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Abstract
A symbiotic relationship has set up between the gut microbiota and its host in the 
course of evolution, forming an interkingdom consortium. The gut offers a 
favorable ecological niche for microbial communities, with the whole body and 
external factors (e.g., diet or medications) contributing to modulating this 
microenvironment. Reciprocally, the gut microbiota is important for maintaining 
health by acting not only on the gut mucosa but also on other organs. However, 
failure in one or another of these two partners can lead to the breakdown in their 
symbiotic equilibrium and contribute to disease onset and/or progression. Several 
microbial and host processes are devoted to facing up the stress that could alter 
the symbiosis, ensuring the resilience of the ecosystem. Among these processes, 
autophagy is a host catabolic process integrating a wide range of stress in order to 
maintain cell survival and homeostasis. This cytoprotective mechanism, which is 
ubiquitous and operates at basal level in all tissues, can be rapidly down- or up-
regulated at the transcriptional, post-transcriptional, or post-translational levels, 
to respond to various stress conditions. Because of its sensitivity to all, metabolic-, 
immune-, and microbial-derived stimuli, autophagy is at the crossroad of the 
dialogue between changes occurring in the gut microbiota and the host responses. 
In this review, we first delineate the modulation of host autophagy by the gut 
microbiota locally in the gut and in peripheral organs. Then, we describe the 
autophagy-related mechanisms affecting the gut microbiota. We conclude this 
review with the current challenges and an outlook toward the future 
interventions aiming at modulating host autophagy by targeting the gut 
microbiota.
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Core Tip: We are now aware that maintaining a fine equilibrium between the host and 
its gut microbiota is a prerequisite to maintain host homeostasis and promote long-term 
health. Several host and microbial processes interact dynamically to respond to 
external stresses. Among these processes, host autophagy acts as a cytoprotective 
mechanism responsive to a wide range of stress conditions, including metabolic, 
immune, and microbial stimuli. Autophagy was initially described as a degradative 
process active upon nutrient starvation. However, this process fulfils a wide range of 
other functions that are essential to host homeostasis. We discuss herein reciprocal 
interactions of autophagy with the gut microbiota in health and disease conditions.

Citation: Lapaquette P, Bizeau JB, Acar N, Bringer MA. Reciprocal interactions between gut 
microbiota and autophagy. World J Gastroenterol 2021; 27(48): 8283-8301
URL: https://www.wjgnet.com/1007-9327/full/v27/i48/8283.htm
DOI: https://dx.doi.org/10.3748/wjg.v27.i48.8283

INTRODUCTION
The commensal microbiota living in the human gut is a unique ecosystem that has co-
evolved with human to establish a symbiotic relationship. This microbial community 
is estimated to encompass about 1014 resident microorganisms, dominated by bacteria, 
but containing also populations of archaea, fungi, protozoa, and viruses[1]. The host 
provides nutrients and a favorable environment (i.e., ecological niches) for its 
microbial inhabitants. In return, the gut microbiota plays multiple roles that contribute 
to the host whole-body homeostasis, in particular by metabolizing dietary nutrients, 
by preventing colonization by enteric pathogens, and by regulating the host immune 
system and metabolism. The gut microbiota is, for instance, essential for the synthesis 
of vitamins (e.g., K and B-group vitamins) and the fermentation of dietary fibers and 
carbohydrates, which generate short-chain fatty acids (SCFAs). These fermentation 
products are used as energy source by organs and are also involved in the regulation 
of various cellular processes (e.g., intestinal barrier integrity, mucus production, and 
inflammation)[2,3].

Through their interactions with the host, gut microbes and their derived products 
are involved not only in the physiological regulation of the gut mucosa but also in that 
of organs located at distance from the gut mucosa, as illustrated by the studies 
detailing molecular features of the gut-microbiota-brain axis[4-6]. Keeping the 
mutualistic relationship between the gut microbiota and the host throughout host’s life 
is thus essential to maintain the health status of the host[7]. Deleterious shifts in the 
composition of the gut microbiota, called dysbiosis, can unbalance its functions, 
leading to the disruption of host homeostasis. This is particularly well illustrated by 
the ability of fecal microbiota transplantation (FMT) to transmit detrimental metabolic 
and/or pro-inflammatory traits from a sick donor to healthy recipient mice[8-10]. In 
addition to environmental stresses, the symbiotic equilibrium of the gut microbiota 
and the host can also be broken by dysfunctions/alterations in the host metabolism 
and immune system, which are conditions that can contribute to dysbiosis[8,11,12]. In 
this context, the roles of autophagy in strengthening the intestinal barrier and in 
maintaining host metabolic and inflammatory balance position it as the cornerstone of 
the symbiotic relationship between the gut microbiota and the host[4,13].

Macroautophagy/autophagy is an intracellular and multistep process starting with 
the formation of a membranous cup-shaped structure, called phagophore, which 
engulfs portions of the cytoplasm. The phagophore elongates and finally closes to 
form a sealed double-membraned vacuole, called autophagosome, whose maturation 
ends by its fusion with lysosomes[14-16]. Autophagy was initially described as a 
lysosomal catabolic process occurring under starvation that degrades and recycles 
cytoplasmic macromolecules (e.g., proteins, lipids, and carbohydrates) for the biosyn-
thesis of essential cellular components and to restore energy balance[17]. Nowadays, 
autophagy process and autophagy-related proteins are recognized as key cellular 
components whose roles are not restricted to the regulation of energy balance[18,19]. 
These roles include, but are not limited to, the regulation of the inflammatory 
response, the cytoprotection by preventing the accumulation of intracellular waste (
e.g., damaged organelles and misfolded or aggregated proteins), the protection against 

https://creativecommons.org/Licenses/by-nc/4.0/
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intracellular pathogens (e.g., bacteria, fungi, or viruses), the membrane dynamic (e.g., 
transport or secretion), and the regulation of cell differentiation and survival. 
Autophagy also regulates specific functions related to the features of organs. For 
example, at the gut mucosa - the first tissue at the interface between the gut microbiota 
and the host - autophagy is involved in the regulation of the functions of the secretory 
cells and of the intestinal stem cell[4]. In the central nervous system, autophagy plays 
roles in neuronal development and survival and other various functions[20]. The 
central role of autophagy in maintaining homeostasis, and thus the health status, is 
supported by the observed embryonic or neonatal lethality of mice deficient for most 
autophagy-related (Atg) core genes (Becn1, Vps34, Atg9a, Ulk1/2, Atg3, Atg5, Atg7, and 
Atg16l1) as well as association of numerous diseases and disorders with autophagy 
defects[19,21].

