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Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as the most common cause 
of chronic liver disorder worldwide. It represents a spectrum that includes a 
continuum of different clinical entities ranging from simple steatosis to non-
alcoholic steatohepatitis, which can evolve to cirrhosis and in some cases to 
hepatocellular carcinoma, ultimately leading to liver failure. The pathogenesis of 
NAFLD and the mechanisms underlying its progression to more pathological 
stages are not completely understood. Besides genetic factors, evidence indicates 
that epigenetic mechanisms occurring in response to environmental stimuli also 
contribute to the disease risk. Noncoding RNAs (ncRNAs), including microRNAs, 
long noncoding RNAs, and circular RNAs, are one of the epigenetic factors that 
play key regulatory roles in the development of NAFLD. As the field of ncRNAs 
is rapidly evolving, the present review aims to explore the current state of 
knowledge on the roles of these RNA species in the pathogenesis of NAFLD, 
highlight relevant mechanisms by which some ncRNAs can modulate regulatory 
networks implicated in NAFLD, and discuss key challenges and future directions 
facing current research in the hopes of developing ncRNAs as next-generation 
non-invasive diagnostics and therapies in NAFLD and subsequent progression to 
hepatocellular carcinoma.

Key Words: MicroRNAs; Nonalcoholic fatty liver disease; Steatohepatitis; Noncoding 
RNAs; Circular RNAs; Biomarker
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Core Tip: Nonalcoholic fatty liver disease (NAFLD) covers a spectrum of hepatic pathologies, ranging 
from simple steatosis to nonalcoholic steatohepatitis, all of which can evolve to cirrhosis and in some 
cases to hepatocellular carcinoma. There are now indications that noncoding RNAs (ncRNAs), a 
component of epigenetic mechanisms, contribute to the pathogenesis of NAFLD and may serve as 
potential prognostic and diagnostic biomarkers. However, little is known about the role of these RNA 
species in NAFLD and its progressive forms. This paper discusses the current state of research on the role 
of most clinically relevant ncRNAs in the pathogenesis of NAFLD.

Citation: Zaiou M. Noncoding RNAs as additional mediators of epigenetic regulation in nonalcoholic fatty liver 
disease. World J Gastroenterol 2022; 28(35): 5111-5128
URL: https://www.wjgnet.com/1007-9327/full/v28/i35/5111.htm
DOI: https://dx.doi.org/10.3748/wjg.v28.i35.5111

INTRODUCTION
Nonalcoholic fatty liver disease (NAFLD) has emerged as a liver disorder with an increasing prevalence 
but unclear etiology. The disease covers a wide spectrum of histologic lesions, ranging from simple 
steatosis to its subtype, nonalcoholic steatohepatitis (NASH), which is characterized by inflammation 
and hepatocyte injury. Over several years, NASH can progress to more serious disease stages, such as 
cirrhosis and hepatocellular carcinoma (HCC)[1]. Based on the close association between hepatic 
steatosis and metabolic dysregulation, international consensus guidelines recommended the renaming 
of NAFLD to metabolic-associated fatty liver disease[2,3]. The prevalence of NAFLD depends on race 
and ethnicity. In the United Sates, the estimated prevalence of NAFLD was reported to be about 32%[4]. 
However, estimates are likely higher in other populations that are currently witnessing the rapid rise in 
the incidence of type 2 diabetes mellitus (T2DM), obesity, metabolic and insulin resistance syndrome, 
and dyslipidemia rates[5,6].

