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Abstract
Little was known about mammalian colon mucus (CM) until the beginning of the 
21st century. Since that time considerable progress has been made in basic research 
addressing CM structure and functions. Human CM is formed by two distinct 
layers composed of gel-forming glycosylated mucins that are permanently 
secreted by goblet cells of the colonic epithelium. The inner layer is dense and 
impenetrable for bacteria, whereas the loose outer layer provides a habitat for 
abundant commensal microbiota. Mucus barrier integrity is essential for 
preventing bacterial contact with the mucosal epithelium and maintaining 
homeostasis in the gut, but it can be impaired by a variety of factors, including 
CM-damaging switch of commensal bacteria to mucin glycan consumption due to 
dietary fiber deficiency. It is proven that impairments in CM structure and 
function can lead to colonic barrier deterioration that opens direct bacterial access 
to the epithelium. Bacteria-induced damage dysregulates epithelial proliferation 
and causes mucosal inflammatory responses that may expand to the loosened CM 
and eventually result in severe disorders, including colitis and neoplastic growth. 
Recently described formation of bacterial biofilms within the inner CM layer was 
shown to be associated with both inflammation and cancer. Although obvious 
gaps in our knowledge of human CM remain, its importance for the pathogenesis 
of major colorectal diseases, comprising inflammatory bowel disease and 
colorectal cancer, is already recognized. Continuing progress in CM exploration is 
likely to result in the development of a range of new useful clinical applications 
addressing colorectal disease diagnosis, prevention and therapy.

Key Words: Colon; Colon mucus; Mucins; Goblet cells; Gut microbiota; Inflammatory 
bowel disease; Colorectal cancer
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Core Tip: Until recently colon mucus (CM) importance was largely ignored because its structure and 
functions were obscure. It is now known that human CM comprises a dense inner layer impenetrable for 
bacteria and a loose outer layer providing a habitat for abundant commensal microbiota. Mucus barrier 
integrity is essential for maintaining homeostatic balance between colonic mucosa and gut microbiota, and 
its impairment opens direct bacterial access to the epithelium, which induces inflammation and can cause 
severe disorders, including inflammatory bowel disease and colorectal cancer. Recent advances in 
colorectal mucus exploration and emerging new clinical applications based on this knowledge are 
discussed.

Citation: Loktionov A. Colon mucus in colorectal neoplasia and beyond. World J Gastroenterol 2022; 28(32): 
4475-4492
URL: https://www.wjgnet.com/1007-9327/full/v28/i32/4475.htm
DOI: https://dx.doi.org/10.3748/wjg.v28.i32.4475

INTRODUCTION
The latest estimates of global cancer incidence and mortality provided for 2020 show that colorectal 
cancer (CRC) ranks third in terms of incidence and second in terms of mortality[1]. More than 1.9 
million new CRC cases and over 935000 deaths caused by this disease were registered worldwide by 
GLOBOCAN in 2020[1]. Being the most prevalent type of gastrointestinal (GI) neoplasia, CRC is also the 
most preventable due to its association with modifiable life-style factors[2]. Besides, colorectal tumors 
are often curable as they grow slowly and can be detected and treated early if effective screening is 
applied[2,3]. One important biological feature of CRC is its origination from the colonic epithelium, 
enormous surface of which constitutes the interface between the human body and potentially 
carcinogenic gut content. Indeed, the intestinal lumen is inhabited by billions of diverse microorganisms 
forming a unique microbial ecosystem within the host’s organism[4]. Microbial density inside the 
human colon reaches 1012 bacterial cells per gram of predominantly anaerobic colonic content that is, 
nevertheless, indispensable for host development and physiology[5]. This complex and sometimes 
aggressive ecosystem permanently interacts with the single layer of intestinal epithelial cells that are 
highly active, being involved in various absorption and secretion processes.

The immense surface of the intestinal mucosa defines the utmost importance of the continuous 
interplay between its epithelium and gut microbiota. Until the first decade of the XXI century bacteria 
were presumed to directly contact the epithelial cells[6]. Only in 2008 a research group from 
Gothenburg (Sweden) convincingly demonstrated the existence of a well-structured system of 
protective mucus that effectively separates the epithelium from gut content[7]. That seminal study was 
followed by impressively productive exploration of the gut mucus and its functional significance in 
health and disease. This review is focused on recent developments in this field, particularly highlighting 
the emerging evidence of the importance of colon mucus (CM) for the pathogenesis of inflammatory 
bowel disease (IBD) and colorectal tumors, as well as associated problems of colorectal disease 
diagnosis, prevention and treatment.

CM COMPOSITION AND STRUCTURAL CHARACTERISTICS
It is now well established that all surfaces of the columnar epithelia lining inner cavities of the human 
body are overlayed by mucus, which can be generally defined as a complex viscoelastic substance 
usually secreted by goblet or mucous cells and protecting the underlying epithelium[6,8]. Distinct 
mucus types naturally adapted for organ-specific functions are described for the GI tract, the respiratory 
system, the reproductive organs and the ocular surface[6,8,9]. Although mucus composition is organ-
specific, its constituents always comprise water (90%-95%), electrolytes, lipids and various proteins[8]. 
The high water content makes normal CM transparent, which could be one of the reasons of the late 
discovery of its structure[6,7] schematically presented in Figure 1.

