Serag HB, Krittanawong C

MINIREVIEWS

Emerging artificial intelligence applications in liver magnetic resonance imaging6825

Hill CE, Biasiolli L, Robson MD, Grau V, Pavlides M

Role of human nucleoside transporters in pancreatic cancer and chemoresistance6844

Carter CJ, Mekkawy AH, Morris DL

Management of hepatitis B and C in special population6861

Kulkarni AV, Duvvuru NR

Endoscopic ultrasound-guided vascular interventions: Current insights and emerging techniques6874

Mann R, Goyal H, Perisetti A, Chandan S, Inamdar S, Tharian B



WJG https://www.wjgnet.com II October 28, 2021 Volume 27 Issue 40

World Journal of Gastroenterology
Contents

Weekly Volume 27 Number 40 October 28, 2021

ORIGINAL ARTICLE

Basic Study

Metabolomics of Fuzi-Gancao in CCl4 induced acute liver injury and its regulatory effect on bile acid profile 

in rats

6888

Wang MF, Zhao SS, Thapa DM, Song YL, Xiang Z

Transforming growth factor beta-1 upregulates glucose transporter 1 and glycolysis through canonical and 
noncanonical pathways in hepatic stellate cells

6908

Zhou MY, Cheng ML, Huang T, Hu RH, Zou GL, Li H, Zhang BF, Zhu JJ, Liu YM, Liu Y, Zhao XK

Retrospective Cohort Study

Serum hepatitis B core-related antigen as a surrogate marker of hepatitis B e antigen seroconversion in 
chronic hepatitis B

6927

Chi XM, Wang XM, Wang ZF, Wu RH, Gao XZ, Xu HQ, Ding YH, Niu JQ

Long-term follow-up of liver alveolar echinococcosis using echinococcosis multilocularis ultrasound 
classification

6939

Schuhbaur J, Schweizer M, Philipp J, Schmidberger J, Schlingeloff P, Kratzer W

Observational Study

Hepatic and gastrointestinal disturbances in Egyptian patients infected with coronavirus disease 2019: A 
multicentre cohort study

6951

Shousha HI, Afify S, Maher R, Asem N, Fouad E, Mostafa EF, Medhat MA, Abdalazeem A, Elmorsy H, Aziz MM, 
Mohammed RS, Ibrahem M, Elgarem H, Omran D, Hassany M, Elsayed B, Abdelaziz AY, El Kassas M

Factors affecting anxiety, depression, and self-care ability in patients who have undergone liver 
transplantation

6967

Akbulut S, Ozer A, Saritas H, Yilmaz S

META-ANALYSIS

Prophylactic transcatheter arterial embolization reduces rebleeding in non-variceal upper gastrointestinal 
bleeding: A meta-analysis

6985

Boros E, Sipos Z, Hegyi P, Teutsch B, Frim L, Váncsa S, Kiss S, Dembrovszky F, Oštarijaš E, Shawyer A, Erőss B

LETTER TO THE EDITOR

Gastrointestinal and hepatic involvement during COVID-19 pandemic: A focus on pediatric population 
and possible future implications

7000

Sica R, Pennoni S, Penta L, Riccioni S, Di Cara G, Verrotti A



WJG https://www.wjgnet.com III October 28, 2021 Volume 27 Issue 40

World Journal of Gastroenterology
Contents

Weekly Volume 27 Number 40 October 28, 2021

ABOUT COVER

Editorial Board Member of World Journal of Gastroenterology, Pietro Fusaroli, MD, Associate Professor, Chief, 
Gastrointestinal Unit, University of Bologna at the Hospital of Imola, Via Montericco 4, Imola 40026, Italy. 
pietro.fusaroli@unibo.it 
 

AIMS AND SCOPE

The primary aim of World Journal of Gastroenterology (WJG, World J Gastroenterol) is to provide scholars and readers 
from various fields of gastroenterology and hepatology with a platform to publish high-quality basic and clinical 
research articles and communicate their research findings online. WJG mainly publishes articles reporting research 
results and findings obtained in the field of gastroenterology and hepatology and covering a wide range of topics 
including gastroenterology, hepatology, gastrointestinal endoscopy, gastrointestinal surgery, gastrointestinal 
oncology, and pediatric gastroenterology.

INDEXING/ABSTRACTING

The WJG is now indexed in Current Contents®/Clinical Medicine, Science Citation Index Expanded (also known as 
SciSearch®), Journal Citation Reports®, Index Medicus, MEDLINE, PubMed, PubMed Central, and Scopus. The 2021 
edition of Journal Citation Report® cites the 2020 impact factor (IF) for WJG as 5.742; Journal Citation Indicator: 0.79; 
IF without journal self cites: 5.590; 5-year IF: 5.044; Ranking: 28 among 92 journals in gastroenterology and 
hepatology; and Quartile category: Q2. The WJG’s CiteScore for 2020 is 6.9 and Scopus CiteScore rank 2020: 
Gastroenterology is 19/136.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Jia-Hui Li; Production Department Director: Yu-Jie Ma; Editorial Office Director: Ze-Mao Gong.

NAME OF JOURNAL INSTRUCTIONS TO AUTHORS

World Journal of Gastroenterology https://www.wjgnet.com/bpg/gerinfo/204

ISSN GUIDELINES FOR ETHICS DOCUMENTS

ISSN 1007-9327 (print) ISSN 2219-2840 (online) https://www.wjgnet.com/bpg/GerInfo/287

LAUNCH DATE GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH

October 1, 1995 https://www.wjgnet.com/bpg/gerinfo/240

FREQUENCY PUBLICATION ETHICS

Weekly https://www.wjgnet.com/bpg/GerInfo/288

EDITORS-IN-CHIEF PUBLICATION MISCONDUCT

Andrzej S Tarnawski, Subrata Ghosh https://www.wjgnet.com/bpg/gerinfo/208

EDITORIAL BOARD MEMBERS ARTICLE PROCESSING CHARGE

http://www.wjgnet.com/1007-9327/editorialboard.htm https://www.wjgnet.com/bpg/gerinfo/242

PUBLICATION DATE STEPS FOR SUBMITTING MANUSCRIPTS

October 28, 2021 https://www.wjgnet.com/bpg/GerInfo/239

COPYRIGHT ONLINE SUBMISSION

© 2021 Baishideng Publishing Group Inc https://www.f6publishing.com

© 2021 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA

E-mail: bpgoffice@wjgnet.com  https://www.wjgnet.com

https://www.wjgnet.com/bpg/gerinfo/204
https://www.wjgnet.com/bpg/GerInfo/287
https://www.wjgnet.com/bpg/gerinfo/240
https://www.wjgnet.com/bpg/GerInfo/288
https://www.wjgnet.com/bpg/gerinfo/208
http://www.wjgnet.com/1007-9327/editorialboard.htm
https://www.wjgnet.com/bpg/gerinfo/242
https://www.wjgnet.com/bpg/GerInfo/239
https://www.f6publishing.com
mailto:bpgoffice@wjgnet.com
https://www.wjgnet.com


WJG https://www.wjgnet.com 6825 October 28, 2021 Volume 27 Issue 40

World Journal of 

GastroenterologyW J G
Submit a Manuscript: https://www.f6publishing.com World J Gastroenterol 2021 October 28; 27(40): 6825-6843

DOI: 10.3748/wjg.v27.i40.6825 ISSN 1007-9327 (print) ISSN 2219-2840 (online)

MINIREVIEWS

Emerging artificial intelligence applications in liver magnetic 
resonance imaging

Charles E Hill, Luca Biasiolli, Matthew D Robson, Vicente Grau, Michael Pavlides

ORCID number: Charles E Hill 0000-
0001-5825-030X; Luca Biasiolli 0000-
0002-0452-8756; Matthew D Robson 
0000-0002-5902-1012; Vicente Grau 
0000-0001-8139-3480; Michael 
Pavlides 0000-0001-9882-8874.