NAFLD is sometimes called the “silent killer”, because most patients with the condition are typically 
asymptomatic in the early stages until the liver is severely damaged. The unsuspected disease condition 
is often found incidentally when liver enzyme levels, such as alanine aminotransferase, are elevated in 
routine laboratory work-up or hepatic steatosis appears on imaging for reasons other than liver sym-
ptoms or signs. Currently, liver biopsy remains the gold standard method for NAFLD diagnosis and 
degree of liver injury evaluation[7]. Computed tomography scans and ultrasound can also be performed 
as part of the standard evaluation of NAFLD. However, these methods have a number of limitations, 
including invasiveness, low sensitivity, sampling variability, and inaccurate diagnosis[8,9]. The 
American Association for the Study of Liver Diseases has identified uncertainties about these diagnostic 
tools, which represent a barrier to the effective treatment of patients with NAFLD[10]. Thus, there is 
increased recognition of the need to develop non-invasive biomarkers that have the ability to identify 
simple steatosis from NASH patients who are at high risk of progression to cirrhosis and HCC 
conditions.

Many concepts important to understanding the pathogenesis of NAFLD have arisen. The traditional 
view of this complex disease suggests that an interplay between genetic and triggering and/or 
modifying environmental events is the fundamental basis for disease initiation and development[11,
12]. Over the last several years, a growing body of functional evidence has pointed towards a central 
role of epigenetic factors in fatty liver diseases, including NAFLD. Epigenetics was redefined multiple 
times and Cavalli and Heard described it as “the study of molecules and mechanisms that can 
perpetuate alternative gene activity states in the context of the same DNA sequence”[13]. Epigenetic 
machinery could be another layer that orchestrates gene expression and provides a molecular link 
between genetic and environment effects on NAFLD. Thus, the integration of epigenetic information 
may represent another opportunity to tackle the complexity of NAFLD and identify new predictive 
biomarkers and potential therapeutic targets of this disease. Indeed, recent advancements in the 
emerging field of epigenetics have revealed that epigenetic mechanisms and associated systems may 
regulate many aspects of the pathogenesis of NAFLD[3,14]. Unlike genetic alterations, epigenetic 
alterations can be mostly heritable and reversible. Thus, further discoveries in the field could enable the 
development of epigenetic tools that can be used not only to complement current strategies for early 
disease diagnosis and optimal individualized patient risk stratification but also to improve therapy.

To date, the most studied epigenetic mechanisms include DNA methylation, histone modifications, 
and noncoding RNA (ncRNA)-based regulation. While certain epigenetic mechanisms underlying DNA 
and chromatin modifications in NAFLD were addressed elsewhere[15,16], only relevant studies 
shedding light on the roles played by ncRNAs’ machinery will be reviewed next.

https://www.wjgnet.com/1007-9327/full/v28/i35/5111.htm
https://dx.doi.org/10.3748/wjg.v28.i35.5111
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EMERGING ROLE OF NCRNAS IN THE PATHOGENESIS OF NAFLD
For decades, only the portion of the genome that is transcribed into mRNA (approximately 2%) was the 
central focus of basic science and medical research. The remaining 98% was simply believed non-
functional and referred to as “junk DNA” or “dark matter”[17]. Due to advances in high-throughput 
sequencing technologies enabling more in-depth genomic and transcriptomic analyses, the 
Encyclopedia of DNA Elements project revealed that up to 80% of the human genome is transcribed, 
generating a multitude of functional transcripts commonly referred to as ncRNAs[18,19]. The biological 
significance of these nonprotein coding transcripts is now becoming evident, with many ncRNAs found 
to have epigenetic activity and substantial roles in regulating diverse cellular processes. Indeed, they 
can affect gene expression by interacting with the transcriptional apparatus, and regulating chromatin 
structure and RNA processing mechanisms[20]. There is also proof that interaction and crosstalk 
between different species of ncRNA groups can create complicated and intertwined networks that can 
affect gene expression[21]. Regulatory ncRNAs mainly consist of microRNAs (miRNAs) (< 30 
nucleotides), long noncoding RNAs (lncRNAs) (≥ 200 nucleotides)[19], and circular RNAs (circRNAs). 
Due to their stability and easy detection in biological fluids, ncRNAs are continuously investigated as 
promising diagnostic and therapeutic tools in metabolic diseases. A growing body of literature indicates 
that ncRNAs are abundantly expressed in the liver and their altered expression patterns are associated 
with various types of liver diseases including NAFLD[22,23]. Moreover, ncRNAs reveal significant 
differences in expression according to the severity of NAFLD and histological features[24]. In the next 
sections, the role of miRNAs, lncRNAs, and circRNAs will be discussed, to better improve our 
understanding of their appealing potential as biomarkers for early NAFLD/NASH staging and 
therapeutic targets.