The review is focused on the colon, therefore further discussion is largely devoted to the CM, 
properties of which are determined by its specific proteins, mucins, defining structural and functional 
characteristics of this substance[10]. All GI tract mucins are densely decorated with complex 
carbohydrates or glycans[11]. It is important to stress that the high degree of mucin O-glycosylation 
protects the peptide bonds, hence rendering these proteins inert to the proteolytic action of the host’s 
proteases[11,12]. There are 22 genes encoding mucins, the presence of phosphotransferase system (PTS)-
rich sequences [tandem repeat units rich in proline, threonine (Thr) and serine (Ser)] being their charac-
teristic feature[8-10]. In these proteins a large proportion of the Ser and Thr residues are O-glycosylated 
with the creation of a “bottle brush” configuration important for high water-binding capacity and gel-

https://www.wjgnet.com/1007-9327/full/v28/i32/4475.htm
https://dx.doi.org/10.3748/wjg.v28.i32.4475
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Figure 1 Schematic representation of normal human colonic mucosa and overlaying mucus layers. Small green arrows show short-chain fatty acid 
transport through colon mucus layers. Small black shapes show bacteria. CMP: Colon mucus plumes; MUC2: Mucins 2; SCFA: Short-chain fatty acids.

forming properties[8-10,13,14]. GI tract mucins can be subdivided into two classes comprising: (1) 
Transmembrane mucins that have a transmembrane domain enabling them to be anchored in the apical 
cell membrane; and (2) Gel-forming mucins that are synthesised and secreted by the goblet cells (GCs), 
thus being the key CM components[8,10,13,14].

Transmembrane mucins
The transmembrane mucins of epithelial cells are a family of large and extended glycoproteins that are 
attached to the apical cell membrane through a single-pass transmembrane domain involved in 
intracellular signaling. This family includes MUC1, MUC3, MUC4, MUC12, MUC13, MUC15, MUC16, 
MUC17, MUC 21 and MUC22 that vary in length and the presence of several specific domains[14,15]. 
All transmembrane mucins have PTS domains, which are heavily O-glycosylated, but glycosylation 
patterns along the GI tract vary, also being different in health and disease[15]. The transmembrane 
mucins MUC3, MUC12 and MUC17 cover the apical cell membrane of enterocytes and colonocytes, 
forming the attached protective glycan-rich diffusion barrier, called glycocalyx (Figure 1). It was 
reported that MUC3 is expressed throughout the whole intestine, MUC12 appears to be colon-specific, 
and MUC17 is abundant in the small intestine but is also found in the transverse colon[11,13,14]. The 
transmembrane mucins do not belong to the CM, and their precise role in health and disease remains to 
be fully elucidated. Detailed discussion on this subject can be found in a recent review by Pelaseyed and 
Hansson[15].

Gel-forming mucins
The gel-forming mucins of the GI tract are synthesised and secreted by the mucosal GCs. The most 
abundant and best characterized of the secreted mucins is MUC2, the main element of the mucus 
overlaying mucosal surfaces of the small intestine and colon. Other gel-forming mucins of the GI tract 
are MUC5AC (expressed in the stomach), MUC5B (weakly expressed in the colon) and MUC6 
(expressed in the stomach and duodenum)[13,14]. The structural organization of the GI mucus was 
initially determined in rodents, and it was shown that mouse stomach and colon have two distinct 
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layers of dense (inner) and loose (outer) mucus, whereas this pattern is absent in the small intestine, 
where only a single layer of loose mucus is present[7,11,16]. It is now known that in the human colon 
the thickness of the dense inner mucus layer is about 200-300 μm, and the loose outer layer is at least 
twice as thick[6,10,11]. Figure 1 schematically shows the structure of the human CM. It should be 
stressed that, despite almost identical protein profiles dominated by MUC2, the two CM layers are 
essentially different[16]. In the normal conditions the dense inner layer is permanently renewed by 
colonic GCs producing MUC2, which remains anchored to the GCs and attached to the epithelium[10]. 
Remarkably, the high density of the inner CM layer appears to make it devoid of bacteria[7,11,16]. At a 
certain distance from the epithelial surface (over 200 μm in humans), the inner mucus is abruptly 
replaced by the loose outer CM layer, where commensal bacteria live and thrive[16]. The two mucus 
layers form a sharp border separating them. According to the current paradigm, the dense inner layer is 
converted into the loose outer mucus by endogenous (host’s) proteases, however it is impossible to 
exclude that gut bacteria populating the outer layer also contribute to the conversion[7,10,11,16]. It is 
also worth noting that alongside the mammalian colon there are longitudinal differences in both 
microbiota composition and MUC2 O-glycan pattern distribution in the CM. It the mouse CM was 
generally characterized by the abundance of highly charged fucosylated glycans, but glycan sulfation 
level was higher in the distal colon, whereas sialic acid was more common in the proximal colon[17]. It 
was suggested that the observed differences in mucin glycan structures might be involved in the 
bacterial selection process by bacterial adhesin - mucin glycan interactions[17]. All these important basic 
findings are further discussed below in relation to interactions between gut microbiome, CM and 
colonic epithelium.

GOBLET CELLS AND THEIR ROLE IN CM FORMATION AND MAINTENANCE
Mucus production
Intestinal GCs are responsible for the continuous synthesis and secretion of gut mucus. The details of 
the complex process of MUC2 synthesis in the GCs are described in recent reviews[8,12,14], but it is 
useful to note that MUC2 monomers form C-terminal dimers and N-terminal trimers in the endoplasmic 
reticulum, and the extensive O-glycosylation of the large PTS domain of MUC2 occurs in the Golgi 
apparatus. The MUC2 polymer is then densely packed in the secretory granules of the GCs under 
conditions of the low pH and high calcium concentration[11,14,18]. It is believed that the formation of 
secretory granules occurs during the maturation of GCs coinciding with their migration from the crypt 
bottom towards the luminal surface[10]. Finally, the secretory granules undergo exocytosis by fusion 
with the apical membrane, thus releasing their content to the surface of the epithelium. Upon its release, 
which is accompanied by an increase in pH and a decrease in calcium concentration, the densely packed 
mucin expands over than 1000-fold[6,10]. The secreted MUC2 immediately unfolds into large net-like 
planar sheets that are then assembled in porous lamellar networks forming the dense inner CM layer[12,
19,20]. The stability of the inner mucus layer is further increased by the formation of isopeptide bond 
crosslinks catalyzed by transglutaminase 3 produced by GCs and neighbouring colonocytes[21].