Author contributions: Hill CE did 
the literature search and drafted 
the manuscript; all other authors 
revised the manuscript for 
important intellectual content.

Supported by the Engineering and 
Physical Sciences Research Council 
and Medical Research Council, No. 
EP/L016052/1.

Conflict-of-interest statement: 
Pavlides M is a shareholder for the 
company Perspectum Ltd. and has 
applied for a patent for medical 
imaging; All other authors declare 
no conflicts of interest; Robson M is 
an employee and shareholder for 
the company Perspectum Ltd.; Hill 
CE is partially funded by the 
company Perspectum Ltd.

Open-Access: This article is an 
open-access article that was 
selected by an in-house editor and 
fully peer-reviewed by external 
reviewers. It is distributed in 
accordance with the Creative 
Commons Attribution 
NonCommercial (CC BY-NC 4.0) 
license, which permits others to 
distribute, remix, adapt, build 
upon this work non-commercially, 

Charles E Hill, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, 
United Kingdom

Luca Biasiolli, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, 
United Kingdom

Matthew D Robson, MR Physics, Perspectum Ltd, Oxford OX4 2LL, United Kingdom

Vicente Grau, Department of Engineering, University of Oxford, Oxford OX3 7DQ, United 
Kingdom

Michael Pavlides, Oxford Centre for Clinical Magnetic Resonance Research, Division of 
Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford 
OX3 9DU, United Kingdom

Michael Pavlides, Translational Gastroenterology Unit, University of Oxford, Oxford OX3 
9DU, United Kingdom

Michael Pavlides, Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford 
OX3 9DU, United Kingdom

Corresponding author: Michael Pavlides, BSc, DPhil, MBBS, MRCP, Consultant Physician-
Scientist, Doctor, Oxford Centre for Clinical Magnetic Resonance Research, Division of 
Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Level 0, 
John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9DU, United Kingdom. 
michael.pavlides@cardiov.ox.ac.uk

Abstract
Chronic liver diseases (CLDs) are becoming increasingly more prevalent in 
modern society. The use of imaging techniques for early detection, such as 
magnetic resonance imaging (MRI), is crucial in reducing the impact of these 
diseases on healthcare systems. Artificial intelligence (AI) algorithms have been 
shown over the past decade to excel at image-based analysis tasks such as 
detection and segmentation. When applied to liver MRI, they have the potential to 
improve clinical decision making, and increase throughput by automating 
analyses. With Liver diseases becoming more prevalent in society, the need to 
implement these techniques to utilize liver MRI to its full potential, is paramount. 
In this review, we report on the current methods and applications of AI methods 
in liver MRI, with a focus on machine learning and deep learning methods. We 
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assess four main themes of segmentation, classification, image synthesis and 
artefact detection, and their respective potential in liver MRI and the wider clinic. 
We provide a brief explanation of some of the algorithms used and explore the 
current challenges affecting the field. Though there are many hurdles to overcome 
in implementing AI methods in the clinic, we conclude that AI methods have the 
potential to positively aid healthcare professionals for years to come.

Key Words: Liver diseases; Magnetic resonance imaging; Machine learning; Deep 
learning; Artificial intelligence; Computer vision

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Artificial Intelligence (AI) algorithms are becoming increasingly prevalent in 
magnetic resonance imaging (MRI) after their proven success in computer vision tasks. 
With regards to liver MRI, these methods have been shown to be successful in tasks 
from hepatocellular carcinoma detection, to motion reduction to improve undiagnostic 
scans. They have also been shown in some cases to outperform radiographer level 
performance. The widespread use of these techniques could positively aid clinicians for 
years to come, if implemented properly into clinical workflows.

Citation: Hill CE, Biasiolli L, Robson MD, Grau V, Pavlides M. Emerging artificial intelligence 
applications in liver magnetic resonance imaging. World J Gastroenterol 2021; 27(40): 6825-
6843
URL: https://www.wjgnet.com/1007-9327/full/v27/i40/6825.htm
DOI: https://dx.doi.org/10.3748/wjg.v27.i40.6825

INTRODUCTION
Since the advent of magnetic resonance imaging (MRI) in the 1970s, its use has grown 
exponentially worldwide, due to its ability to give high resolution images in the body, 
allowing the early diagnosis and accurate prognosis of many diseases[1,2]. In contrast 
to computed tomography (CT), MRI uses no ionising radiation, has superior soft tissue 
contrast and allows the probing of metabolic processes due to the ubiquitous nature of 
water in our bodies. With regards to the liver, it has become an essential tool for 
anatomical assessment. In addition, current cutting edge methods allow for quanti-
fication of liver fat, liver iron and staging of fibrosis levels within the liver[3-5]. These 
methods have the possibility to provide early detection and staging of many chronic 
liver diseases (CLDs), and are becoming more in demand with the rising prevalence in 
liver disease in western society. With 1/3 of adults believed to have non-alcoholic fatty 
liver disease (NAFLD) and 12% the more severe non-alcoholic steatohepatitis (NASH), 
NAFLD has been defined as a silent pandemic and the most prevalent liver disease in 
human history[6-9]. As there is currently no medical treatment for NAFLD beyond 
lifestyle interventions, the need for early detection is paramount, so that the disease 
progression can be halted and reversed, and MRI can play an important role in this
[10].

The need for early detection is not only limited to CLDs but is also important in 
detection of liver cell cancer (hepatocellular cancer; HCC). With mortality rates from 
HCC predicted to rise to become the third highest leading cause of cancer-related 
deaths in the US by 2030, the need for early diagnosis is needed so that treatment can 
be effective[11]. Currently this requires expert radiologists studying liver MRI scans 
trying to find a tumour. Though many tumours are identified, some tumours can also 
be missed, with one study finding that 16% of lesions were missed in multiparametric 
MR imaging of the prostate, highlighting the need for a method for identifying these 
missed cases[12].

Early detection can be addressed in many liver diseases using liver MRI. The 
current gold standard for staging is liver biopsy, however, it is invasive, is localized 
(sampling error) and has risk of complications[13]. Liver MRI is overtaking this 
standard, due to being non-invasive and allowing global metrics to be calculated 
across the whole liver. When diagnosing liver fibrosis stage, an important biomarker 

http://creativecommons.org/Licenses/by-nc/4.0/
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in staging NAFLD, many different sequences have predictive potential, such as MRE, 
T1 and T2* mapping, diffusion weighted imaging (DWI) and hepatocellular function 
imaging using contrast agents[14]. When identifying HCC within the liver, hepato-
cellular function imaging is commonly used, however DWI also has good predictive 
power[15,16]. These methods all require a level of expert analysis to interpret the 
images, similarly to biopsies, which means they are prime candidates for automation 
using AI methods.

Artificial intelligence (AI) techniques, have been shown to perform well when 
applied to computer vision problems, from classification of objects in a photograph to 
fast object segmentation of video frames for self-driving cars[17,18]. These techniques 
have also been applied successfully to many areas of MRI in the body, such as 
segmentation of brain tissue, ejection fraction prediction and diagnosis of heart 
conditions[19-21]. An AI approach to report mammograms for the presence of breast 
cancer has been shown to outperform radiologist reporting[22]. AI techniques in Liver 
MRI are relatively underdeveloped compared to brain and cardiac MRI, but 
nevertheless, they provide opportunities to alleviate workload in many settings.

In this review, we assess the current gold standard of AI in liver imaging. 
Specifically, we review the recent application of AI techniques for segmentation 
(Table 1), classification (Table 2) and image synthesis for different CLDs and MR 
imaging techniques. We briefly provide an overview of AI techniques in the field, 
describe the implementation of AI to achieve these applications and explain how they 
are quantitatively and qualitatively assessed. We explore the publications that have 
sought to solve these problems and assess the challenges that still face the field.