miRNAs in NAFLD
miRNAs are small, highly conserved short single-stranded ncRNAs (approximately 18-22 nucleotides in 
length) with epigenetic functions able to transcriptionally regulate gene expression of other RNAs 
notably mRNAs[25]. They are transcribed in the cell nucleus and transported to the cytoplasm, where 
they are processed into mature miRNAs[26]. With respect to their function, miRNAs primarily regulate 
gene expression by promoting mRNA degradation or repressing their translation. They serve as master 
regulators that control the expression of thousands of coding and noncoding genes. Prior research 
suggests that more than 60% of human coding genes are potential targets of miRNAs[27]. Mounting 
evidence reveals that dysregulation in miRNAs’ expression is associated with molecular processes of 
various forms of metabolic and liver diseases, including NAFLD conditions[3,28-30]. Indeed, several 
differentially expressed miRNAs play key roles in the development of NAFLD in animal models and 
humans[30-33], essentially through the regulation of several pathogenic processes including altered 
lipid and glucose metabolism, insulin resistance, and inflammation pathways[34,35]. Because miRNAs 
are stably detected in biofluids and can circulate within microvesicles, exosomes, or apoptotic bodies, or 
bound to RNA-binding proteins, interest in studying these molecules has increased tremendously. 
Additionally, considerable research has demonstrated that these RNA species may offer new insights 
into disease biology, and their easy profiling in the serum has raised enthusiasm about their potential 
use in clinical practice as biomarkers for early diagnosis and clinical monitoring of NAFLD progression
[36,37]. While a plethora of miRNAs are associated with fatty liver diseases, only those shown to be 
repeatedly involved in different stages of NAFLD will be discussed next.

miR-21
There is evidence that miR-21-mediated regulation may play an important role in the pathogenesis of 
several types of liver diseases[38]. Dysregulated miR-21 expression has been reported in animal models 
of steatohepatitis and human NASH. Specifically, the levels of circulating miR-21 and its expression in 
the liver are heavily elevated in both NAFLD patients and mouse models[39-41]. Likewise, circulating 
miR-21 Levels are significantly increased in patients suffering from NASH compared to NAFL and 
healthy controls[42]. Other studies have shown that inhibiting miR-21 can alleviate steatosis by 
activating peroxisome proliferator-activated receptor alpha (PPARα)[40,43]. In support of these findings, 
another report indicated that hepatocyte-specific knockout (KO) of miR-21 in mice improved high-fat 
diet (HFD)-induced steatosis through upregulation of multiple miR-21-targeted pathways governing 
lipid metabolism[44]. Similarly, miR-21 abrogation along with obeticholic acid treatment significantly 
reduced NASH in mice[45].

Moreover, miR-21 plays a key role in hepatic lipid metabolism by promoting hepatic lipid accumu-
lation via its interaction with several proteins including sterol regulatory element binding protein 
(SREBP1)[46] and 3-hydroxy-3-methylglutaryl-co-enzyme A reductase (HMGCR)[47]. Additionally, 
miR-21 can target phosphatase and tensin homolog, which prevents hepatic steatosis[48], and PPARα 
expression, which induces inflammation and fibrosis progression and activates lipid oxidation in 
NAFLD[40]. Other investigations have revealed that miR-21 can inactivate the Wnt/β-catenin signaling 
pathway by targeting low-density lipoprotein (LDL) receptor-related protein 6, thereby aggravating 
lipid accumulation and inflammation[49]. Mechanistic studies have also demonstrated that miR-21 
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promotes hepatic insulin resistance and steatosis in diet-induced obese mice through the regulation of 
several key transcription factors, such as forkhead box protein O1, insulin-induced gene 2, signal 
transducer and activator of transcription 3, and hepatocyte nuclear factor 4-alpha (HNF4-α)[44]. 
Together, these studies clearly show that miR-21 plays an essential role in key transitions of NAFLD 
pathogenesis. Such findings hold the potential to develop miR-21 as a reliable serum biomarker to 
identify patients “at risk” for NASH.