Of note, a growing number of recent studies highlight that most of the proteins of 
the autophagy machinery also mediate autophagy-independent functions, including 
phagocytosis, exocytosis, cytokinesis, DNA repair, or innate and adaptive immune 
signaling[22]. To exert their numerous functions, the machineries involving autophagy 
proteins are intricated with molecular sensors specialized in the detection of various 
stimuli such as microbial sensors [e.g., Toll-like receptors (TLR) and Nod-like receptors 
(NLR)], stress sensors (e.g., HMGB1, Sestrins, ER-stress sensor proteins, P2XR, and 
cGAS-STING pathway), or energy status sensors (e.g., AMPK and mTOR pathways)
[23-29].

In this review, we summarize the current knowledge on how the gut microbiota 
influences host autophagy locally in the gut mucosa or remotely in peripheral organs 
(brain, heart, liver, or muscles), and how autophagy or autophagy-related proteins can 
reciprocally shape the gut microbiota composition and modify its functions (Figure 1). 
We finally discuss the potential of targeting the gut microbiota as a strategy to 
modulate autophagy or restore its functionality in pathological context.

INFLUENCE OF THE MICROBIOTA ON GUT AUTOPHAGY
A first clue that points out a direct implication of the gut microbiota in the regulation 
of host autophagy has been provided by analyzing autophagy in germ-free mice (i.e., 
mice lacking microorganisms and bred in isolators without any microbial exposure). 
Basal autophagy was decreased in the colonic epithelium of germ-free mice compared 
to conventionally raised mice, suggesting that the gut microbiota influences intestinal 
autophagy in physiological condition[30]. The increase in basal activity of autophagy 
in germ-free mice was attributed to an energy-deprived status of colonocytes. 
Treatment of these cells with butyrate, a SCFA generated by some gut bacteria and 
serving as main energy source for colonocytes, was sufficient to reverse the phenotype. 
In vivo, colonization of germ-free mice with the butyrate-producing bacterial strain 
Butyrivibrio fibrisolvens was sufficient to restore autophagy steady state. In addition to 
butyrate, other bacteria-derived metabolites may have the ability to reduce basal 
autophagy in the colon. They include indole-3-lactate, which is a tryptophan 
metabolite produced notably by the bacteria belonging to the Lacticaseibacillus, Lactoba-
cillus, Bifidobacterium, Megamonas, Roseburia, or Ruminococcus genus[31,32].

Pathogen-associated molecular patterns (PAMPs), which are conserved microbial 
molecules, are also able to modulate autophagy usually by stimulating the process
[23]. These effects have been particularly well described for pathogens. PAMPs mainly 
act by interacting with specific host cell receptors that belong to the TLR and NLR 
families. This has been illustrated by the ability of the lipopolysaccharide (LPS) from 
Gram negative bacteria to stimulate autophagy through its binding to TLR4[33], or the 
peptidoglycan (PGN) from Gram positive bacteria through NOD1-, NOD2-, and TLR2-
associated signaling[34,35]. Besides those of bacteria, fungal PAMPs can also mobilize 
components of the autophagy machinery. This is true for β-glucans that are found in 
fungal cell walls and stimulate autophagy-related processes though their binding to 
the host receptor Dectin-1[36,37]. Trehalose, a non-reducing disaccharide produced by 
bacteria and fungi, is also a potent autophagy inducer, for which the ability to 
stimulate colonic autophagy during colitis in mice has been described[38,39]. In 
addition, in-depth studies of the infectious cycle of some pathogenic bacteria have 
shed the light on the existence of secreted bacterial effectors able to activate (e.g., Ats-1 
protein from Anaplasma phagocytophilum) or inhibit (e.g., RavZ protein from Legionella 
pneumophila) autophagy at various stages of the process[40,41]. It is not excluded that 
some commensal microorganisms in the gut express such proteins that influence host 
autophagy.
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Figure 1 Complex interplay between gut microbiota and autophagy. The interactions between the gut microbiota and autophagy are bidirectional. 
Autophagy is involved in the regulation of several mechanisms (grey boxes) that shape the gut microbiota. Reciprocally, some bacterial- (blue), fungal- (orange), or 
viral-derived (pink) compounds are able to modulate autophagy in the gut mucosa as well as in distant organs through systemic pathways (circulatory system, 
nervous system …). Modulation of autophagy by the gut microbiota involves microbiota-derived products such as microbial compounds (lipopolysaccharide, 
peptidoglycan …), microbial derived-compounds (short chain fatty acids, secondary biliary acids …), or signaling molecules (cytokines, hormones ...). They stimulate 
a wide range of host molecular sensors (pattern recognition receptors, stress sensors, and energy sensors; grey hexagons) located in the gut or peripheral organs. 
PRR: Pattern recognition receptor; TLR: Toll-like receptor; NLR: Nod-like receptor.