The process of permanent mucus renewal is very intense, inner layer renewal time in the mouse colon 
being only about 1 h[22]. It was also observed that GCs of the luminal surface epithelium produce 
mucus faster than their counterparts located in the crypt epithelium[22], and it has later been shown 
that the properties of mucus generated by GCs of the colonic surface epithelium (intercrypt GCs) differ 
from those of mucus secreted by crypt-resident GCs. Intercrypt GCs have a specific transcript profile 
and produce less dense and more penetrable mucus compared to the mucus “plumes” synthesised by 
crypt-resident GCs and possessing more stringent barrier properties[23] (Figure 1). Single GC analysis 
revealed that within the colonic epithelium there are several different GC clusters, all originating from 
stem cells at the bottom of the crypt but forming two distinct “differentiation trajectories”. One of them, 
termed “canonical” GCs, is characterized by the expression of typical GC markers, whereas the other 
one expresses enterocyte-associated genes and was designated as “noncanonical”[23]. The intercrypt GC 
population appears to be predominantly composed of the most differentiated “canonical” GCs 
continuously secreting mucus at baseline. In contrast, “noncanonical” GCs, which are more abundant in 
the crypts and contribute to mucus “plume” secretion, are likely to be more responsive to external 
stimulation[23]. These results are in agreement with the identification of at least five clusters of GCs 
with distinct gene expression profiles in the human colon[24].

The discovery of colonic GC diversity inevitably leads to questions on functional differences between 
GC subpopulations and alternative regulatory mechanisms governing CM production in health and 
disease. The emerging evidence of GC participation in controlling immune responses in the gut is 
especially important in this context[25]. In 2012, McDole et al[26] reported that small intestinal GCs 
could endocytose low molecular weight soluble antigens from the gut lumen, being capable of 
delivering them through GC-associated antigen passages (GAPs) to underlying CD103+ dendritic cells of 
the intestinal Lamina propria. Further studies of this group revealed the existence of this antigen-
presenting phenomenon in the colon as well, when acetylcholine-induced GAP formation in colonic 
GCs was observed[27]. These GAPs could even translocate live commensal bacteria across the 
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epithelium following antibiotic treatment[28]. It is also believed that GAP formation may be associated 
with compound exocytosis by GCs, but not primary exocytosis[29]. Hence, the process of GAP 
formation involves both endocytosis and exocytosis, the two interlinked pathways closely related to 
autophagy[30], and it was not surprising that autophagy proteins were found to control mucin granule 
accumulation in colonic GCs[31]. Among autophagy-related factors associated with intestinal GCs, the 
NOD-like receptor family pyrin domain containing 6 (NLRP6) inflammasome has recently attracted 
considerable interest[32]. Wlodarska et al[33] first demonstrated that the NLRP6 inflammasome acts as a 
major orchestrator of mucin granule exocytosis in the colon. This theme was further developed by the 
identification of sentinel GCs localized at the colonic crypt entrance and capable of endocytosing 
microbe-derived ligands of toll-like receptors (TLRs) from the lumen. This, in turn, triggers the TLR 
pathway stimulation and leads to the activation of NLRP6 inflammasome. The response provokes 
compound exocytosis of MUC2 from the sentinel GCs, entailing their death and inducing enhanced 
mucus production from adjacent GCs through intercellular gap junction signaling[34]. Nevertheless, the 
described NLRP6 inflammasome involvement does not seem to be important for either CM formation or 
its function at baseline[35]. Taken together, these results suggest that NLRP6 modulates GC function 
and CM secretion only in response to interactions with TLR agonists, being inactive in the normal 
conditions[33]. The role of GCs in monitoring extracellular environment, interacting with the gut 
microbiota and communicating with the immune cells of the Lamina propria, is being actively studied 
and discussed[25,29,36], but further research is required for its comprehensive clarification.

Other products of goblet cells and protective properties of the CM
Although MUC2 is the main product of the GCs in the colon, mucin granules of these cells also contain 
other mucus components, such as Fc fragment of immunoglobulin (Ig) G-binding protein, calcium-
activated chloride channel regulator 1, zymogen granule protein 16 (ZG16), anterior gradient 2, and 
trefoil factor 3[11,12]. Some of these proteins possess antibacterial properties. In particular, the lectin-
like protein ZG16 prevents bacterial penetration into the inner CM layer[37]. Likewise, proteins resistin-
like molecule beta, predominantly synthesised by colon GCs[38], and cathelin-related antimicrobial 
peptide, which is produced by both epithelial cells in colonic crypts and mucosal macrophages[39], 
were demonstrated to be bactericidal. Moreover, the loose outer mucus layer in the colon is likely to be 
intermixed with distally moving loose mucus generated in the small intestine and rich in antimicrobial 
peptides (AMPs) secreted by Paneth cells located in the mucosa of the small intestine[40]. Besides, the 
process of mucus barrier formation appears to be even more complex as it has recently been shown that 
in mice mucus abundantly produced in the proximal colon and encapsulating the faecal material 
considerably differs from that secreted in the distal colon for secondary strengthening the encapsulation 
process[41]. However, given numerous species-specific differences, direct extrapolation of these results 
to humans remains impossible until the matter is comprehensively investigated[42]. In any case, the 
presence of a range of AMPs probably produced at different sites throughout the GI tract was clearly 
demonstrated in human rectal mucus samples[43]. It can be added that secretory IgA antibodies 
produced by plasma cells residing in the intestinal Lamina propria were shown to be transported to the 
mucus by transcytosis[44], and IgA in the colon is concentrated in the outer mucus layer[45]. Finally, it 
should be mentioned that the steep oxygen gradient keeping the inner CM layer relatively well 
oxygenated also prevents anaerobic luminal pathogens from reaching the epithelium[46]. The presence 
of all these factors and the permanent distal movement of the outer CM with the peristaltic waves[10,
47], contribute to the protection of the inner CM layer from bacterial invasion.