miR-29a
The miR-29 family of miRNAs consists of miR-29a, miR-29b, and miR-29c members[50], and are mainly 
expressed in hepatocytes and hepatic stellate cells (HSCs)[51,52]. A body of evidence suggests that miR-
29a is significantly associated with diagnostic relevance of NAFLD[31,53], NASH[54] and liver fibrosis
[54,55], as well as aggressiveness and prognosis of HCC[31]. López-Riera et al[56] identified circulating 
miR-29a as one of the potential biomarkers that could predict drug-induced NAFLD in humans. Yang et 
al[57] found that serum miR-29a levels were significantly lower in NAFLD patients compared to 
controls. Furthermore, another study revealed that miR-29a disrupts DNA methyltransferase 3β 
(DNMT3β) to improve diet-induced NASH in mice. Mattis et al[58] used a mouse model to demonstrate 
that miR-29a protects hepatocytes from steatosis by repressing lipoprotein lipase in hepatocytes. 
Moreover, miR-29a inhibits glycogen synthase kinase 3 beta to repress sirtuin 1 (SIRT1)-mediated 
mitochondrial biogenesis and improve methionine–choline-deficient diet-induced NASH in mice[59]. 
Roderburg et al[52] reported that miR-29 family members are downregulated in mouse models of liver 
fibrosis and in human fibrotic livers. A recent study indicated that miR-29a plays a regulatory role in 
NAFLD by improving HFD-induced steatohepatitis and liver fibrosis through the suppression of cluster 
of differentiation 36 (CD36)[31]. Together, these findings highlight the potential of miR-29a-targeted 
therapy for the treatment of NAFLD and its advanced stages.

miR-33a/miR33b
In humans, the miR-33 family comprises two members, miR-33a and miR-33b (miR-33a/b), which are 
co-transcribed with the sterol regulatory element-binding protein 2 (SREBP2) and 1 respectively, and 
their main targets are SREBP and SREBP2 and ATP-binding cassette subfamily A member 1 (ABCA1). 
miR-33a/b is implicated in fatty liver disease and plays key roles in lipid metabolism and transport by 
targeting a number of genes involved in cholesterol homeostasis and insulin signaling pathways[60,61]. 
In mice, there is only one miR-33 isoform, which is an ortholog form of human miR-33a[60].

In addition, expression levels of miR-33 are increased in the liver tissues of patients with NAFLD[62]. 
Circulating miR-33a is associated with steatosis and inflammation in patients with NAFLD after liver 
transplantation and can serve as an independent predictor of these pathological conditions[63]. The 
expression of hepatic miR-33a/miR-144 is increased in NASH patients with morbid obesity[64]. A 
further study in mice also demonstrated that miR-33 can regulate hepatic lipogenesis signaling and may 
serve as a potential circulating biomarker of NAFLD[65].