AI ALGORITHMS
We broadly focus on two subsets of AI algorithms: traditional machine learning (ML) 
algorithms and deep learning (DL) algorithms. Traditional machine learning 
algorithms often rely on the input of handcrafted features, an additional piece of data 
which has been derived from acquired data. In the case of MR images, these 
handcrafted features are often statistical measurements such as the mean intensity of 
the image or a sub region of the image, and are called radiomic features as they are 
derived from medical images. These radiomic features are then passed to a statistical 
model, such as a support vector machine (SVM), kMeans Clustering, random forests or 
a naïve bayes algorithm among many others[23,24]. These models can either be 
supervised, where you have a desired target outcome, or unsupervised, where no 
target outcome is enforced. When you have selected the appropriate model for your 
task, the model is then trained. In the case of supervised models, the model updates its 
parameters to minimise the error between your desired output and the model output, 
as new data is sequentially passed to it. An example would be inputting radiomic 
features extracted from tumours and the model getting better at classifying the 
tumours into their classes, such as hepatocellular carcinoma (HCC) or intrahepatic 
cholangiocarcinoma (ICC), as it updates its parameters to minimise the error between 
its output prediction and the ground truth. In the case of unsupervised models, the 
model updates its parameters to be able to separate input data into a predefined 
number of classes, without knowledge of what those classes may be. In the above 
example, you would input the radiomic features from different tumours and ask the 
model to output two distinct classes for HCC and ICC, without explicitly giving the 
model information about which tumour corresponds to which class. During training 
you monitor the success at a desired task and stop training once the model 
performance meets some predefined criteria, such as the model no longer improving 
even when new data is added. If the model is accurate, i.e., it rivals human 
performance, it can then be used in a research or clinical setting.

LeCun et al[25] defines DL methods as ML methods with multiple levels of features, 
obtained by composing simple but non-linear modules that each transform the feature 
at one level (starting with the raw input) into a feature at a higher, slightly more 
abstract level. In essence, this means that DL algorithms calculate successive features 
based on the features or data that you provide it. The most common way of doing this 
in MR images is to employ convolutional layers. A convolution, in terms of images, is 
a filter of a defined size, which when applied to a portion of an MR image of the liver 
equal to the size of the filter, outputs a singular value, as shown in Figure 1. When 
applied sequentially to a whole scan, it outputs an image containing these values, 
known as a feature map. Additional convolutional layers are applied to these feature 
maps, to produce feature maps with deeper information. When these layers are 



Hill CE et al. AI for liver MRI

WJG https://www.wjgnet.com 6828 October 28, 2021 Volume 27 Issue 40

Table 1 Applications of artificial intelligence segmentation methods to liver magnetic resonance imaging

Ref. Task Method MR image DICE

Mole et al[37], 2020 Segment liver from T1 mapping technique to aid 
surgical planning

3D U-Net T1 map 0.97

Winther et al[27], 2020 Segment liver from Gd-EOB-DTPA-enhanced 
MRI for volume calculations

3D U-Net Gadoxetic acid-enhanced MRI 0.96 ± 1.9

Liu et al[30], 2020 Segment liver for automated liver iron 
quantification

2D U-Net T2* map 0.86 ± 0.01

T1-w: 0.95 ± 0.03Wang et al[43], 2019 Segment Liver across multiple imaging 
modalities and techniques

2D U-Net T1- and T2*- weighted

T2-w: 0.92 ± 0.05 

Cunha et al[46], 2020 Segment liver to classify if adequate contrast 
uptake has occurred in contrast enhanced scans

2D U-Net Pre- and post-contrast T1- 
weighted, and T2- weighted

Not reported

Chen et al[31], 2020 Segment multiple organs in abdominal scans, to 
aid radiotherapy planning

2D Dense U-Net T1-weighted Liver: 0.96 ± 0.009

Liver: 0.91 ± 0.01Bousabarah et al[36], 
2020

Segment and delineate HCCs 2D U-Net Gadoxetic acid-enhanced MRI

Tumour: 0.68 ± 
0.03

Ivashchenko et al[41], 
2019

Segment liver, vasculature and biliary tree 4D k-mean clustering Gadoxetic acid-enhanced MRI Liver: 0.95 ± 0.01

Irving et al[44], 2017 Segment liver with vessel exclusion to assist in 
liver assessment

2D U-Net T1 map 0.95

Yang et al[45], 2019 Segment liver across multiple domains via 
domain transfer

Cycle GAN and 2D U-
Net

Gadoxetic acid-enhanced MRI 0.891 ± 0.040

Liver: 0.87Christ et al[39], 2017 Segment liver and tumours within, in CT and 
MRI

Two sequential 2D U-
Nets

Diffusion-weighted

Tumour: 0.697 

Fu et al[35], 2018 Segment multiple organs in abdominal scans, to 
aid radiotherapy planning

Three Dense CNNs T2/T1-weighted Liver: 0.953 ± 
0.007

Valindria et al[33], 
2018

Segment multiple organs in multi-modal 
(MR,CT) scans

ResNet Encoder 
Decoder

T2-weighted Liver: 0.914

Masoumi et al[42], 
2012

Segment the liver Watershed (non-AI) + 
ANN

Abdominal MRI 0.94 (IoU not 
DICE)

Jansen et al[40], 2019 Segment liver and metastases CNN DCE-MR and diffusion-weighted Liver: 0.95

MRI: Magnetic resonance imaging; CT: Computed tomography; DCE-MR: Dynamic contrast enhanced magnetic resonance; HCC: Hepatocellular 
carcinoma; GAN: Generative adversarial network; CNN: Convolutional neural network; ANN: Artificial neural network; IoU: Intersect over union.

stacked together, a convolutional neural network (CNN) is generated. The final 
convolutional layer generates the desired size of your output, anything from a single 
value to classify the disease state, or a new image which could be a segmentation map 
of the liver. Like traditional machine learning, the accuracy of the output compared to 
a gold standard measurement, is maximised during training.

SEGMENTATION
Segmentation describes the process by which anatomical structures can be selected 
from a radiological image. Anatomical structures can be organs like the liver, tissues 
like subcutaneous and visceral fat or malignant deposits. Metrics resulting from the 
segmentation process and segmentation maps can help with estimation of volumes (
e.g., liver volume), important metabolic ratios (ratio of visceral to subcutaneous fat) 
and provide important anatomical information that can help in the radiotherapy and 
surgical planning for the treatment of malignant tumours[26,27]. Segmentation can 
therefore play an important role in many aspects of clinical decision making. 
Segmentation maps are also often used in quantitative techniques, such as T1 mapping 
and MRE, to give accurate measurements across the whole liver and not just in a 
region of interest[26,28].
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Table 2 Applications of artificial intelligence classification methods using liver magnetic resonance imaging

Ref. Task Method MR image Accuracy Sensitivity Specificity AUROC

F1-4: 0.69 F1-4: 0.64 F1-4: 0.90 F1-4: 0.77

F2-4: 0.85 F2-4: 0.82 F2-4: 0.93 F2-4: 0.91

F3-4: 0.85 F3-4: 0.87 F3-4: 0.83 F3-4: 0.90

Hectors et al
[60], 2020

Stage liver fibrosis VGG16 CNN Gadoxetic acid-
enhanced MRI

F4: 0.78 F4: 0.73 F4: 0.81 F4: 0.85

cHCC-CC vs 
non-cHCC-
CC: 0.77 

cHCC-CC vs 
non-cHCC-
CC: 0.65

cHCC-CC vs 
non-cHCC-
CC: 0.81 

cHCC-CC vs 
non-cHCC-
CC: 0.77 

Liu et al[55], 
2021

Classify cHCC-CC vs 
non-cHCC-CC and HCC 
vs non-HCC

Radiomics + SVM Gadoxetic acid-
enhanced MRI

HCC vs non-
HCC: - 

HCC vs non-
HCC: 0.68 

HCC vs non-
HCC: 0.88

HCC vs non-
HCC: 0.79 

Wu et al[48], 
2020

Classify tumours 
according to their LI-
RADS grade

AlexNet CNN Gadoxetic acid-
enhanced MRI

0.9 1 0.835 0.95

Messaoudi 
et al[50], 
2020

Classify tumours into 
HCC or non-HCC

Patch based CNN Multiphase 3D fast 
spoiled gradient 
echo T1

0.9 ? ? ?