Given the influence of gut microbiota-related factors on autophagy, one could 
expect that alterations in the composition of the gut microbiota would affect 
autophagy in the gut mucosa. Indeed, an increase in the expression of some 
autophagy-related proteins (FoxO1, FoxO3, GABARAP, and ATG7) and LC3-II/LC3-I 
ratio and a decrease in AKT activation have been reported in newborn piglets 
receiving FMT[42]. In addition, alteration of the gut microbiota resulting from the 
administration of a cocktail of broad-spectrum antibiotics increased the basal activity 
of autophagy as well as the expression of some autophagy-related proteins (ATG16L1, 
ATG5, and IRGM1) in the ileal mucosa of mice[43,44]. Interestingly, oral adminis-
tration of a single bacterial species (e.g., Desulfovibrio spp., Fusobacterium nucleatum, or 
Escherichia coli) in conventional mice can also be sufficient to modulate gut autophagy
[42,44,45]. Altogether, these studies suggest that autophagy regulatory network is 
sensitive to changes in the gut microbiota.

SYSTEMIC EFFECTS OF THE GUT MICROBIOTA ON HOST AUTOPHAGY
Microbial-derived metabolites (e.g., PAMPs), compounds that are issued from the gut 
microbiota metabolism (e.g., neuroactive compounds and SCFAs) and host bioactive 
molecules that are produced in response to its interaction with the gut microbiota (e.g., 
cytokines), can have large systemic effects and modulate the physiology of organs that 
are distant from the gut. Influence of the gut microbiota on the brain is a well-
documented example of such effects[6]. Several communication routes (immune 
system, autonomic nervous system, neuroendocrine system, hypothalamic – pituitary 
– adrenal axis, and other metabolic pathways) between the microbiota and the brain 
have been identified[6]. It is very likely that similar pathways and microbiota-derived 
players, or at least some of them, modulate as well the physiology of other organs in 
the body. Evidence is accumulating on the modulation of autophagy by the gut 
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microbiota in distant organs and several of these are presented below (Table 1).

Modulation of autophagy in nervous tissues
Although few studies are available on this emerging topic, they suggest that the gut 
microbiota could influence autophagy in the brain throughout life in both 
physiological and pathological conditions.

Diet is a key environmental factor that drives the composition and metabolic 
functions of the gut microbiota[46,47]. In particular, maternal diet can influence post-
natal gut microbiota and neurological development of the offspring[48]. In a recent 
study, Wang and colleagues reported that feeding mothers with a high sugar and high 
fat (HSHF) diet, a condition that modifies the gut microbiota of the offspring, 
modulates also the expression of neuronal and autophagy markers in the brain during 
early life stage[49]. Particularly, they observed that the LC3A and LC3B levels were 
modified in the brain of the offspring in the HSHF group compared to controls before 
28 d of age, and then decreased, meaning that autophagy may be differentially 
regulated in HSHF offspring[49].

Aging is associated with a decline of host autophagy including in the brain[50]. 
Influence of the gut microbiota on brain autophagy in aging has been evidenced in in 
vivo models. Alteration of autophagy has been reported in the brain of D-gal-treated 
mice, a model of accelerated aging[51,52]. These alterations were characterized by 
decreases in the LC3-II/LC3-I ratio and in the expression of ATG7 and SIRT1, as well 
as by increased phosphorylation of the master negative regulator of autophagy mTOR 
(S2448) and expression of p62 in the hippocampus tissue of D-gal-induced aging mice
[52]. Interestingly, the administration of urolithin A (UA), a bioactive metabolite 
generated by the gut microbiota, was efficient in rescuing these autophagy-related 
defects. To note, UA administration also allowed to reverse increases in the LC3-
II/LC3-I ratio, the expression of p62, and the phosphorylation of mTOR (S2448), as 
well as the decreased expression of Sirt-1 and ATG7 observed in the hippocampus of 
12-mo-old mice[52].

Autophagy defect is thought to play a role in neurodegenerative processes 
associated with numerous diseases, including Alzheimer’s disease (AD)[53]. 
Interestingly, although a causal relationship remains to be demonstrated, a few studies 
suggest that dysbiosis associated with AD could influence brain autophagy[54]. 
Decreased Beclin-1 expression and increased expression of p62 have been observed in 
the brain of old 3xTg-AD mice (a transgenic mouse model of AD) compared to young 
control mice, indicating alterations in autophagy[55]. Interestingly, in addition to 
modifying the composition and predicted function of the gut microbiota, oral supple-
mentation of old 3xTg-AD mice with a combination of nine probiotic strains (Strepto-
coccus thermophilus, Bifidobacterium longum, B. breve, B. infantis, Lactobacillus acidophilus, 
Lactiplantibacillus plantarum, Lacticaseibacillus paracasei, Lactobacillus delbrueckii subsp. 
bulgaricus, and Levilactobacillus brevis; SLAB51 formulation) also partially restored 
defects in autophagy[55]. Moreover, SLAB51 was also effective in restoring the 
impaired expression level and activity of SIRT1, a positive regulator of autophagy, in 
the brain of 3xTg-AD mice[56,57].

In another context, changes in the composition of the fecal microbiota have been 
reported in patients with acute ischemic stroke (AIS), a common cerebrovascular 
disease caused by sudden loss of blood circulation in a specific brain area[58,59]. 
Interestingly, anal administration of the fecal supernatant obtained from an AIS 
patient to antibiotics-treated mice resulted in increased expression of genes encoding 
Beclin-1, ATG12, and LC3 as well as increased expression of Beclin-1 at the protein 
level and an increased level of LC3-II in brain tissue compared to antibiotics-treated 
mice that received the fecal supernatant of healthy controls[59].

The retina, which is the light sensitive neural tissue that lines the back of the eyes, 
displays numerous similarities with the brain either anatomically or functionally[60]. 
Neurodegenerative conditions that affect the brain seem to compromise the retina, and 
vice versa[60-62]. Similarly to the brain, the retina is also highly sensitive to nutritional 
variations[63]. Retina autophagy[64,65] as well as modifications in the gut microbiota
[66-69] is suspected to contribute to retinal diseases such as diabetic retinopathy, age-
related macular degeneration, and glaucoma. Although no causal relationship has 
been yet established, one can assume that, as in the brain, the gut microbiota might 
influence retinal autophagy and that changes in its composition might alter retinal 
autophagy and contribute to the development of retinopathies.