From a therapeutic perspective, several studies have demonstrated that treatment with anti-miR-33 
therapeutic agents can significantly reduce plaque burden in mouse models of atherosclerosis and offer 
promise for treating cardiovascular disease[66-68]. However, a previously published clinical trial 
indicated that increased expression of miR-33a in the liver is associated with steatohepatitis in morbidly 
obese humans and metabolic dysfunction[64]. In line with this, long-term therapeutic silencing of miR-
33 in mice leads to the development of adverse outcomes, including hypertriglyceridemia and hepatic 
steatosis[69,70]. miR-33 KO mice exposed to HFD developed marked worsening of obesity and liver 
steatosis via targeting SREBP1[71]. Recently, Price et al[61] provided additional evidence that genetic 
loss of miR-33 results in an increase in food intake and promotes obesity and insulin resistance. Thus, 
further research is needed to fully understand the role of miR-33a/b in NAFLD, which may provide 
new insights into the physiopathology of various forms of this disease.

miR-34a
The miR-34 family comprises three members: miR-34a, miR-34b, and miR-34c. miR-34a expression 
levels are increased both in the liver and serum of patients with NAFLD and NASH compared to 
healthy controls and are positively correlated with total cholesterol (TC) and triglyceride (TG) levels[72,
73]. miR-34 regulates many transcription factors, such as HNF4-α, SIRT1, and p53, which are involved in 
lipid metabolism, cholesterol synthesis, and fatty acid b-oxidation[72,74]. In addition, Xu et al[73] 
demonstrated that miR-34a inhibits hepatic very LDL secretion by promoting steatosis through 
interaction with HNF4-α in patients with NASH and mice fed HFD. miR-34a regulates steatosis by 
directly targeting PPARα expression in NAFLD[75]. Recently, another study demonstrated that the miR-
34a/SIRT1/AMPK pathway is involved in mitochondrial dysfunction in a mouse NASH model[76]. 
Higher circulating levels of miR-34a have been seen in patients with NAFLD and NASH and mice fed 
HFD[73,77]. An association of miR-34a and miR-122 with dyslipidemia among patients with NAFLD 
has also been reported[78], and both miRNAs could be useful biomarkers in children with obesity and 
NAFLD[79]. Finally, in a meta-analysis study, miR-34a, miR-122, and miR-192 were identified as 
potential diagnostic markers to segregate NAFL from NASH[32]. Here, miR-34 showed the best 
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diagnostic accuracy for discriminating NASH vs NAFLD.

miR-122
miR-122 is the most abundant and extensively studied hepatic miRNA representing about 70% of the 
total miRNA in the liver[80]. Current evidence indicates that miR-122 plays an essential role in different 
aspects of liver function as well as in the epigenetic modulation of several genes linked to chronic 
hepatic pathology[72,80,81]. miR-122 is involved in the regulation of lipid and cholesterol metabolism. 
Animal experiments have revealed that inhibition of miR-122 results in a decrease of hepatic fatty acid 
and cholesterol synthesis rate, reduction in plasma cholesterol levels, enhanced liver fatty acid 
oxidation, and protection of HFD-fed mice from hepatic steatosis[82,83]. Further investigations have 
reported that miR-122 targets specific genes of cholesterol biosynthesis, such as HMGCR, microsomal 
TG transfer protein, 3-hydroxy-3-methylglutaryl-coenzyme A (CoA) synthase 1, fatty acid synthase, and 
acetyl-CoA carboxylase[33,82,83], suggesting a role in the pathogenesis of NAFLD.

Excessive accumulation of TG in the cytoplasm of hepatocytes is a hallmark of NAFLD. Genetic 
deletion of miR-122 Locus in mice results in TG accumulation in the liver and hepatic steatosis that 
progresses to NASH, fibrosis, and HCC[81,84], whereas restoration of miR-122a expression reduces 
disease symptoms and tumorigenesis[84]. Consistent with the results from animal investigations, 
reduced expression of miR-122 is observed in hepatic tissues of NASH patients compared to that in 
simple steatosis and healthy controls[72,80]. Interestingly, changes in miRNA expression profiles were 
observed at various stages of NAFLD, including simple fatty liver, NASH, and liver fibrosis to HCC. In 
this respect, a study reported that in NAFLD patients, the hepatic miR-122 Levels were lower in patients 
with mild steatosis compared to those with severe steatosis, while hepatic and serum miR-122 Levels 
were significantly higher in patients with mild fibrosis than in those with severe fibrosis[74].