Lesion class: 
0.919

Lesion class: 
0.90

Lesion class: 
0.98

Hamm et al
[51], 2019

Classify tumours into 
type and LI-RADS 
derived classes

CNN Multiphase 
contrast-enhanced 
T1-weighted MRI

LI-RADS: 
0.943

LI-RADS: 0.92 LI-RADS: 0.97

LI-RADS 
(HCC): 0.922

Trivizakis et 
al[54], 2018

Classify tumours into 
primary or metastatic

3D CNN + SVM Diffusion weighted 
MRI

0.83 0.93 0.67 0.8

He et al[65], 
2019

Correctly predict liver 
stiffness using clinical 
and radiomic data

Radiomics + SVM T2-weighted MRI 0.818 0.722 0.87 0.84

T1-w: 0.82 T1-w: 0.857 Schawkat et 
al[61], 2020

Stage liver fibrosis into 
low-stage (F0-2) and 
high-stage (F3-4)

Radiomics + SVM T1-weighted MRI, 
T2-weighted MRI

T2-w: 0.619

? ?

T2-w: 0.57

Observer 1: 
0.815

Observer 1: 
0.793 

Observer 1: 
0.889 

Observer 1: 
0.90 

Lewis et al
[56], 2019

Distinguish HCC from 
other primary cancers

Radiomics + Binary 
logistic regression

Diffusion weighted 
MRI

Observer 2: 
0.80

Observer 2: 
0.862

Observer 2: 
0.778

Observer 2: 
0.89

Wu et al[57], 
2019

Classify tumours into 
HCC and HH

Radiomics + logistic 
regression

T2-weighted MRI, 
Diffusion weighted 
MRI, T1-weighted 
GRE in phase and 
out of phase MRI

? 0.822 0.714 0.89

HCC vs MT: 
0.92

HCC vs MT: 
1.0 

HCC vs MT: 
0.84 

HCC vs MT: 
0.95 

HCC vs HH: 
0.9 

HCC vs HH: 
0.96 

HCC vs HH: 
0.84

HCC vs HH: 
0.95

Oyama et al
[58], 2019

Classification of hepatic 
tumours into HCC, HH 
and MT

Radiomics + logistic 
regression/XGBoost

T1-weighted MRI

MT vs HH: 
0.73

MT vs HH: 
0.72

MT vs HH: 
0.74

MT vs HH: 
0.75

Wu et al[59], 
2019

Predict pre-operative 
HCC grade

Combined clinical data 
and Radiomics + logistic 
regression

T2/T1-weighted 0.761 0.85 0.65 0.8

Chen et al
[69], 2019

Predict pre-treatment 
immunscore in HCC

Combined clinical data 
and radiomics + multi-
vote decision trees

Gadoxetic acid-
enhanced MRI

0.842 0.846 0.841 0.934

F2-4: 0.803 F2-4: 0.814 F2-4: 0.784 F2-4: 0.91 

F3-4: 0.803 F3-4: 0.789 F3-4: 0.820 F3-4: 0.88

Park et al
[63], 2019

Stage liver fibrosis Radiomics + logistic 
regression

Gadoxetic acid-
enhanced MRI

F4: 0.813 F4: 0.921 F4: 0.754 F4: 0.87

Zhao et al
[67], 2019

Predict early 
reoccurrence of IMCC

Combined clinical data 
and radiomics + logistic 
regression

T2-weighted MRI, 
gadoxetic acid-
enhanced MRI

0.872 0.938 0.839 0.949
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Arterial 
phase: 0.83

Arterial 
phase: 0.62

Arterial 
phase: 0.73 

Reimer et al
[68], 2018

Predict therapy response 
to transarterial 
radioembolization

Radiomics + logistic 
regression

Gadoxetic acid-
enhanced MRI

?

Venous phase: 
0.71

Venous phase: 
0.85

Venous 
phase: 0.76

HCC: 0.957 HCC: 0.904 HCC: 0.951

Metastatic: 
0.946

Metastatic: 1.0 Metastatic: 
0.985

Zhen et al
[53], 2020

Classify liver tumours 
into benign , HCC, 
metastatic or other 
primary malignancy

CNN with clinical input T2, diffusion, Pre- 
contrast T1, late 
arterial, portal 
venous, and 
equilibrium phase

0.919

Other 
primary: 0.733

Other 
primary: 0.964

Other 
primary: 
0.989

F4 vs F3-0: 
0.75 

F4 vs F3-0: 
0.76

F4 vs F3-0: 
0.76 

F4 vs F3-0: 
0.84 

F4-3 vs F2-0: 
0.77 

F4-3 vs F2-0: 
0.78

F4-3 vs F2-0: 
0.74

F4-3 vs F2-0: 
0.84 

Yasaka et al
[62], 2017

Stage liver fibrosis CNN Gadoxetic acid-
enhanced MRI

F4-2 vs F1-0: 
0.80

F4-2 vs F1-0: 
0.84

F4-2 vs F1-0: 
0.65

F4-2 vs F1-0: 
0.84

Kim et al
[70], 2019

Predict postoperative 
early and late recurrence 
of single HCC

Radiomics + random 
forests

Gadoxetic acid-
enhanced MRI

Harrel C-statistic: 0.716 in combined radiomic and 
clinicopathologic model, no significant difference to 
clinicopathologic model (0.696)

Kim et al
[52], 2020

Detect HCC CNN Gadoxetic acid-
enhanced MRI

0.937 0.94 0.99 0.97

Liu et al[71], 
2020

Identify clinically 
significant portal 
hypertension

CNN + logistic 
regression

? ? 0.929 0.846 0.94

MRI: Magnetic resonance imaging; GRE: Gradient recalled echo; LI-RADS: Liver Imaging Reporting and Data System; HCC: Hepatocellular carcinoma; 
HH: Hepatic hemangioma; MT: Metastatic tumour; CC: Cholangiocarcinoma; cHCC-CC: Combined hepatocellular cholangiocarcinoma; IMCC: 
Intrahepatic mass-forming cholangiocarcinoma; CNN: Convolutional neural network; SVM: Support vector machine; AUROC: Area under the receiver 
operating characteristic curve.

Figure 1 A deep convolutional network. An example deep learning segmentation network, the U-Net. A series of convolutions, combined with downsampling 
and upsampling to learn feature maps at different scales, are used to output a segmentation map. An example of a convolution, and feature map are shown on the 
right.

The segmentation processes are usually carried out manually using software tools 
for this purpose. However, these manual processes can be time consuming and 
inaccurate, and the introduction of automated AI methods can reliably supersede 
these methods, improving output and reliability by performing close to the level of 
expert radiologists in a much shorter time[28]. For example, automatic segmentation to 
measure liver fat, adipose tissue depots and muscle volume and fat content led to an 
improved risk stratification for the presence of type 2 diabetes and cardiovascular 
disease compared to discrete categorisations of body composition in a large population 
study (n = 10000)[29]. Such a study would not be possible without automatic 
segmentation to measure the parameters of interest.

When applying AI algorithms to segmentation tasks, the aim is to highlight every 
voxel in an MR image that applies to a certain class. For example, this could be that the 
voxel contains the liver, a tumour, or neither. Though different algorithms have 
different approaches to achieving this goal, they are all evaluated by their ability to 
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correctly identify which voxel of the MR image corresponds to which class. One 
common metric for evaluating this is the DICE score, which is defined as follows 
(Formula 1):

Where TP is the number of true positives, where the voxel has been correctly 
classified, FP the false positives, where the voxel has been incorrectly given a class 
instead of no class, and FN the false negatives, where a voxel which belongs to a 
desired class has been labelled as belonging to no class. If the DICE score is high, then 
the segmentation map is accurate. Additional metrics of performance do exist, such as 
intersect over union (IoU), where the closer to 1 the result is, the better the 
segmentation.