Modulation of liver autophagy 
Evidence of the influence of the gut microbiota on liver autophagy came from studies 
in gut microbiota-deprived mouse models. Comparison of germ-free mice and altered 
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Table 1 Data supporting the existence of a systemic regulation of autophagy by the gut microbiota

Impact on autophagy
Ref.

Brain Liver Muscles

[49,74-
76]

Diet-induced 
changes in the gut 
microbiota

Feeding of mother mice with an HSHF diet: Changes 
in the expression levels of LC3A-I/LC3A-II/ LC3B-
I/LC3B-II in the offspring.

Feeding mice or rats with an HF diet: Changes in the expression levels of LC3, 
p62, mTOR, and p-AKT and modulation of the LC3-II amount. 

AD mice1: Modulation of the lysosomal activity 
(Cathepsin L) and SIRT1 activity and changes in the 
expression levels of Beclin-1, p62, and SIRT1.

ASF colonized mice: Changes in the expression of a set of genes related to 
autophagy/membrane trafficking (Uvrag, Atg14, Becn1, Bcl2l1, and Pik3c3) and 
lysosomal functions (Chmp4c and Chmp2a) compared to germ-free mice.

[55,56,
59,70]

Mice with specific 
gut microbiota

FMT from patients with AIS to mice: Changes in the 
expression levels of Becn1, ATG12, and LC3 
expression and in the amount of LC3-II.

[71,79] Germ free or 
antibiotic-treated 
animals

Antibiotic treatment of mice fed a normal diet: Alteration of the basal expression 
of LC3 compared to controls.

Germ free piglets: Changes in the expression levels of LC3A, 
LC3B, and Becn1 and of mTOR, p-mTOR, AKT, and p-AKT 
levels compared to normal and/or FMT piglets.

[55,56,
75,76,
78]

Probiotics SLAB512: Modulation of SIRT1 activity and changes 
in the expression levels of Beclin-1, p62, and SIRT-1 as 
well as in the LC3-II amount in AD mice1.

Limosilactobacillus reuteri: Modulation of the expression levels of mTOR and p-
AKT in HFD-fed rats. 

Lacticaseibacillus rhamnosus, Pediococcus acidilactici, Bifidobacterium 
adolescentis: Changes in the expression levels of LC3 and ATG7 
in rats fed a high-calorie diet.

SCFAs: Activation of the PPARγ-UCP2-AMPK pathway, and induction of 
autophagy flux and lysosomal activity in mouse hepatocyte AML-12 cells. 

UA: Induction of mitophagy in Caenorhabditis elegans and in 
rodents.

[52,71,
74,77,
80]

Gut microbiota-
derived products

UA: Modulation of LC3-II/LC3-I and p-
mTOR/mTOR ratio and changes in the expression 
levels of ATG7 and p62 in mouse models of aging3.

FXR and TGR54: Involved in autophagy modulation. UB: Modulation of LC3-II/LC3-I, p-mTOR/mTOR and p-
ULK1/ULK1 ratio and change in the expression level of p62 in a 
rat model of ischemia/reperfusion injury.

1AD mice: Mouse model of Alzheimer’s disease (3xTg-AD mice).
2SLAB51: A combination of nine probiotic strains (Streptococcus thermophilus, Bifidobacterium longum, B. breve, B. infantis, Lactobacillus acidophilus, Lactiplantibacillus plantarum, Lacticaseibacillus paracasei, Lactobacillus delbrueckii subsp. bulgaricus, 
and Levilactobacillus brevis).
3D-gal-treated mice and 12-mo-old mice.
4FXR and TGR5: Bile acid receptors.
HSHF diet: High sugar and high fat diet; HF diet: High fat diet; FMT: Fecal microbiota transplantation; SCFAs: Short chain fatty acids (propionate and butyrate); AIS: Acute ischemic stroke; ASF: Altered Schaedler’s flora; UA: Urolithin A; 
UB: urolithin B.

Schaedler’s flora (a community of eight bacterial species) colonized mice revealed that 
absence of the gut microbiota altered hepatic expression of genes involved in 
autophagy and lysosomal functions[70]. In another study, a decrease in the expression 
of LC3 at the protein level has been reported in the liver of mice deprived from gut 
microbiota as a consequence of chronic treatment with antibiotics (ampicillin and 
neomycin) compared to control mice[71]. In addition, those authors showed that 
microbial-derived SCFAs (propionate and butyrate) activated autophagy, induced 
lysosomal activity, and increased autophagy flux in vitro in mouse hepatocyte AML-12 
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cells[71]. The mechanism involves the activation of the PPARγ-UCP2-AMPK pathway
[71].

Primary bile acids are synthesized from cholesterol in the liver and are converted 
into secondary bile acids by the gut microbiota[72]. Bile acids are signaling molecules 
that can activate nuclear hormone receptors including FXR and TGR5 (also known as 
GPBAR1), which is a cell-surface receptor of the G protein-coupled receptor family
[73]. These two bile acid receptors have been described to modulate autophagy in the 
liver and adipose tissue in fed and fasted states[74].