INTERACTIONS BETWEEN CM AND GUT MICROBIOTA
The human gut harbors a highly diverse community of commensal bacteria usually referred as 
microbiota, which exhibits both longitudinal and cross-sectional variation in both location and density
[48,49]. Microbiota composition in the normal human colon is dominated by Bacteroidetes and 
Firmicutes phyla, with the presence of members of a few other phyla and strong variability between 
individuals[48,50]. Notably, dietary fiber digestion is one of the most important functions of the gut 
microbiota as these plant polysaccharides are largely indigestible by human glycoside hydrolases[51]. 
The anaerobic fermentation of fiber-derived sugars by gut lumen bacteria produces short-chain fatty 
acids (SCFAs), including butyrate, acetate and propionate. These SCFAs obviously pass through the 
intestinal mucus (Figure 1) before being taken up and utilized by the epithelium (butyrate provides up 
to 70% of colonocyte energy supply). SCFAs are indispensable for both intestinal homeostasis and a 
variety of effects on tissues and organs beyond the gut (see review by van der Hee and Wells[52]). 
Remarkably, abundantly glycosylated mucins of the CM can also be targeted by gut bacteria as nutrient 
sources[50]. Hence, mucin-decorating glycans are thought to constitute a critical resource utilized by 
commensals to enable them to thrive when diet-derived glycans are limited[53]. This suggestion was 
experimentally proven by the observations of gut microbiota switch to consuming host-secreted mucus 
glycoproteins during chronic or intermittent dietary fiber deficiency in mice[54]. The diet-induced 
microbiota behavior change was, however, unfavorable for the host, leading to CM barrier degradation 
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and lethal colitis development[54].
The described observations demonstrate that both the loose mucus of the small intestine and the loose 

outer CM layer serve as both energy sources and habitats for human gut microbiota[50]. In the colon of 
experimental animals (information regarding human microbiota is scarce) the outer mucus layer 
harbors a mixed population of commensals with the typical presence of Akkermansia muciniphila and 
bacteria of Bacteroides genus (e.g., Bacteroides thetaiotaomicron, Bacteroides fragilis, Bacteroides vulgatus)[48-
50]. Outer CM layer also contains Rumminococcus gnavus, Rumminococcus torques, and Desulfovibrio 
desulfuricans, as well as probiotic Lactobacillus reuteri, Lactobacillus rhamnosus, Lactobacillus johnsonii, 
Bifidobacterium breve and Bifidobacterium longum[55]. In addition, bacteria of relatively aerotolerant phyla 
(Proteobacteria, Actinobacteria) were reported to be occasionally present even closer to the mucosal 
surface[48,49].

It has been hypothesised that in health CM not only constitutes a physical barrier between bacteria 
and the epithelium but provides a bioactive environment selectively favorable for beneficial 
commensals and hostile for intruding pathogens[56]. As mentioned above, mucin glycoproteins provide 
nutrition for mucus-dwelling bacteria that are able to degrade them, like Akkermansia muciniphila, 
Bacteroides fragilis and Rumminococcus gnavus[50,53,56]. However, mucin glycans may not be the 
preferred carbon sources for some host commensals, including Bacteroides thetaiotaomicron[57]. 
Interestingly, this human gut symbiont was recently shown to possess a unique ability to initiate 
degradation of the complex sulphated O-glycans of the distal colon[58]. The activities of 12 sulfatases 
produced by this species were collectively sufficient for degrading all known sulphate linkages in mucin 
O-glycans, but only a single key sulfatase was disproportionally important for the utilization of 
sulphated O-glycans[58]. This example illustrates the challenging complexity of mucin degradation 
pathways that may become relevant for the development of future therapeutic applications.

CM is also responsible for the spatial organization of mucus-dwelling bacteria. Mucin-based 
networks with varying pore size and adhesiveness provide three-dimensional scaffolds for bacterial 
settlement, thus governing the process of bacterial colonisation[56]. Adhesiveness modulation by the 
host can also be employed as a mechanism altering microbiota composition[59]. Heterogenous glycan 
patterns of mucins affect bacterial motility and aggregation and prevent certain pathogens from 
aggregating and forming biofilms[56]. In addition, CM is believed to control the traffic of small 
signaling molecules, thereby regulating microbial behavior, and in some circumstances mucin glycans 
probably exert signaling functions themselves[56].

The diversity of mucin-decorating glycans constitutes a highly variable element of human CM and 
influences both gut microbiota behavior and host susceptibility to infectious and metabolic diseases[53,
60]. Its importance for microbial community composition can be illustrated by the dependence of the 
latter on the presence of a functional copy of the galactoside 2-alpha-L-fucosyltransferase 2 (FUT2) gene 
encoding FUT2 that facilitates the attachment of the L-fucose monosaccharide to O-glycans, producing α
(1,2)-fucosylated glycans[61]. The FUT2 is one of the genes responsible for the expression of ABO histo-
blood group antigen precursors in gut mucus[53,60-62]. Individuals with at least one functional FUT2 
allele are termed “secretors”, although the gene does not actually regulate the secretion of proteins 
bearing α(1,2)-fucosylated glycans[60]. The homozygosity for the loss-of-function FUT2 mutations 
(found in about 20% of Caucasians) defines “non-secretors”[53,60,62]. Interestingly, considerable 
differences in CM bacterial profiles were repeatedly detected between “secretors” and “non-secretors”. 
Rausch et al[62] found that in healthy “secretors” the probiotic Lactobacillus genus was more prominent, 
whereas a clear association of the “non-secretor” status with the genus Prevotella was observed. Other 
FUT2 genotype-associated phylotype changes, including the decrease of Roseburia and Faecalibacterium 
in endoscopic lavage samples from “non-secretors” or probiotic Bifidobacterium decrease in faeces from 
“non-secretors” were also reported[63,64]. In contrast, a few relatively large studies failed to detect any 
associations between FUT2 genotype and gut microbiome shifts[65-67]. However, an even larger 
genome-wide association study (GWAS) comprising 8956 German individuals from five independent 
cohorts confirmed the previously identified associations of ABO histo-blood groups and FUT2 secretor 
status with Bacteroides and Faecalibacterium species[68]. These discrepancies are not surprising since 
GWAS studies assessing gut microbiome changes are usually based upon using homogenised stool 
samples. The use of this crude approach means that it is impossible to find out which bacteria are 
where, how their gene expression and functions are related to the local environment and how their 
spatial organization changes in disease[48]. It can be argued that samples obtained by mucosal biopsy, 
colonic lavage or CM collection are much more reliable and informative for analysing the microbiota 
populating CM. However, it is obvious that O-glycans associated with MUC2 strongly influence the 
composition of the commensal microbial population confined to the outer mucus layer in the colon.