Though non-deep learning AI segmentation methods do exist, the majority of 
papers presented here are based on deep learning methods due to the successful 
application of these methods in natural image space, an example being the U-Net, as 
shown in Figure 1[30]. Though other methods are used, the U-Net is the most common 
due to its proven performance in segmentation maps, in part down to its ability to 
learn features at different scales due to the downsampling, and inclusion of previous 
feature maps in the concatenation steps.

Segmentation for surgical and radiotherapy planning
Segmentation maps are crucial in surgical planning, especially in giving the clinician 
information of the size and location of tumours, to allow for safe and successful 
surgery. They are also useful in radiotherapy planning, allowing the therapy to be 
performed such that there is minimal risk to organs and maximal damage to tumours.

Chen et al[31] and Huang et al[32] implemented a 2D U-Net, with densely connected 
blocks, to segment up to 10 organs at risk in radiotherapy. They achieved a DICE 
coefficient of 0.963 ± 0.0010 in the liver with high metrics in most of all the other 
organs studied. Likewise, Valindria et al[33] and He et al[34] trained a 2D residual 
network to segment out multiple organs in CT or MR scans which can similarly be 
used for radiotherapy planning. The use of both modalities increased performance in 
both their segmentation maps, achieving a DICE score of 0.914 in the liver, when 
compared to training with just one modality. This is still less than that achieved by 
Chen et al[31], even with the additional information from the CT scans used in the 
Valindria study. This may be due to the use of T2-weighted MR images being used by 
Valindria et al[33] as opposed to T1 -weighted. Fu et al[35] used a trio of CNNs to 
segment multiple organs in images acquired on a dual radiotherapy MR machine, in 
order to expediate the MRI guided adaptive radiotherapy. They achieved a DICE score 
of 0.953 ± 0.007 in the liver. The segmentations took approximately 5 s to produce and 
as such could not be used yet in a real-time radiotherapy setting, however, the method 
does still alleviate radiologist workflow, where they only quality control the output 
which takes a quarter of the time of a full manual segmentation. Bousabarah et al[36] 
automate the segmentation of the liver and classification of tumours within into the 
Liver Imaging Reporting and Data System (LI-RADS) classes. They used a 2D U-Net to 
segment contrast enhanced MR images into two segmentation maps, one of the liver 
and one of any tumours within. The proposed tumour segmentation then undergoes 
post-processing by using a random forest classifier using radiomic features extracted 
from the proposed region. The combined model detected 75% of lesions in the test 
data, when there was a DICE score of 0.2 or greater between the detected and actual 
tumour. The output could not only be used in surgery and radiotherapy planning, but 
also be used in conjunction with a radiologist’s assessment to improve detection 
accuracy. They achieved a similar performance as Valindria et al[33], but with the 
harder task of segmenting out bodies within the liver itself, which will likely decrease 
performance in liver segmentation. Mole et al[37] and Owler et al[38] used a 3D U-Net 
to segment out the liver in a pipeline for surgical planning. They segmented the liver 
in a T1-mapping acquisition with a DICE score of 0.970. The metrics calculated using 
this segmentation map were used to predict post-operative liver function with a high 
degree of accuracy. This shows that the method could be used in determining whether 
a patient should go for surgery or whether other treatments should be considered. 
Christ et al[39] implemented two 2D U-Nets to segment out the liver and metastases 
within the liver, in both CT and MRI images, which could be used both for 
radiotherapy planning and measuring response to therapy. The first U-Net segments 
out the liver region, which is used to process the input MR image. The second U-Net 
segments out any tumours within this identified region. They achieved a DICE score 
of 0.87 when applied to diffusion weighted MRI images. Jansen et al[40] utilised 
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information from both dynamic contrast enhanced MRI (DCE-MRI) and DW-MRI to 
segment out the liver and metastases within, achieving a DICE score of 0.95 in the 
liver, and an accuracy of 96% in detecting the liver metastases.

Non-CNN based methods have also been used to segment out the liver in multi-
phase contrast enhanced MRI[41]. Ivashchenko et al[41] used a K-means clustering 
algorithm on multiple phases of the contrast enhancement to generate 8 initial 
compartments. They then select a best candidate and apply multiple post-processing 
non-AI methods to generate a full segmentation of the liver, achieving a DICE score of 
0.949 ± 1.2. This method could also be used to segment out the vessels and biliary tree, 
allowing safer execution of complicated liver resections. Masoumi et al[42] also used a 
non -CNN based method using both traditional non-AI methods, the watershed 
algorithm, and an artificial neural network (ANN) to automate the traditional 
algorithm. Six ANNs were trained to estimate 6 chosen features from the image, such 
as the ratio of the maximum and minimum diameter of the liver. These also extracted 
from the watershed algorithm and the error between the two feature sets calculated. 
This error is then iteratively used to update the watershed algorithm parameters until 
there is no longer a reduction in the error between the two feature sets. They achieved 
a mean Intersect over Union (IoU) of 0.94.

Segmentation of the liver when applied to surgical planning is, in most studies 
covered, exceeding a DICE score of 0.9. Variations in this value for the liver will likely 
be down to imaging protocol used (T1-weighted, T2-weighted, etc.), the patient group 
of interest, and the target outcome, in this case whether you are optimising to segment 
out the liver or whether it is a subtask among others, e.g., segmenting out metastases 
or multiple over organs.

Segmentation for liver function assessment 
Another application area for AI segmentation methods is liver function assessment. A 
full liver segmentation provides a more comprehensive estimation of liver function 
compared to region of interest placement. To get an overview of whole liver 
quantitative measures, radiologists must take the time to create these segmentations, 
that can easily be automated. Winther et al[27] showed that it is possible to segment 
out Gd-EOB-DTPA-enhanced liver MR images to calculate liver volumetry to assess 
hepatic functional reserve. They trained a 3D U-Net using the liver images of 100 
patients, achieving a DICE score of 0.967 ± 0.019, when compared to two experts who 
had a corresponding DICE score of 0.952 ± 0.028. The segmentation time using a 3D U-
Net took on average 60 s to generate a 3D segmentation map, compared to 10 min for 
an expert. Another study seeks to automate quantification of liver iron using a liver 
segmentation[30]. Liu et al[30] used a 2D U-Net to output a segmentation map for a T2
* quantitative map, generated using 16 slices from the T2* relaxometry method used 
to calculate it. They achieved a DICE score of 0.86 ± 0.01 with the manual segment-
ations and subsequently a strong correlation of the liver iron in mg/g calculated using 
the automated and manual methods. This lower DICE score in T2*-weighted images 
correlates with the lower DICE score seen in the Valindria et al[33] study above, 
suggesting that it is harder for these networks to segment the liver in T2* weighted 
images, or that it is harder for humans to segment out the liver accurately in T2*-
weighted images leading to a larger variation in your training dataset. Wang et al[43] 
implemented a 2D U-Net to segment the liver from abdominal MRI and CT scans. 
They achieved a DICE score of 0.95 in 100 T1-weighted MRI scans, and 0.92 in T2*-
weighted MRI scans. They used the segmentations to automate the calculation of liver 
volumetry and hepatic PDFF, both of which had good agreement with manual 
segmentation derived values. Liver function assessment can also be performed during 
scanning. Irving et al[44], used a 2D U-Net to segment out the liver with exclusion of 
internal vasculature, so that quantitative liver T1 scores could be calculated. They 
achieved a DICE score of 0.95. The above four studies, all showed to have liver 
function assessment measurements that correlate with the current methods. Though, 
most of the measurements derived from the automated segmentations are usually 
derived from manual segmentations and so if the segmentation is accurate, then it 
should be expected that the output measurement would correlate highly. Yang et al[45] 
also used a 2D U-Net to generate segmentation maps of the liver, however by using a 
process known as disentangled representation, they were able to transform MR and 
CT images into a shared image space which contains only shared content. On these 
images, they achieved a DICE score or 0.891 ± 0.040. This segmentation network could 
be applied to multiple imaging modalities, which could be useful in clinical uptake as 
the end user won’t have to carefully choose which model they apply. However, if 
accuracy of segmentation is the most important outcome, then many of the papers 
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covered here have shown better performance when seeking to maximise the 
segmentation accuracy in a single use case. Cunha et al[46] used AI methods to 
determine the optimal point for hepatobiliary phase acquisition in contrast enhanced 
MRI, thus avoiding overwaiting. They used a 2D U-Net to segment out a liver mask, 
which is applied to the original image. This masked liver is then passed to a classi-
fication CNN, which outputs a contrast uptake quality ranging from 0, minimal 
uptake, to 1, adequate uptake. They achieve an area under the receiver operating 
characteristic (AUROC) curve of 0.952 in the test set, indicating good classification 
accuracy. By applying their model in situ, they could reduce examination time in 48% 
of patients, by detecting when optimal uptake of contrast has occurred.