Several alterations of autophagy, including a decreased amount of LC3 mRNA and 
LC3-II and an increased amount of p62, have been observed in the liver of mice fed a 
high-fat diet (HFD), a potent inducer of dysbiosis[74]. Chronic exposure of rats to an 
HFD can lead to NASH (non-alcoholic fatty steatohepatitis). Development of this liver 
disease has been associated with dysbiosis and alterations in autophagy, particularly 
increased expression of hepatic mTOR and p-AKT[75,76]. Interestingly, supple-
mentation of an HFD with a probiotic strain (Limosilactobacillus reuteri) and/or 
treatment of NASH mice with antibiotics (metronidazole) tended to normalize the 
hepatic content of these two autophagy-related proteins, as well as SCFAs and 
Firmicutes and Bacteroidetes fecal contents, thus suggesting a role of the gut microbiota 
in the modulation of hepatic autophagy[75,76]. To note, some data suggest a role for 
TGR5 in the regulation of autophagy in response to HFD[74].

Modulation of autophagy in muscle tissues 
An induction of autophagy, characterized by decreased phosphorylation of mTOR 
(S2448) and ULK1 (S757), an increased amount of LC3-II, and decreased expression of 
p62, has been reported in a rat model of ischemia/reperfusion injury[77]. Interestingly, 
intraperitoneal injection of urolithin B (UB), a gut microbiota-derived metabolite, was 
able to reverse this phenotype[77].  The inhibitory effect of UB on autophagy is 
thought to activate the Nrf2-related antioxidant response by increasing p62 accumu-
lation and favoring p62-Keap1interaction[77]. Another argument that suggests the 
influence of the gut microbiota on heart autophagy has been provided by changes in 
the expression levels of LC3 and ATG7 observed in heart tissue of rats fed a high-
calorie diet supplemented with probiotics (Lacticaseibacillus rhamnosus, Pediococcus 
acidilactici, and Bifidobacterium adolescentis)[78].

In addition to the heart, autophagy might be regulated by the gut microbiota in 
other muscles. Recently, high-throughput RNA-seq analysis revealed that the 
expression levels of autophagy-related genes (LC3A, LC3B, and Beclin-1) were 
modulated in the skeletal muscles of germ-free piglets compared to control piglets
[79]. Moreover, germ-free piglets harbored decreased expression of mTOR and AKT 
and their phosphorylated forms, phospho-mTOR (S2448) and phospho-AKT (S473), 
respectively, compared to control piglets[79]. FMT of germ-free piglets with stools 
collected on healthy donors pigs was effective in restoring the amounts of phospho-
AKT and mTOR to a level similar to that of controls[79]. Some microbial-derived 
metabolites able to influence the muscle autophagy have been identified. For example, 
a role of UA as a mitophagy (selective degradation of mitochondria by autophagy) 
inducer in the muscle tissue has been described in the model organism Caenorhabditis 
elegans and in rodents[80].

SHAPING OF THE GUT MICROBIOTA BY AUTOPHAGY
As developed in the first part of this review, the gut microbiota is able to influence 
host autophagy by several pathways and through complex regulatory networks 
governing the autophagy machinery. Reciprocally, autophagy and autophagy-related 
proteins can shape the gut microbiota (Figure 1). This is particularly well illustrated by 
changes in the gut microbiota composition observed in mice conditionally deficient for 
autophagy (Atg5-/-, Atg7-/-, and ATG16L1 T300A knock-in) in the gut[81-83]. 
Interestingly, alterations of autophagy in peripheral organs such as the liver have been 
shown to influence the composition of the gut microbiota[84].

A first overall reason that would explain why autophagy activity in the gut mucosa 
can modulate the abundance of gut microorganisms is that this process is essential to 
maintain homeostasis of their ecological niche. Indeed, basal autophagy is crucial to 
maintain the integrity of Lgr5-positive intestinal stem cells that give rise to all differen-
tiated lineages of the intestinal epithelium throughout life[85]. In addition, autophagy 
contributes to the maintaining of intestinal barrier integrity, particularly by regulating 
proteins involved in tight junctions (e.g., Claudin-2 and Occludin) on the apical side of 
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intestinal epithelial cells and by promoting cell survival upon various stress (e.g., 
bacterial or viral infection, inflammation, or chemical stress)[4,86-88].

The main cellular mechanisms by which host autophagy shapes the gut microbiota 
(including pathosymbionts) are described below.

Clearance of pathogens
Autophagy mediates the bulk or selective lysosomal degradation of cellular 
components. In selective autophagy, selective autophagy receptors (SARs) recognize 
and bind specific cargoes to promote phagophore formation around them, ultimately 
leading to their degradation into a mature autolysosome. These specific cargoes can be 
for instance mitochondria (mitophagy), lipid droplets (lipophagy), protein aggregates 
(aggrephagy), or peroxysomes (pexophagy)[89]. A selective form of autophagy termed 
xenophagy is dedicated to the elimination of intracellular pathogens (e.g., bacteria, 
viruses, fungi, or protozoa) and is supported by the expression of several SARs 
including NDP52, Optineurin, p62, TAX1BP1, Galectin 8, and TECPR1[90]. Xenophagy 
has been shown to restrict or avoid the intracellular persistence and the replication of 
various human pathogenic or pathosymbiotic bacteria, residing either in damaged 
vacuoles [e.g., Salmonella Typhimurium or adherent-invasive Escherichia coli (AIEC)] or 
free in the host cytosol (Group A Streptococcus)[91-93]. Thus, by limiting the dissem-
ination of invasive pathogens from the gut lumen to extra-intestinal sites, autophagy 
also restrains their persistency in the gut microbiota[94,95]. Defects in xenophagy are 
thought to contribute to the etiology of Crohn’s disease (CD) an inflammatory bowel 
disease (IBD) characterized by chronic and severe intestinal inflammation associated 
with dysbiosis[96]. In particular, a coding polymorphism (Thr300Ala) in the 
autophagy-related gene ATG16L1 that confers an increased risk for the development of 
CD has been shown in vitro and in vivo to alter the xenophagy process, thus favoring 
persistency of the CD-associated AIEC bacteria[92,97,98]. CD risk polymorphisms 
have also been identified in other autophagy-related genes, including core autophagy 
genes (IRGM, ULK1, ATG4a, and ATG4d) and genes involved more specifically in 
xenophagy (NOD2 and NDP52)[99-101].