Conversely, elevated serum levels of miR-122 have been found in patients with NAFLD patients 
compared to controls, and these levels are positively correlated with disease severity[85,86]. These data 
are in line with reports demonstrating that circulating levels of miR-122 are positively associated with 
fatty liver disease, T2DM, obesity, and atherosclerosis[80,87,88]. Additionally, NASH patients exhibit 
increased levels of miR-122 in the serum[80] and decreased hepatic expression of this RNA[72]. 
Although studies have consistently demonstrated that miR-122 expression differs between hepatocytes 
and blood, mechanisms underlying such an inverse correlation are certainly complex and need further 
attention. Attempts have been made to explain the observed difference in expression between the two 
tissues. The elevated levels of circulating miR-122 could be attributed to its secretion via liver exosomes. 
In agreement with this, Gallo et al[89] reported that miR-122 is localized in abundance to secreted liver 
exosomes. However, it must be acknowledged that the dynamic of miRNAs expression, secretion, and 
transport is complex and the contribution of other tissues such as adipose tissue to the pool of miR-122 
Levels must not be ruled out.

miR-155
miR-155 is a multifunctional miRNA known to regulate numerous fundamental processes such as 
immunity, inflammation, lipid metabolism, and cancer[90,91]. Several studies have reported that miR-
155 is one of the biologically most relevant miRNAs in several liver diseases including NAFLD[92,93]. 
In this respect, a study by Wang et al[94] demonstrated that the level of miR-155 is decreased in liver 
tissue and peripheral blood of NAFLD patients compared with healthy controls. Other studies indicated 
that miR-155 activity was also decreased in patients with NAFLD, which could be attributed to the 
adipogenic transcription factors CCAAT/enhancer binding protein (C/EBP)-α, C/EBP-β, PPAR-γ and 
LXRα[94,95]. On the other hand, miR-155-deficient mice fed a HFD developed increased hepatic 
steatosis compared to controls[94], while conditionally liver-specific overexpression of miR-155 reduced 
serum and hepatic levels of TC, TG, and high-density lipoprotein, and alleviated NAFLD[93]. These 
results suggest that miR-155 has a protective role in NAFLD and its pathological conditions. However, 
conflicting study results have somewhat dimmed the promise of using this miRNA to prevent NAFLD. 
For instance, miR-155 KO mice fed a methionine-choline-deficient diet showed a decrease in steatosis 
along with a reduction in the expression of genes involved in fatty acid metabolism and fibrosis, but not 
liver injury or inflammation[95]. Upon ingestion of a diet high in fat, high in cholesterol, and high in 
sucrose, miR-155 KO mice displayed less liver injury, decreased steatosis, and attenuation in fibrosis 
compared to control mice[96]. The ambiguous miR-155 roles suggest that this transcript may exert 
pleiotropic functions depending on the etiology and disease context. Another scenario is that miR-155-
containing exosomes or miR-155-containing microvesicles released from cells into the surrounding 
tissue could contribute to the observed differences in results. As an example, adipose tissue-derived 
miR-155 upregulated by HFD was shown to induce hepatic insulin resistance in murine models[97]. 
Thus, further studies are warranted to clarify the contradictory results and determine the role of miR-
155 in intracellular lipid accumulation and NAFLD development and progression.

miR-192
miR-192 is highly expressed in quiescent HSCs. Overexpression of miR-192 significantly suppresses the 
activity of these cells by reducing the proliferation and migratory potential of primary mouse HSCs[98]. 