It was already stated before that there are longitudinal differences in both microbiota composition 
and MUC2 O-glycan pattern distribution in the mammalian gut[17]. The distribution of O-glycosyl-
transferases produced by the epithelial cells along the colon correlated well with the pattern of O-
glycans[69]. These regional-specific characteristics of the gut glycan pattern are certainly acquired after 
birth, as neither sialic acid nor fucose gradients exist along the foetal intestine[70]. The differences 
developing in the postnatal life are thought to be related to the establishment of luminal microbiota 
acting as a potent environmental factor that provokes dramatic gene expression shifts in the host 
epithelium[70]. This view is supported by mouse experiments demonstrating that commensal 
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colonisation promotes structural and physiological adaptations of mucus barrier properties, thus 
contributing to intestinal homeostasis[71,72]. The complex interplay between gut microbiota and colonic 
mucosa continues into the maturity of the host and becomes even more important during ageing. In 
mice ageing causes a progressive decrease of CM thickness that is accompanied by considerable changes 
in faecal microbiota composition and more frequent contacts of luminal bacteria with the epithelium
[73]. A similar reduction of CM layer thickness, primarily attributed to the reduced number of GCs, was 
observed in ageing rats[74]. Interestingly, a recent report shows that indoles produced by commensal 
bacteria can act via the aryl hydrocarbon receptor and interleukin 10 to restore the depleted population 
of colonic GCs in aged animals, hence supporting homeostasis[75]. Although age-related changes in the 
human CM system are poorly studied, it is notable that the intestinal microbiota composition in elderly 
subjects substantially differed from that in young adults, with a greater proportion of Bacteroides species 
and distinct abundance of Clostridium groups in the elderly[76].

To conclude this section of the review it is important to clarify that the gut mucus barrier, albeit 
essential, is just an element of the complex mechanism responsible for protecting the host’s organism 
from unwanted risks. The immune system is the key driving force of this mechanism playing a central 
role in shaping the composition of the microbiota and defining its spatial distribution in close proximity 
to host tissues. Nevertheless, resident microorganisms interact with the immune system and influence 
the development of immune responses. Disruption of this complex and dynamic cross-talk can have 
deleterious consequences for host health contributing to the pathogenesis of many diseases including 
IBD and cancer[77].

CONSEQUENCES OF GUT MUCUS DETERIORATION EXPOSING COLONIC EPITHELIUM
CM and underlying epithelium: Host cells are released into mucus in the normal physiological 
conditions
It is well established that the intestinal epithelium is renewed every 4-5 d[78], and, before the discovery 
of CM structure and recognition of its importance[6], it was presumed that terminally differentiated 
enterocytes or colonocytes undergo spontaneous apoptosis and are finally “shed into the gut lumen”
[78]. This simplistic notion needed to be revised, given the complexity of the two-layered CM structure 
and high density of the inner mucus layer[6,10,11]. Our group previously demonstrated that in healthy 
individuals exfoliated colonocytes are rarely found in CM samples collected either from the surface of 
the rectal mucosa or non-invasively[79,80]. Similarly, only small numbers of normal exfoliated 
colonocytes in mucus-containing surface washes of stool samples obtained from healthy volunteers 
were observed in earlier studies[81-83]. In view of the proven existence of the two-layered CM structure 
(Figure 1), an immediate question emerges: How exfoliated colonocytes and occasional neutrophils 
released from the epithelial surface manage to penetrate the dense inner mucus layer impenetrable for 
much smaller bacteria? No satisfactory answer has hitherto been found, but it was previously assumed 
that shed cells could be “trapped in the mucus” and degraded there[7].

Remarkably, well-preserved colonocytes were identified in all quoted studies that analysed CM[47,
79-83]. One could argue that intrarectal mucus collection might mechanically detach epithelial cells from 
the mucosa[79], however this explanation is not valid when CM is obtained non-invasively or from the 
surface of freshly excreted stool[80-83]. Although it is possible to hypothesise that the transport of the 
released cells might be assisted by the rapid CM layer renewal[22], or that focal partial cleavage of 
MUC2 may occur at sites of colonocyte exfoliation or neutrophil migration[16], mechanisms of this 
phenomenon remain obscure. In contrast, abundant presence of both exfoliated colonocytes and 
migrating inflammatory cells in CM samples obtained from patients with IBD and CRC is easy to 
explain by the structural damage of the CM barrier observed during these conditions and considered 
below. Despite the existing uncertainties on the mechanisms involved in cell accumulation in the 
mucus, it is indisputable that this easily accessible substance presents a highly informative material for 
multiple diagnostic applications.

CM barrier damage and its consequences in gut inflammation predisposing to CRC
CM presents the first defensive barrier against the luminal microbiota, its dense inner layer making 
bacterial contact with the colonic epithelium hardly possible in the healthy gut[7]. Although loose 
mucus of the small intestine contains commensal bacteria, it is rich in antimicrobial substances, and its 
permanent production by GCs in the normal conditions creates a continuous mucus flow preventing 
bacteria from reaching the epithelium[11,84]. Therefore, only severe CM impairment can lead to 
exposing the epithelial surface to direct contacts with the microbiota. The unique importance of MUC2-
rich mucus for colonic epithelium protection was graphically demonstrated by the development of 
spontaneous colitis in MUC2-knockout mice unable to produce MUC2[85]. Likewise, microbiota-
induced mucus layer defects were observed in genetically obese mice[86]. Experimentally modelled 
dietary fiber deficiency also led to CM barrier degradation, bacterial invasion of the mucosa and lethal 
colitis development[54]. The composition of intestinal microbiota is now recognised as a key factor for 
defining properties of the inner mucus layer[71,72], and it was clearly demonstrated that dysbiosis in 
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the mucus preceded experimental colitis development[87]. Results of all these experimental studies 
clearly demonstrate that the loss of CM barrier integrity combined with dysbiosis usually results in 
opportunistic invasion of the colonic mucosa by resident bacteria, inevitably leading to inflammation
[77].