CLASSIFICATION
Classification or stratification is an important step in any disease treatment in 
healthcare. Without a proper classification of the disease causing symptoms, it is not 
possible to implement the correct medical response. Unfortunately, some diseases are 
hard to differentiate, even by experienced healthcare professionals. Providing 
additional support in this task could help ensure that patients are stratified correctly 
and swiftly. AI algorithms have been shown to deal well with image-to-class-based 
tasks, as demonstrated in applications to the ImageNet dataset[47].

AI classification algorithms are almost identical in their approach as segmentation 
networks. Whereas segmentation networks classify each voxel in an image, a classi-
fication seeks to classify all voxel in an image into a single class. They are evaluated 
against their ability to do this, by use of metrics such as accuracy, the percentage true 
positives and true negatives, sensitivity, the rate of true positives, specificity, the true 
negative rate, and by using receiver operating characteristic (ROC) curves, the true 
positive rate vs the false positive rate (1 – true negative rate/specificity), as shown in 
Figure 2.

Tumour detection and classification
Tumour classification is a useful tool in staging the severity of the cancer. The ability to 
differentiate between the various types of liver tumours would give the ability to 
medical professionals to implement an optimised treatment plan. Wu et al[48] used the 
AlexNet network architecture to classify cropped HCC tumours into either LR-3 
(intermediate probability for HCC) or the combined class LR-4/LR-5 (likely/definite 
HCC respectively)[48,49]. They achieved a 90% accuracy in classification and an 
AUROC 0.95 with reference to an expert radiologist. Messaoudi et al[50] achieved 
similar accuracy when applying a CNN to classify HCC tumours from liver dynamic 
contrast enhanced (DCE) MRI sequences with an accuracy of 90% when classifying 
between HCC and non-HCC. Hamm et al[51] also implemented a CNN for the classi-
fication of tumours into both the LI-RADS grading system and the lesion class. Their 
input to the network was the three phases, arterial, venous and equilibrium phases, of 
the contrast enhanced scans. They achieved an accuracy of 91.9% when classifying into 
the distinct lesion classes, and an accuracy of 94.3% when classifying into the LI-RADS 
score. This was both more accurate and faster (1.0ms runtime of the model) than two 
radiologists on the same dataset. When comparing to the study by Wu et al[48], though 
they both sought to differentiate cases using the LI-RADS system, Hamm et al[51] 
differentiated into more classes (LR-1,LR-4,LR-M) instead of just between LR-3 and 
LR-4/5. Hamm et al[51] outperformed the performance of Wu et al[48], however it is 
likely that it is harder to differentiate between LR-3 and 4/5, so they are not directly 
comparable. Ideally a neural network would be able to differentiate between all LI-
RADS classes. Kim et al[52] used a CNN to detect presence of HCC in liver MRI scans. 
By simplifying the problem into detection without segmentation, they get a high 
accuracy of 93.7% in detecting liver HCC lesions. This was comparable to the 
performance of a junior radiologist with an AUROC of 0.9 compared to 0.893, though 
was outperformed by an expert radiologist who had an AUROC of 0.957. Zhen et al
[53] used a CNN to classify tumours into multiple classes of benign, primary 
malignant and metastatic tumours using a combination of MR, clinical data and 
laboratory results. When using all the data together they achieved their best model 
performance with AUROCs of 0.951, 0.985 and 0.989 when classifying HCC, metastatic 
malignancy and primary malignancy (excluding HCC) respectively. Trivizakis et al[54] 
trained both a 2D and 3D CNN to classify liver tumours into primary and metastatic 
classes. The 2D network took the axial slices as input, whereas the 3D network took 
the abdominal volume. Unlike the papers above, they then used the features learnt 
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Figure 2 Classification algorithms and their performance metrics. Artificial intelligence classification algorithms use the combination of data provided to 
them and output a class probability. They are often evaluated according to the metrics on the right. MR: Magnetic resonance; AUROC: Area under the receiver 
operating characteristic curve.

during the training of these networks to train a support vector machine (SVM), a non-
CNN based AI approach. They achieved an accuracy of 83% in the SVM trained on the 
features from the 3D network, and 67.4% in the SVM trained on the features from the 
2D network. When not using the SVM as an additional step, they achieved an accuracy 
of 85.5% in the 3D network, with unreported accuracy in the 2D network though they 
conclude that the 3D model outperforms this. It shows that the inclusion of additional 
data, in this case more slices as a volume, often leads to an increased performance in 
the network performance. Though that does not always hold true, as in the study by 
Hamm et al[51]  where the inclusion of all phases of a gadoxetic acid-enhanced MRI 
scan produced worse results that selected phases. It is important that the addition of 
data is performed with care, such that you are not adding more noise to the data.

Radiomic-based approaches have also been shown to be successful in classifying 
detected tumours into potential classes. Liu et al[55] extract radiomic features from 
tumours manually segmented from Gd-EOB-DTPA-enhanced liver MR images. These 
features are input into two support vector machines (SVM), with the first classifying 
into combined hepatocellular cholangiocarcinoma (cHCC-CC) or non-cHCC-CC, and 
the second classifying into HCC and non-HCC. They achieved a mean AUROC of 0.77 
± 0.19 and 0.81 ± 0.13 for the first and second methods respectively. Conversely, 
radiologists misdiagnosed cHCC-CC as HCC or CC in 69% of cases. With the model 
accuracy higher than that of the radiologists, having the model available as an 
additional tool for radiologists would help improve the diagnostic accuracy. Lewis et 
al[56] used extracted radiomic features from diffusion weighted imaging (DWI) MR, 
combined with LI-RADS category, to classify whether a tumour is HCC or another 
primary liver cancer such as intrahepatic cholangiocarcinoma (ICC) and combined 
HCC-ICC. Using binary logistic regression, they achieved an AUROC of 0.9 and 0.89 
when compared to two observers. This is comparable in performance to similar LI-
RADS based studies above, but without the expertise an training time needed for a 
large neural network. Another radiomic based study, by Wu et al[57], similarly 
extracted radiomic features from lesions detected in T2-weighted and DWI images. 
They achieved a similar AUROC score of 0.89, when compared to Lewis et al[56], by 
also using logistic regression on their extracted features. They additionally showed 
that their model outperformed a junior radiologist with 2 years’ experience and 
rivalled a senior radiographer with 10 years’ experience. Other radiomic based studies 
have shown similar performance, when applied to tumour classification, when using a 
variety of MR sequences and often the addition of additional non-MR features such as 
BMI and medical records[58,59].