One important point is that, besides xenophagy, non-canonical autophagy such as 
LC3-associated phagocytosis (LAP) can also contribute to the clearance of intracellular 
pathogens. This specific form of phagocytosis requires an important set of core 
autophagy proteins (UVRAG, BECN1, VPS34, LC3, ATG3, ATG4, ATG5, ATG7, 
ATG12, and ATG16L1), but some other proteins involved in canonical autophagy 
remain dispensable (ATG14, ULK1, FIP200, and AMBRA1). LAP also distinguishes 
from canonical autophagy by the formation of single-membrane vacuoles called 
LAPosomes[102]. Efficiency of LAP to increase clearance of pathogens such as Listeria 
monocytogenes or Aspergillus fumigatus has been shown[103,104].

Mucus layer maintenance
A mucus layer composed of highly glycosylated proteins (mucins) overlays the gut 
epithelium and represents an important physical barrier limiting the contact of 
luminal microbes with the epithelium, thus avoiding their potential translocation into 
underlying tissues[105]. The mucus layer differs between the small and large intestine 
in terms of physicochemical properties (e.g., thickness, density, and composition) and 
it is under the influence of numerous factors, including the gut microbiota and the diet
[106-108]. Whereas in the small intestine the mucus is non-attached and constitutes a 
discontinuous layer, it is organized in two layers - the inner and outer mucus layers - 
in the large intestine. Compared to the intestinal lumen, only few bacterial species are 
able to live and to persist in the mucus layer. This is partly due to the important 
amount of various antimicrobial compounds (e.g., IgA, lysozyme, defensins, REG3γ, 
and phospholipase A2-IIA) found in the mucus layer, particularly in the small 
intestine. However, some commensal bacteria are molecularly equipped to bind, 
degrade the mucus glycans, and/or harvest the oligosaccharides, giving them a 
selective advantage in colonizing this particular ecological niche[109]. Among others, 
mucin-degrading specialists include species belonging to the genera Bacteroides (e.g., B. 
thetaiotaomicron and B. fragilis), Ruminococcus (e.g., R. gnavus and R. torques), and 
Akkermansia (e.g., A. muciniphila). Interestingly, A. muciniphila, a bacterial species 
belonging to the phylum Verrucomicrobia, is considered as a healthy marker of the 
intestine since its presence in high abundance is associated with a healthy mucosa 
whereas reduction of its abundance is associated with intestinal disorders (e.g., obesity 
and IBD)[110,111]. Studies suggest that the composition of mucus-associated 
microbiota differs depending on the intestinal segment or the mucus layer (outer or 
inner layer) that is considered[105]. Bacteria belonging to the phylum Firmicutes have 
been found in higher abundance in the mucus layer than Bacteroidetes, both in 



Lapaquette P et al. Microbiota and autophagy

WJG https://www.wjgnet.com 8291 December 28, 2021 Volume 27 Issue 48

humans and in rodents[105].
Mucus plays a critical role in the maintenance of the symbiotic relationship between 

the host and the gut microbiota[112]. Deletion of the Muc2 gene in mice results in 
changes in the gut microbiota composition characterized in particular by an increase in 
the abundance of potential pathobionts (e.g., Desulfovibrio, Escherichia, and Erysipelo-
trichaceae), and the reduction of beneficial bacteria (e.g., Lactobacilli) and Lachnospiraceae
[112]. In addition to ensuring an habitat and energy sources for a specific part of the 
gut microbiota, the mucus constitutes a protective layer against pathogen invasion and 
infection, although some pathogenic bacteria have developed efficient strategies to 
colonize this special environment and reach the intestinal epithelium (e.g., Shigella 
flexneri and AIEC)[113,114]. Thus, modifications in mucus layer structure or 
composition by genetic and environmental factors, such as diet, can modify the gut 
microbiota[105]. These changes can be beneficial when they strengthen the mucus 
barrier properties, but they can also be deleterious by favoring emergence of 
pathobionts, by bringing harmful bacteria closer to the epithelial barrier and by 
destabilizing the symbiotic relationship between the gut microbiota and the host, at 
the gut mucosa as well as at systemic levels[107].

Mucus secretion into the gut lumen is achieved by specialized secretory cells, the 
goblet cells. Mucins, the proteins forming the mucus, are packed into secretory 
granules that are localized on the apical side of the goblet cells and constitutively 
secreted by fusion of the granules with the plasma membrane. Proteins belonging to 
the core autophagy machinery (ATG5, ATG7, and LC3B) are critical in mice for the 
release of these secretory granules by supporting the generation of reactive oxygen 
species[115].

The NLRP6 inflammasome has been identified, among others roles, as a key factor 
involved in autophagy-induced regulation of goblet cell secretory functions[116,117]. 
NLRP6-deficient mice exhibit defective autophagy in intestinal cells including in 
goblet cells, a phenotype that is associated with impaired mucus layer formation. This 
mucus alteration may contribute, together with the other NLRP6-related defects, to 
modulating the composition of the gut microbiota and abnormally bring microbes 
closer to the epithelial barrier in NLRP6-deficient mice. Analyses of the gut microbiota 
in NLRP6-deficient mice revealed an abnormal representation of the bacterial phyla 
Bacteroidetes (Prevotellaceae) and Saccharibacteria (formerly known as TM7)[116]. In 
addition, alteration of the mucus layer in NLRP6-deficient mice enables Citrobacter 
rodentium, a mouse-specific pathogen, to penetrate deeper into the crypts and be more 
invasive[117]. The role of autophagy in shaping the gut microbiota through the 
regulation of mucus layer maintenance is also supported by observations made in 
Atg7-deficient mice. Secretion of mucins from goblet cells was diminished in colonic-
epithelial cell-specific Atg7 knock-out mice[82]. This phenotype was associated with an 
abnormal composition of the gut microbiota characterized in particular by an 
increased abundance of Clostridia and Prevotellaceae in Atg7-deficient mice. In addition, 
those authors observed an increased bacterial burden in the colon, a phenotype that 
could contribute to the exacerbated sensitivity to experimental colitis observed in Atg7 
knock-out mice. Interestingly, stimulation of the autophagy-related process, either by a 
beneficial bacterial strain (Bifidobacterium dentium) or by a polyphenol (oxyresveratrol), 
has been shown to enhance mucin production by goblet cells in in vivo and in vitro 
models[118,119].