In patients with IBD, comprising ulcerative colitis (UC) and Crohn’s disease (CD), CM deterioration 
and the abundance of mucolytic bacteria were observed[88,89]. Aforementioned mucus microbiota 
shifts related to FUT2 “non-secretor” genotype entailed an increased risk of developing CD[62]. The gut 
bacteria in IBD patients are often confined to mucosa-adhering biofilms that can be defined as matrix-
enclosed multispecies bacterial communities forming higher-order structures[90,91]. Mucosal biofilms 
were frequently found in IBD patients and patients with irritable bowel syndrome (IBS), and, 
sometimes, in clinically healthy individuals[88,91,92]. These findings indicate that bacterial biofilm 
formation does not immediately lead to inflammation development, being, at least to some extent, 
compatible with the preservation of homeostasis control by the immune system. Probable involvement 
of biofilms in IBS pathogenesis may open new ways for devising diagnostic approaches and therapeutic 
strategies addressing this highly prevalent condition[92].

Patterns of alterations in the colonic mucosa, its mucus layers and gut microbiota composition tend to 
differ between CD and UC[84]. For example, it was shown that a global expression of mucin genes was 
reduced in CD patients[93], whereas it was elevated in patients with UC[94]. Conversely, UC was also 
found to be associated with decreased numbers of mucosal GCs[95,96], as well as signs of CM layer 
reduced thickness and disruption[95,97,98]. In addition, the secretory response of colonic GCs to 
microbial challenge in active UC seems to be impaired, with the number of sentinel GCs significantly 
reduced and protective mucin sulphation decreased[99,100]. Intestinal mucosa dysfunction in IBD was 
further confirmed by signs of transcriptomic dysregulation of some key genes involved in colonic 
barrier maintenance, especially those encoding transmembrane mucins MUC1, MUC4 and MUC22
[101]. Consequently, the inner mucus layer of UC patients could be easily penetrated by luminal 
bacteria[98]. The observed dysregulation of transmembrane mucin synthesis might also indicate 
possible alterations of colonocyte glycocalyx[101].

The extreme complexity of IBD pathogenesis is generally admitted[102], and this fascinating subject is 
beyond the scope of this review. Nevertheless, a few more points related to IBD need to be addressed 
here, especially given the clearly elevated probability of CRC development in IBD patients[103]. In 
particular, modern Western diet characterized by limited dietary fiber intake is now regarded as a major 
risk factor for both IBD and CRC[104-106]. Consequently, diet correction may constitute an effective 
approach to disease prevention. Experimental studies demonstrate that fiber addition to the diet and 
administration of probiotic microbiota, especially Bifidobacterium species, can restore CM layer 
functionality and provide anti-inflammatory effects[107,108]. Likewise, tea polyphenols and citrus 
flavonoids were shown to protect CM integrity[109,110]. These findings look promising, however 
further research is required for designing dietary interventions targeting CM and suitable for treating 
IBD patients and preventing CRC development in this risk group.

Another consequence of CM barrier deterioration in IBD patients is related to the phenomenon of 
massive inflammatory cell migration from the Lamina propria of colonic mucosa to the impaired CM 
layer. Neutrophil and eosinophil biomarkers are abundantly present in stool samples from IBD patients, 
and stool calprotectin quantification is widely used for diagnosing UC and CD[111,112]. However, the 
scale of inflammatory cell migration towards the gut lumen became evident only recently. We were able 
to demonstrate that numerous immune cells can be found in CM samples obtained from IBD patients 
either intrarectally[79,113], or using non-invasive collection from the anal area following defaecation[80,
114,115]. Cytological analysis of the collected CM revealed that neutrophils were the most abundant cell 
type, but macrophages, eosinophils (especially in UC patients), plasma cells and lymphocytes were 
frequently detected as well[114]. The collected cells were very well preserved and looked viable, as 
phagocytosis and erythrophagocytosis by neutrophils and macrophages could be seen[114]. It was also 
hypothesised that neutrophils and eosinophils migrating to the loosened CM of IBD patients can easily 
undergo extracellular DNA trap formation (ET-osis), cell death producing the formation of antibacterial 
“extracellular traps” composed of released DNA and globular proteins [also called ET-osis exerted by 
neutrophils (NET-osis)][116]. This hypothesis, also assuming that CM in IBD serves as a supporting 
milieu for immune responses expanding from the mucosa, is discussed in detail elsewhere[116]. Taken 
together, recent advances in CM research suggest that even partial loss of this protective barrier 
compromises its function at different levels, including impaired control of the relationship between gut 
microbiota and mucus, dysregulation of CM layer maintenance by the epithelium and immune cells of 
the Lamina propria, insufficient production of AMPs and defects in the process of autophagy[117,118]. 
Initial signs of intestinal barrier impairment may precede the onset of clinical IBD manifestations by 
years[119], this interval probably constituting a good window of opportunity for applying preventive 
interventions and early therapeutic measures.
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CM CHANGES ASSOCIATED WITH COLORECTAL NEOPLASIA
Although inflammation-related changes involving CM can contribute to colorectal tumor development
[120], sporadic CRC grows slowly, early stages of this neoplasia being confined exclusively to colorectal 
mucosa[3]. However, it is evident that, like in active IBD, CM from CRC patients is very rich in cells 
shed from tumor surface (Figure 2). It is well established that numerous CRC markers can be detected in 
stool samples obtained from CRC patients[121,122], and the presence of cancer cells on the stool surface 
is well documented[79-81,123-125]. CM overlaying tumor surface, which was initially defined as 
“mucocellular layer”[126], serves as a medium accepting and preserving all cells and biomolecules 
released by the neoplastic tissue. This diagnostically informative material could be obtained from CRC 
patients by intrarectal collection with an inflatable device designed for this purpose[79]. Human DNA 
measurements in the mucus collected from tumor surface and at equal distances proximally and distally 
from tumor margins (resected colon segments were examined) revealed significantly higher DNA levels 
in the samples collected distally, hence confirming distal movement of the CM[79]. The latter finding of 
our group resulted in devising a completely non-invasive technique for CM sampling by swabbing the 
anal area immediately following defaecation[80]. The new method has recently been successfully 
applied for non-invasive CRC detection[127,128]. These findings confirm that CM constitutes a uniquely 
informative biological material possessing an enormous diagnostic potential owing to abundant 
presence of various biomarkers, comprising a wide range of proteins and nucleic acids[116,127,128]. 
While the described diagnostic importance of CM for CRC detection becomes obvious, this biological 
substance also emerges among major pathogenetic factors contributing to colorectal carcinogenesis. The 
key mechanisms of CM involvement in this process are probably related to the loss of homeostatic 
balance between CM layers and gut microbiota, which exposes the mucosa to both commensal and 
pathogenic bacteria and triggers cascades of unfavorable host responses that may eventually lead to 
neoplastic growth[120,129-131]. CM depletion effect was graphically demonstrated experimentally, 
when mice genetically deficient in the MUC2 were shown to develop colorectal tumors[132,133]. 
Furthermore, colon tumor development was observed in mice with colon-specific loss of Atonal homolog 
1 gene, which determines normal differentiation of secretory cells, comprising GCs[134]. GC depletion 
during 1,2-dimethylhydrazine-induced colon carcinogenesis in rats was reported as well[135]. In human 
colorectal tumors, MUC2 expression was decreased, and the degree of expression inhibition correlated 
with the progression from adenomas to advanced carcinomas[136]. In terms of prognostic significance, 
reduced MUC2 expression in CRC patients corresponded to poorer prognosis[137,138]. However, 
different types of CRC display different mucin expression patterns, as several mucin-encoding genes are 
overexpressed in mucinous carcinomas[139-141]. Mucus synthesis in the colonic GCs involves MUC2 O-
glycosylation, and this process was found to be impaired in genetically modified mice predisposed to 
colitis-associated carcinogenesis[142,143]. Likewise, aberrant O-glycosylation was observed in 
malignant tumors removed from CRC patients[144]. All these findings indicate that CRC-associated 
changes in colon mucin gene expression and protein synthesis may occur either because of intrinsic 
genetic and immune disturbances or due to interactions of the preneoplastic or neoplastic epithelium 
with the microbial populations of the gut, impact of which needs to be considered as well.