Liver disease staging and response
Liver fibrosis staging is used clinically in predicting the prognosis of liver diseases and 
helps in determining the appropriate action to take in treatment[60]. Several 
approaches of AI applications on liver MR have been described for the assessment of 
liver fibrosis. Hectors et al[60], used a VGG16 network to predict the fibrosis stage 
from F1-4 using Gd-EOB-DTPA-enhanced liver MR images. The network, which was 
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pretrained on image net with only the last few layers being trainable, predicted a class 
from F1-F4, F2-F4, F3-F4 and F4, achieving an AUROC of 0.77, 0.91, 0.91 and 0.85 
respectively, showing good diagnostic ability. This was comparable to the use of MRE 
with no significant difference between MRE and the use of deep learning methods for 
fibrosis prediction. The diagnostic performance of combined MRE and AI classification 
of contrast enhanced MRI was better overall at 0.87, 0.93, 0.95 and 0.87 for F1-F4, F2-F4, 
F3-F4, and F4 respectively, but was not significantly better than MRE alone. Schawkat 
et al[61] also sought to quantify the liver fibrosis from T1- or T2-weighted MR images. 
To do this, they did an initial texture analysis, to extract handmade features from the 
data. These handmade features underwent some pre-processing, then were input into 
an SVM which was trained to output whether the patient had a high fibrosis score, 3-4 
on a standardized scale using multiple different scoring approaches, or low fibrosis 
score, 0-2. They achieved an AUROC of 0.82 for T1 and an AUROC of 0.57 for T2. 
However, when applied to MRE they achieved an AUROC of 0.92. This shows that 
machine learning methods are only as good as the data that is input. In the above two 
cases, MRE contains the information needed to output an accurate classification. 
However, MRE is often expensive and limited to highly funded MRI centres, therefore 
it is still important that techniques that don’t use MRE are explored and developed 
while uptake of MRE is limited. The two studies above have shown in this case that 
deep learning methods are outperforming more traditional methods, however the use 
of two different scanning sequences doesn’t allow for a direct comparison, as any 
difference in performance could be down to the data provided. Yasaka et al[62] also 
used a CNN with contrast enhanced MR images and clinical information as input, to 
stage liver fibrosis. They achieved AUROCs of 0.84, 0.84 and 0.85 for classifying into 
cirrhosis, advanced fibrosis and substantial fibrosis respectively. They were unable to 
differentiate fibrosis scores as well as Hectors et al[60] with similar methods, likely due 
to the Hectors study pre-training on Image Net data and so compensating for the small 
datasets that these study have to train on. Radiomics combined with a logistic 
regression model has also been used to classify into liver fibrosis scores. Park et al[63] 
extracted radiomic features from Gd-EOB-DTPA-enhanced liver MR images, and used 
these to classify into F0 to F4 fibrosis stages, achieving an accuracy of 80.3% in 
classifying F2-F4, 80.3% in F3-F4 and 81.3% in F4. Gallego-Duran et al[64] used 
radiomics approaches, combined with a logistic regression classifier, on non-contrast 
enhanced MRI scans to define the NASH-MRI and fibro-MRI score that could diagnose 
non-alcoholic steatohepatitis and advanced fibrosis with an AUROC of 0.83 and 0.85 
respectively. He et al[65] utilised an SVM to classify patient groups into MR 
elastography liver stiffness measurement of ≤ 3 kPa and ≥ 3 kPa as surrogates of low 
and high fibrosis burden respectively, They combine radiomic features derived from 
T2-weighted images, with clinical data such as blood scores, BMI and their medical 
history. The SVM achieves an accuracy of 81.8% with an AUROC of 0.84.

Portal hypertension is one of the complications of liver fibrosis and develops in late 
stage disease. Portal hypertension is usually assessed by the hepatic vein pressure 
gradient with a gradient of ≥ 10 mmHg signifying “clinically significant portal 
hypertension (CSPH)” which is associated with a higher risk of adverse outcomes. AI 
techniques to identify CSPH have been applied to CT and MR images with some 
promising results. Liu et al[66], used a CNN to predict the presence of CSPH in both 
the liver and the spleen, which were then input into a logistic regression model to 
output an overall prediction. They achieved an AUROC of 0.940 in their test set when 
classifying between CSPH and non-CSPH.

Zhao et al[67] extracted radiomics from four MRI acquisitions (fat suppressed T2-
weighted images, arterial phase, portal venous phase and delayed phase of contrast 
enhanced imaging) to predict early recurrence of intrahepatic mass-forming cholan-
giocarcinoma (IMCC). This was combined with biomarkers from histology studies, 
and input into a logistic regression model, to achieve an AUROC of 0.949 in predicting 
early recurrence of IMCC. This would assist in personalising a treatment plan for each 
patient. Reimer et al[68] utilised a radiomics approach combined with logistic 
regression, to predict the response to therapy in patients with liver metastases. They 
classified patients into two classes of stable disease and progressive disease based on 
features extracted from dynamic contrast enhanced MR images taken at a mean of 2.2 
d after transarterial radioembolization. They achieved an AUROC of 0.73 and 0.76 in 
the radiomics extracted from the arterial and venous phase respectively. Chen et al[69] 
used a combination of clinical data and radiomics with decision trees to predict the 
immunoscore of HCC pre-treatment and therefore its response to therapy. Their best 
model, when using all the clinical and radiomics data, achieved and AUROC of 0.926 
when classifying into high (≥ 3) and low (≤ 2) immunoscores. Finally Kim et al[70] 
utilise random forests with radiomics to predict the postoperative reoccurrence time of 
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single HCC. Additionally, they combine their radiomics model with a clinicopath-
ologic model. When evaluating their model using Harrell c-index, a measure where 
higher than 0.5 has predictive value, their combined model was 0.716. This was better 
than the current clinicopathologic model (0.696), however the difference was not 
significant. As Kim et al[70] and Zhao et al[67] use different performance metrics, it is 
hard to compare their ability in tumour reoccurrence, regardless of each study 
focusing on different tumour types. It is important that these studies, where possible, 
quote similar metrics so that future researchers can determine which one is best for 
their task.

IMAGE SYNTHESIS
It is often the case that, when training an AI model, we are limited by the data that we 
have available. This is also true in healthcare settings when making clinical decisions. 
The simplest way to rectify this lack of data is to find more, however, this is not always 
possible due to many reasons both medical and logistical. The field of image synthesis 
or domain transfer seeks to address this. These algorithms can generate synthetic MR 
data based on information they are provided with, allowing this data to be either used 
in a setting where you might not have access to a particular technique, e.g., hospitals 
without an MR scanner, or used to improve AI algorithms by giving it more data to 
train on. A common group of networks for image synthesis are conditional generative 
adversarial networks (cGAN). A cGAN combines a generator network, e.g., a U-Net 
for generating the new MR image, and a discriminator network, a classification 
network to distinguish between real ground truth MR image and fake generated 
image. These networks compete against each other. The generator seeks to create an 
output that the discriminator believes is anatomically plausible, and the discriminator 
seeks to detect the output of the generator. This adversarial training often leads to 
improved results in segmentation or domain transfer tasks.

Liu et al[71] developed a cGAN to generate CT images from T1-weighted MR 
images, also to aid clinicians in radiotherapy treatment planning. They achieved a low 
mean absolute error of 72.87 HU in their generated CT scans. Jiang et al[72] used a 
cGAN to perform the opposite transformation of synthesising MR images from CT 
images in order to improve segmentation maps of organs at risk in MR for 
radiotherapy planning. They achieve a DICE score of 0.91, 0.92 in the liver when 
applied to real non-synthesised T2-weighted images and T1-weighted images 
respectively.

GANs were also implemented in Zhao et al[73] study to synthesise contrast 
enhanced MR images from non-contrast enhanced images, in order to improve tumour 
detection. They combined this with an additional tumour detection CNN which was 
applied to synthetic images in order to help improve the quality of the synthesised 
image, and the detection of tumours. The combined synthesis and detection networks 
achieved a classification accuracy of 91.3% when classifying between healthy and 
hemangioma present, 88.4% when classifying between healthy and HCC present and 
89.2% when classifying between hemangioma and HCC. This combination of networks 
not only allows for accurate detection of tumours, but also supersedes the need for a 
contrast enhanced scan, while still giving the radiographer a proposed contrast scan to 
aid in their diagnosis.