Secretion of antimicrobial compounds in the gut lumen
Autophagy and autophagy-related proteins can also affect the composition of the gut 
microbiota by regulating the secretion of some antimicrobial compounds released into 
the gut lumen by enterocytes, Paneth cells, or immune cells. Among them, immuno-
globulins of the A class (IgAs) are daily released in huge amount (several grams per 
day) into the gut lumen and shape the composition of the gut microbiota. Alterations 
of the gut microbial ecosystem have been reported in the absence of hypermutated 
intestinal IgA in mice with deficiency of activation-induced cytidine deaminase[120-
122]. Changes in the gut microbiota were particularly characterized by expansion of 
anaerobic bacteria in the small intestine, with a domination by segmented filamentous 
bacteria[121]. Several other studies in mouse models support the role of IgAs in 
regulating the diversity and composition of microbiota[123,124]. Data obtained in 
humans showed that selective IgA-deficiency (sIgAd) is associated with a mild 
intestinal dysbiosis, characterized by expansion of pro-inflammatory bacteria (e.g., E. 
coli, Prevotella), reduction of anti-inflammatory commensals (e.g., Faecalibacterium), and 
perturbation of bacterial dependency association network[125]. In addition, Catanzaro 
and colleagues reported also a trend toward a decreased alpha diversity and shifts in 
the relative abundance of some taxa (e.g., increase in Eubacterium dolichum and Rumino-
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coccus bromii and decrease in Paraprevotellaceae) in human sIgAd subjects compared to 
controls[126]. IgAs are produced by gut-resident antibody-secreting plasma cells (PCs) 
that display important metabolic adaptations and endoplasmic reticulum expansion to 
cope with the stress of producing very large amounts of IgAs[127]. Some studies 
suggest that autophagy is required for sustainable production of immunoglobulins by 
PCs since mice with conditional deficiency of Atg5 in B cells had defective antibody 
responses, with an increased sensitivity of PCs to cell death[128]. In addition, mice 
deficient for Atg5 in B cells harbored a decreased number of IgA-secreting PCs isolated 
from the gut-associated lamina propria, Peyer’s patches, and mesenteric lymph nodes 
in comparison to control mice[129].

Another important antimicrobial compound to which commensal bacteria are 
directly exposed in the gut lumen is the lysozyme secreted by Paneth cells, which are 
secretory epithelial cells located at the bottom of the crypts in the small intestine. This 
antimicrobial protein is also produced by macrophages and neutrophils in the lamina 
propria. Three types of lysozyme have been described so far across the animal 
kingdom[130]. Lysozyme causes bacterial lysis by hydrolyzing bacterial cell wall PGN, 
but it can also induce cationic killing of bacteria by inserting into and forming pores 
into the lipid bilayer of the bacterial cell membrane. This is the case with c-type 
lysozyme expressed in human[130]. Not all bacteria are equally sensitive to lysozyme 
and some pathogenic bacteria have developed strategies to escape its antimicrobial 
activity[130]. The contribution of lysozyme in shaping the gut microbiota is illustrated 
by the dysbiosis observed in lysozyme-deficient mice (Lyz1−/− mice) that is charac-
terized by the expansion of some mucolytic bacteria such as Blautia gnavus (formerly 
known as Ruminococcus gnavus)[130,131]. No change in luminal bacterial load and 
alpha-diversity was observed in the cecum- and mucosal-associated bacteria in the 
ileum and the colon of Lyz1−/− mice[131]. However, changes occurred in the 
composition of the fecal microbiota (expansion of Dorea formicigenerans and reduction 
of Candidatus Arthromitus) as well as the ileal microbiota (expansion of B. gnavus and 
D. formicigenerans and reduction of C.  Arthromitus) in Lyz1−/− mice[131].

Alpha-defensins (also called crypt defensins or cryptdins) are another example of 
antimicrobial factors that are produced by Paneth cells, whose roles in host defense 
against enteric pathogens and regulation of the composition of the gut indigenous 
microbiota have been described[132]. Interestingly, abnormal packaging and secretion 
of antimicrobial compounds by Paneth cells have been reported in mice harboring 
Paneth cells deficient for the autophagy-related genes Atg5, Atg7, and Atg16l1 and in 
patients with CD-associated NOD2 and ATG16L1 variants[133-135]. Of note, this 
defect in lysozyme packaging in autophagy-deficient mice required an infectious (viral 
or bacterial) trigger[136,137].

Even if canonical autophagy is considered as a degradative process, some infectious 
agents such as Salmonella Typhimurium can trigger a secretory autophagy resulting in 
the formation of LC3-positive, double-membraned lysozyme granules[136]. These 
autophagosome-like vacuoles are not directed for the fusion with the lysosomes but 
instead reach the plasma membrane for the release of their content into the gut lumen. 
Thus, the autophagy machinery participates in the unconventional protein secretion of 
lysozyme, thereby affecting the composition of the gut microbiota by counter-selecting 
the lysozyme-sensitive bacteria. In this context, it has been suggested that vitamin D, 
via binding to the vitamin D receptor expressed by Paneth cells, can sustain autophagy 
activities in these cells[138]. To note, several studies suggest that expression and 
secretion of other antimicrobial peptides than lyzozyme, such as the defensins and 
cathelicidins, would be regulated by autophagy. However, the exact molecular 
mechanisms remain to be determined[82,139].