It is now recognized that colorectal tumor development strongly depends on compositional and 
ecological changes of the microbiota[145]. Recent metagenomic studies revealed differences between gut 
bacterial communities in CRC patients and healthy individuals, the latter category being characterized 
by a lower abundance of potentially protective taxa (e.g., Roseburia) combined with an increased 
presence of pro-carcinogenic taxa, such as Bacteroides, Escherichia, Fusobacterium, and Porphyromonas[145-
147]. However, the existing body of evidence on CRC-related gut microbiome alterations was generated 
mostly by molecular analyses of faecal material that may not reliably reflect changes in CM-dwelling 
bacteria. For this reason, this theme will not be further discussed here, and a comprehensive review by 
Wong and Yu[145] can be recommended to interested readers.

In contrast, recent reports suggesting that bacterial biofilms formed on the surface of the colonic 
epithelium may be implicated in carcinogenesis deserve close attention[90,148]. This association is 
especially intriguing since bacterial biofilms can be easily identified endoscopically[92], thus potentially 
presenting a very good early indicator of neoplastic transformation risk. Biofilms in the colon of CRC 
patients are typically confined to the CM overlaying tumor surface or margins and seem to replace the 
inner mucus layer[148-150], which is apparently damaged during tumor growth. There is no clarity 
regarding mechanisms of biofilm carcinogenicity, but it was suggested that certain individuals are 
predisposed to form these bacterial structures, which may be capable of driving neoplastic 
transformation[149,151]. Proximal CRC and, especially, mucinous carcinomas were strongly associated 
with the presence of bacterial biofilms, whereas they were observed relatively rarely in distal CRC cases
[149,150,152]. This pattern suggests that biofilms tend to specifically contribute to the serrated pathway 
of colorectal carcinogenesis[153].

The analysis of biofilm bacterial composition in CRC patients has revealed that human gut 
commensal Bacteroides fragilis capable of generating enterotoxigenic strains[154], as well as oral 
pathogens Fusobacterium nucleatum, Parvimonas micra and Peptostreptococcus stomatis were the main 
species detected in these biofilms[150]. Further work of the same group demonstrated the presence of 
patchy bacterial biofilms dominated by enterotoxigenic Bacteroides fragilis and colibactin-expressing 
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Figure 2 Scheme of colorectal mucus-associated events involved in colorectal cancer development. BBF: Bacterial biofilm; Exf: Exfoliated 
malignant cells of colorectal cancer; GC: Goblet cells; Neu: Neutrophils; Eos: Eosinophils; Mp: Macrophages; Er: Erythrocytes; DC: Dendritic cells; PC: Plasma cells; 
Ly: Lymphocytes; Fb: Fibroblasts; ET-osis: Extracellular DNA trap formation; NET-osis: ET-osis exerted by neutrophils; EET-osis: ET-osis exerted by eosinophils. 
Small black shapes show bacteria; CRC: Colorectal cancer.

Escherichia coli on the surface of the colonic mucosa of patients with familial adenomatous polyposis
[155]. In these patients the biofilms were not confined to polyp surface, and no association with 
proximal tumor location could be observed[155]. Interestingly, co-colonisation of tumor-prone mice 
with the bacterial strains of these biofilms caused DNA damage in the colonic epithelium of the animals 
and accelerated carcinogenesis[155]. These findings were later confirmed in three murine models, where 
bacterial biofilm homogenates obtained from either CRC patients or healthy individuals manifestly 
promoted colon carcinogenesis[156]. Notably, Fusobacterium nucleatum did not seem to be required for 
carcinogenesis in these experiments, which might indicate that it is possibly involved at later stages of 
CRC development[156]. Overall, these results strongly suggest that polymicrobial biofilms may now be 
regarded as a colon carcinogen.