ARTEFACT DETECTION 
Motion detection and removal
Artefacts can occur in many forms in MRI scans, from patient induced breathing 
artefacts to scanner related field susceptibility artefacts. AI based methods, as shown 
with classification and image synthesis, have the potential to detect these artefacts and 
generate artefact free images which can then be used in a clinical setting. Motion is the 
dominating artefact present in many MR techniques. Breath holding is necessary in 
most scanning protocols to reduce movement artefacts. New scanning sequences are 
specifically designed to be shorter (i.e., shorter breath-holds) and produce the same 
output in order to reduce these problems[74,75]. However, motion still occurs even 
when these steps are implemented. AI offers us the opportunity to detect, so that re-
acquisition of the scans can occur; remove, so that a motion degraded scan can be used 
clinically; and predict, so that free-breathing methods can be used with optimal 
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acquisition.
Romaguera et al[76] have developed a spatial transformer network that takes an 

image sequence and predicts the next image in the sequence with an error in vessel 
localisation of 0.45 ± 0.55 mm when 320 ms has passed. This rises to 0.77 ± 1.36 mm at 
1.6 s, but still allows the accurate prediction of frames in the future based on what has 
been acquired so far. This would be useful in predicting when to acquire a scan so that 
any data is motion free, and can also be useful in the MR-Linac systems so that 
radiotherapy is only applied to any tumours within the liver, reducing damage to the 
organs. Esses et al[77] used a CNN, similar to those presented in the classification 
section, to classify artefact degraded images into a quality score of diagnostic to non-
diagnostic. They achieve a concordance rate with two trained radiographers of 79% 
and 73%. Tamada et al[78] utilise a CNN to reduce motion artefacts caused by 
respiratory motion in DCE-MRI. They generated simulated motion data from the 
ground truth data and then trained a network to predict the residual between that and 
collected ground truth data. They then tested on non-simulated motion degraded data, 
with radiographers rating on a scale of no artefact (0) to non-diagnostic (5). The output 
of the network was better by a mean score of 0.37 and 0.35 when rated by two 
radiologists. Kromrey et al[79] utilised the same CNN to reduce motion artifacts in 
arterial phase contrast enhanced MRI by 0.56 on average, on a scale of no artifact (0) to 
severe artifact (4). Küstner et al[80] try both a GAN and a variational autoencoder to 
remove motion artefacts from both brain and abdominal liver scans. The GAN was 
able to reduce the presence of motion artefacts by 67% and 65% when evaluated by 
two experienced radiologists. The same group had also previously used a patch based 
CNN to predict the amount of motion in a specific region of an image, achieving an 
accuracy of 72% ± 5% in classifying the images into motion from no motion to strong 
motion[81]. As many of the above techniques rely on radiologist qualitative 
assessment, they can be heavily biased by the skill of those doing the check, and as 
such can’t be compared well as the improvement is highly subjective. More 
importantly though all studies showed an improvement when comparing before and 
after, and all the radiologists were suitably blinded. Oh et al[82] used an unsupervised 
GAN to correct for motion in Gd-EOB-DTPA-enhanced MR images. They did this by 
down sampling k space in each input image and regenerating the fully sampled 
image. This would train the network to reconstruct the missing data from what it is 
given, and so generate data without artefacts if clean data is given. They then apply it 
to artefact degraded images, achieving an improvement from 3.20 ± 1.28 to 1.95 ± 0.94 
on a scale of 1 (no artefacts) to 5 (non-diagnostic) when applied to artefact degraded 
images. Wang et al[83] used a two-step approach by segmenting the liver from MR 
scans using a U-Net, then using this to extract patches from the liver which are 
classified into diagnostic and non-diagnostic. They achieved a DICE of 0.90 ± 0.05 in 
their liver segmentation, and an AUROC of 0.911 [95% confidence interval (CI): 0.882-
0.939, P < 0.05] when classifying. The predictive performance when using patches 
extracted from the liver was better than trying to directly classify from the whole 
image (AUROC of 0.802, 95%CI: 0.759-0.846, P < 0.05). Though this final method 
shows a greater performance when using patches, we believe it is unlikely that each 
individual patch was classified for whether it was diagnostic or non-diagnostic, 
therefore this process would fail if applied to artefacts which only have affect a sub 
region of an image.

IMAGE REGISTRATION
Registration of two MR images into a shared cartesian space is an important step in 
allowing comparisons to be made. This could be longitudinal comparisons in a single 
participant in order to stage disease progression and treatment response, or it could be 
latitudinal comparisons within a patient cohort for research studies. Additionally, the 
registration of two different modalities is important when differing but complimentary 
clinical information is in different scan types such as CT and MR. In all cases, the 
manual task of registering images can be time consuming and is often composed of 
rigid body transformations and as such it is hard to compare between two participants 
of differing dimensions. AI methods can help solve these issues by introducing fast, 
reliable non-rigid deformation techniques for image registration.

Kuznetsova et al[84] looked into the use of a commercial AI based registration 
software for the registration of CT and MRI. They assessed the performance of their 
registration for three different seed points, using the liver contour, using an internal 
liver structures such as the inferior vena cava (IVC) or portal region (PR), and using 
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internal liver structures along with the liver contour. They achieved the highest 
performance when using just the liver contour, with a DICE score of 0.89 in the liver 
segmentation and 0.76 in the IVC segmentation when compared between MR and CT 
segmentations. As they used commercial software, we are not able to comment on the 
model used, however it does show that these methods have already been developed 
for those who need them. Fu et al[85] similarly assessed the performance of their 
bespoke MRI and CT registration CNN by assessing the DICE score between the two 
segmentations. They achieved a score of 0.93 ± 0.02 in the whole liver segmentation, 
outperforming the previous study.

CONCLUSION
Current challenges and future directions
Though the benefits of AI algorithms in Liver MRI have been displayed above, there 
are also many obstacles in the way of application in the clinic where they can have an 
impact. The first and foremost is that of open data, i.e., the access to large publicly-
available clinical databanks. Many of the studies above have used internal datasets 
which are specific to a certain hospital or patient group. Though performing well in 
their specific setting, they are limited in scope and generalizability due to un-modelled 
variations across different hospitals. Additionally, these datasets are rather small for 
the purpose of training ML algorithms which perform better when trained on more 
data, and will thus benefit from a larger suitable dataset. However, of the large 
datasets available, such as UKBiobank, most are focused on healthy volunteers and not 
clinically relevant patient cohorts. This means any AI algorithm trained on these 
datasets must be applied with care and knowledge of their limitations. By pooling 
datasets of clinical patients, the AI algorithms will both perform better, due to the 
increased data to learn from, and be universally applicable, due to the increased 
variation.

The second challenge will be overcoming scepticism towards AI algorithms. Deep 
learning algorithms are often termed “black boxes”, due to their lack of 
interpretability. This is problematic when the model fails, as it is impossible to reason 
why. Therefore, care must be taken to apply models in their correct setting, i.e., on data 
that fits within the distribution of that which the model was trained and tested. If 
interpretability is desired and a-priori knowledge and physical/biological 
assumptions are to be incorporated in the model, then traditional ML methods should 
be used, as they allow to select features and focus on ROIs more easily than with DL. 
Radiomics is an example of this, as you are able to determine how the model you use 
weighs the importance of each input feature. From this you can start to reason why the 
model might fail. As with deep learning methods though, when used in conjunction 
with radiologists, it can be a vital tool in getting the cases which are traditionally 
missed.

Finally, the third challenge is translating these networks into clinical workflows. The 
above papers have shown an ability to either speed up or achieve a radiologist level 
accuracy in many tasks they perform. However, until recently, there was no standard 
protocol into getting these networks approved for mainstream use. In April 2019, the 
US Food and Drug Administration published a paper on the proposed regulatory 
framework for AI/ML based software as a medical device and have since developed 
new rules and processes for approval of AI assisted software[86]. Since these new rules 
have been implemented, multiple AI methods have been given approval, but their 
wide spread use is still limited. Therefore, developing a framework for widespread 
distribution should be implemented.

If the above challenges can be addressed, the techniques shown in this review and 
those yet to be invented can positively transform many aspects of medical imaging in 
years to come.
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