Zaiou M. Noncoding RNAs in nonalcoholic fatty liver disease

WJG https://www.wjgnet.com 5116 September 21, 2022 Volume 28 Issue 35

A previous study found that circulating miR-192 is differentially expressed in NAFLD patients and even 
identified a miRNA panel (hsa-miR-122-5p, hsa-miR-1290, hsa-miR-27b-3p, and hsa-miR-192-5p) with 
high diagnostic accuracy for this disease[99]. Another study indicated that serum levels of miR-192-5p 
were significantly elevated in NAFLD patients and positively associated with hepatic inflammatory 
activity score and disease progression[100]. Recently, Wang et al[101] observed that miR-34a, miR-122, 
and miR-192 represent suitable biomarkers to distinguish NAFLD and NASH severity. Another study 
found that in NASH patients levels of miR-192 were elevated in serum, while decreased in the liver[80]. 
Similar to miR-122, miR-192 was increased in NASH serum compared with steatosis and downreg-
ulated in NASH liver, both in human and animal models, suggesting that these miRNAs are released 
from hepatocytes during pathophysiological states associated with cell membrane impairment[42,100]. 
A recent meta-analysis identified several miRNAs as potential biomarkers of NAFLD and NASH, 
including miR-34a, miR-122, and miR-192[32]. Together, these findings suggest that circulating miRNA-
192 Levels may represent a potential noninvasive diagnostic biomarker and therapeutic target for the 
different stages of NAFLD.

miR-375
miR-375 is highly expressed in pancreatic islets and considered to be an essential regulator of glucose 
homeostasis and insulin secretion[102]. miR-122, miR-192, and miR-375 are significantly upregulated in 
NAFLD patients compared to controls[80]. miR-375 is involved in the pathogenesis of NAFLD and its 
inhibition suppresses the production of inflammatory cytokines tumor necrosis factor-alpha as well as 
interluekin-6, increased the expression of adiponectin, and suppressed lipid accumulation in palmitate 
(PA)-induced HepG2 cells[103]. These preliminary data suggest that miR-375 as well as the above 
discussed miRNAs (Table 1) could be promising targets for the prevention and progression of NAFLD.

LncRNAs in NAFLD pathogenesis
LncRNAs are relatively long RNA transcripts (> 200 nucleotides) that lack coding potential[104]. They 
are regulatory molecules transcribed from intergenic, exonic, or the distal protein-coding regions by 
RNA polymerase II and capped at the 5′-end and polyadenylated at the 3′-end[104]. Regarding their 
functions, there are subsets of lncRNAs that act as guides by binding to proteins and directing their 
localization, providing dynamic scaffolds providing a central platform for the transient assembly of 
multiple proteins and RNAs[105] and decoys that bind targeted proteins or miRNAs to limit their 
availability and function by acting as a molecular sink[106]. However, other functions related to these 
RNA species may arise as research in the field rapidly progresses. Over the last decade, dysregulation of 
lncRNAs has been linked to the pathophysiology of various human diseases, such as cancer, diabetes, 
and cardiovascular diseases[107]. In the context of NAFLD, some reports have noted that lncRNA 
expression patterns are dysregulated, suggesting that these molecules may represent potential drivers of 
NAFLD biology and have utility as clinical biomarkers. However, the role of lncRNAs in the 
development and progression of NAFLD still remains relatively unexplored. Herein, we provide a 
scientific update on lncRNAs relevant to NAFLD and its stages.

H19 LncRNA 
The lncRNA H19 (H19) is a transcription product of the H19 gene and represents one of the first 
discovered lncRNAs. H19 predominantly acts to affect miRNAs stability in different physiological and 
pathological conditions[108]. In recent years, H19 has attracted great attention in the research of liver 
diseases due to its aberrant expression and extensive involvement in several hepatic metabolic processes
[109]. In this respect, existing evidence has shown that overexpression of H19 results in hepatic 
metabolic reprogramming and exacerbates diet-induced fatty liver[110]. In agreement with this, Liu et al
[111] reported that expression of H19 induces hepatic steatosis by activating both the lipogenic 
transcription factor MLX interacting protein-like and the mammalian target of rapamycin complex 1 
signaling pathways. In animal models, knockdown of H19 inhibited steatosis and alleviated hepatic 
lipogenesis by directly regulating the miR-130a/PPARγ axis in NAFLD[112]. However, further studies 
would be useful for determining the precise contribution of H19 to the pathogenesis of NAFLD.