Modulation of inflammation
Cell stimulation by microorganisms (e.g., invasive pathogens) or danger signals (e.g., 
extracellular ATP, uric acid, or HMGB1) are usually associated with the triggering of 
inflammatory processes through the release of cytokines and chemokines. Inflam-
mation is a protective response that results in tissue repair. However, this response 
needs to be tightly regulated in order to avoid excessive and/or chronic inflammation 
that could be detrimental for host tissues. In the gut mucosa, immune tolerance toward 
the resident gut microbiota should be maintained to avoid chronic gut inflammation 
and sustain homeostasis[140]. Unbalanced inflammatory responses can also alter the 
gut microbiota as shown in mouse models of colitis that mimic human IBD, in which 
inflammation induces microbial dysbiosis[141,142]. Chronic inflammatory state was 
also suggested to contribute to dysbiosis in IBD patients[143]. This inflammation-
driven bacterial dysbiosis is commonly characterized by an overall decrease in 
bacterial diversity, especially in Firmicutes (Clostridium groups) and an overgrowth of 
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species belonging to Enterobacteriaceae[143,144].
Autophagy machinery and autophagy-related proteins are key contributors to the 

regulation of the inflammatory processes. Thus, one could assume that modulation of 
inflammation by autophagy could influence the composition of the gut microbiota. 
Autophagy is usually considered as an anti-inflammatory process, particularly since it 
controls activation of inflammasomes that are multimeric protein complexes involved 
in the maturation of pro-inflammatory cytokines[145]. Mice deficient for Atg16l1 in 
haematopoietic cells have been shown to be highly sensitive to chemically-induced 
colitis and produce increased levels of IL-1β and IL-18, two cytokines processed by 
inflammasomes[146]. Atg16l1-deficient macrophages that were stimulated by LPS also 
produced higher amounts of these cytokines compared to wild-type macrophages. 
Autophagy can alleviate activation of inflammasomes, at least by removing stimuli 
that induced them (e.g., intracellular infectious agents) and by degrading some inflam-
masome components (e.g., NLRP1, NLRP3, AIM2, or pro-CASP1)[147]. Interestingly, 
alterations of the gut microbiota (e.g., increased abundance of Bacteroidetes) as well as 
enhancement of the local Th1 and Th17 immune responses have been reported in mice 
with dextran sodium sulfate (DSS) colitis that express the CD risk allele ATG16L1 
T300A - a genetic context known to impair some autophagy-related functions - 
compared to DSS-treated wild-type mice[81]. Similar observations have been made in 
gnotobiotic mice expressing the CD risk allele ATG16L1 T300A and inoculated with 
human stools from active CD patients[81]. These data illustrated how a subtle 
polymorphism in an autophagy-related gene could deeply impact the equilibrium 
between immune responses and the gut microbiota.

Autophagy is also able to modulate signaling of interferons, notably by degrading 
key players of type-I interferon responses (e.g., RIG-I, STING, MDA5, IRF3, MAVS, 
and cGAS)[148]. Abnormal regulation of interferon signaling can lead to alterations of 
the gut microbiota as described in knock-out mice and viral infection models[149]. 
Interestingly, the gut microbiota has been described to stimulate intestinal autophagy 
via the induction of the type-II interferon, and this microbiota-mediated activation of 
autophagy has been shown to protect the host against infection by the protozoan 
parasite Toxoplasma gondii by limiting the deleterious production of the pro-inflam-
matory cytokine TNF-α[150]. Autophagy has also been described to limit the 
production and the secretion of various cytokines including TNF-α, IL-1β, IL-23, IL-6, 
TGF-β, and MIF[151,152]. However, the molecular mechanisms by which autophagy 
regulates their expression remain elusive. In many cases, autophagy reduces secretion 
of cytokines by simply alleviating cellular stress that triggers the inflammatory 
responses.

CONCLUSION
Given its crucial role in regulating homeostasis at both cell and tissue levels, it is not 
surprising that alterations of autophagy are connected to a large number of disorders (
e.g., IBD, cancers, and neurodegenerative diseases). To assume its various functions, 
autophagy activation is tightly regulated and the gut microbiota has recently emerged 
as a contributor in its regulatory networks in both the gut mucosa and other tissues. 
This advance in the understanding of the molecular mechanisms supporting this 
highly integrated cellular process that tip the balance between health and disease 
offers new opportunities to develop preventive or therapeutic tools. Indeed, the gut 
microbiota appears as a promising target to restore functional autophagy or to prevent 
its alterations in various disease conditions. The growing interest that was aroused 
from the discovery of such a hub position occupied by the gut microbiota in 
maintaining physical and mental health status has led to the conceptualization, 
development, and/or examination of various tools to manipulate the gut microbiota 
(probiotics, prebiotics, synbiotics, postbiotics, FMT, Crispr/Cas9, diet…). In the era of 
personalized medicine, such a toolbox could constitute a key element that could be 
integrated in the therapeutic strategies. However, further explorations of the interplay 
between the gut microbiota and autophagy are needed. Important advances have been 
made in understanding the local dialogue between the gut microbiota and autophagy 
at the level of the gut mucosa, but less is known about how and in which extent they 
communicate at the systemic level. Bi-directionality of the interactions between the gut 
microbiota and the autophagy network, plasticity and complexity of the gut 
microbiota and its multiple effects on host, as well as pleiotropy of the functions of 
autophagy are all factors that increase the level of complexity of the system. Better 
characterization of the cellular and molecular actors from both sides - the gut 
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microbiota and autophagy - that contribute and regulate the framework of their 
interactions to maintain homeostasis constitutes a prerequisite to propose new 
preventive and therapeutic tools in pathological conditions associated with dysbiosis 
and/or autophagy dysfunction.
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