The reviewed advances in defining CM role in CRC development highlight a previously obscure area 
of pathogenetically important interplay between multiple elements. These elements include CM, gut 
microbiota (both mucus-dwelling and luminal), colonic epithelial cells (normal, malignant and 
especially mucus-producing GCs) and immune cells (both belonging to the tumor microenvironment or 
adjacent Lamina propria and actively migrating to CM through the epithelium). Figure 2 schematically 
depicts some of these interactions. Progressive CM deterioration results in its loosening that initially 
exposes colonic epithelium to occasional contacts with gut commensals and can later lead to possible 
pathogen invasion to the mucosa. CM deficiency probably triggers: (1) Epithelial homeostasis dysregu-
lation accompanied by the loss of control over cell renewal process; and (2) Cascades of inflammatory 
responses exerted by both immune cells of the tumor microenvironment and adjacent Lamina propria 
and free immune cells migrating through colonic epithelium to the loosened CM. Although these events 
may potentially be reversible, one needs to be aware of less favorable scenarios, such as the 
development of IBS, IBD and colorectal tumors. The reported formation of bacterial biofilms in healthy 
individuals and patients with IBD, polyps and CRC illustrates this range of scenarios[92,149,155]. 
However, biofilm formation may depend on the genetic background of the host[153], and appears to be 
just one of at least a few possible pathways eventually leading to CRC.

Of course, there is no chance to properly discuss here multiple molecular pathways of CRC 
development[120], or complex impacts of immune responses affecting this process[157]. Nevertheless, a 
few more points directly related to the CM deserve to be addressed at the end. One of them concerns the 
process of antibacterial extracellular DNA trap formation or ET-osis by effector immune cells (termed 
NET-osis when exerted by neutrophils) that massively migrate to the loosened CM in both IBD and 
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CRC[116]. It is apparent that this process basically constitutes an element of a protective inflammatory 
response aiming to eliminate bacteria contacting colonic epithelium, but arriving neutrophils and 
eosinophils inevitably undergo degranulation and ET-osis, thus releasing cytotoxic factors (Figure 2) 
that damage host cells and probably induce poorly regulated compensatory proliferation of normal or 
malignant epithelial cells, which can stimulate neoplastic growth. The role of the ET-osis in CRC is 
being discussed but remains largely obscure and needs further exploration[116,158]. The other 
important point is related to possible ways of preserving CM integrity and avoiding its deterioration in 
view of CRC prevention. This goal can be achieved by establishing proper communication between the 
host and gut microbiota via balanced dietary patterns preventing dysbiosis development[131]. Indeed, 
diet is a major determinant of CRC risk, with red meat consumption increasing the risk and fiber uptake 
being protective[159]. Interestingly, both effects can be mediated by the CM. SCFAs (especially butyrate) 
produced by luminal microbiota during dietary fiber fermentation stimulates MUC2 expression in the 
colon and promotes proliferation of normal colonocytes[160], whereas cancer cell proliferation tends to 
be inhibited by butyrate because of the low differentiation of these cells[161]. There is no doubt that 
fiber-rich diets and SCFAs are beneficial for CM preservation and CRC prevention, but additional 
investigations are indispensable for designing effective dietary intervention schemes. On the other 
hand, it was shown that CM damage inflicted by sulphide-producing and mucin-degrading bacteria can 
faciliate epithelial hyperproliferation in the colon induced by heme-rich diet modelling high red meat 
consumption[162]. In that experimental model antibiotic treatment allowed normalizing gut microbiota 
composition, reinforcing the mucus barrier and eliminating the abnormal proliferation[162]. These 
examples demonstrate that both dietary corrections and drug therapy can be considered for CM 
protection and restoration with the purpose of preventing CRC.

The on-going progress in exploring the role of the CM in the pathogenesis of major colorectal 
diseases, especially CRC, is impressive, however many important points remain obscure. Therefore, 
thoroughly designed further studies are needed for elucidating fine mechanisms governing structural 
and functional CM changes in disease. It can be expected that numerous innovative practical applic-
ations addressing colorectal disease diagnosis, prevention and treatment will be developed once this 
challenging goal is achieved.

CONCLUSION
The presented analysis of the existing information regarding mammalian and human CM shows that 
this area was actively explored only since the beginning of the 21st century. Considerable progress has 
been made in basic research of CM structure and function, especially in experimental models. It is now 
evident that in the normal mammalian colon the CM is formed by two distinct layers composed of gel-
forming glycosylated mucins that are permanently secreted by goblet cells of the colonic epithelium. 
The inner layer is dense and impenetrable for bacteria, whereas the loose outer layer provides a habitat 
for abundant commensal microbiota. Mucus barrier integrity is essential for preventing bacterial contact 
with the mucosal epithelium and maintaining homeostasis within the GI tract, but it can be impaired by 
a variety of factors, including CM-damaging switch of commensal bacteria to mucin glycan 
consumption due to dietary fiber deficiency. It is already proven that impairments in CM structure and 
function can lead to colonic barrier deterioration that opens direct bacterial access to the epithelium. 
Bacteria-induced damage dysregulates epithelial proliferation and causes inflammatory responses that 
may expand to the loosened CM and eventually result in severe disorders, including colitis and 
colorectal neoplasia. Recently described formation of bacterial biofilms within the inner CM layer was 
shown to be associated with both inflammation and cancer. Although obvious gaps in our knowledge of 
human CM remain, its importance for the pathogenesis of major colorectal diseases, comprising IBD 
and CRC, is generally recognized. Continuing progress in the field of CM exploration promises consid-
erable future achievements and is likely to result in the development of a range of new useful clinical 
applications addressing colorectal disease diagnosis, prevention and therapy.
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