Blnc1
Brown fat lncRNA 1 (Blnc1) is implicated in the regulation of adipocyte differentiation and function
[113] and may serve as a regulator of triacylglycerol biosynthesis. Recently, Zhao et al[114] reported that 
hepatic Blnc1 expression was strongly linked to activation of lipogenesis in mouse models of obesity 
and NAFLD, whereas its liver-specific inactivation abrogated HFD-induced hepatic steatosis and insulin 
resistance, and protected mice from diet-induced NASH pathogenesis. Conversely, overexpression of 
Blnc1 in epididymal white fat tissue improved whole body insulin sensitivity, partially attenuated 
systemic dyslipidemia and glucose metabolism, and markedly protected against diet-induced obesity 
hepatic steatosis, probably via enhancement of mitochondrial biogenesis and function in white fat[115]. 
Overall, these results suggest that Blnc1 has different regulatory mechanisms and distinct functions in 
the liver and white adipose tissue.
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Table 1 Selected microRNAs shown to be highly involved in the pathogenesis of nonalcoholic fatty liver disease

miRNA Circulation 
level

Tissue 
expression Main functional and pathophysiological impacts Ref.

Promotes lipogenesis

Involved in NASH, fibrosis, and HCC

miR-21 ↑ ↑

Targets several metabolic and inflammatory signaling pathways related to the pathogenesis 
of NAFLD 

[38-40,42,
44]

Highly connected with the diagnostic relevance of NAFLD, NASH, and HCCmiR-29a ↑ ↓

Modulates oxidative stress and inflammation in the context of NAFLD

[31,53,52,
58]

Involved in lipid metabolism, glucose homeostasis and hepatic lipogenesismiR-
33a/b

↑ ↑

Associated with steatosis and inflammation in patients with NAFLD/NASH

[61-63,
65]

Regulates lipoprotein metabolism and promotes liver steatosis

Involved in NAFLD/NASH

Correlates with the severity of hepatic inflammatory activity

miR-34a ↑ ↑

Can serve as a biomarker to distinguish NAFLD from NASH patients

[72,73,75]

Modulates several genes linked to chronic hepatic pathology and lipid metabolism 

Promotes hepatic steatosis 

miR-122 ↑ ↓

Serum miR-122 correlates positively with markers of NAFLD severity as well as with NASH

[74,82-
84]

Regulates key cellular events in NAFLD/NASH miR-155 ↑ ↑

Promotes insulin resistance 

[96,97]

Significantly elevated in NAFLD patients and positively associated with hepatic inflam-
matory activity score and disease progression

Increased in serum from NASH patients compared with steatosis

miR-192 ↑ ↓

Could be a potential biomarker of NAFLD and NASH 

[32,80,
100]

Involved in the pathogenesis of NAFLD/NASH/fibrosismiR-375 ↑ ↑

Key regulator of glucose homeostasis and insulin secretion

[80,102]

HCC: Hepatocellular carcinoma; miRNAs: MicroRNAs; NAFLD: Nonalcoholic fatty liver disease; NASH: Nonalcoholic steatohepatitis.

lncHR1
The lncRNA HCV regulated 1 (lncHR1) was recently identified as a novel human-specific lncRNA that 
has an effect on lipid metabolism. A study by Li et al[116] reported that in an HFD mouse model, 
overexpression of lncHR1 inhibited fatty acid synthase and lowered oleic acid-induced hepatic cell TG 
and lipid droplets’ accumulation by inhibiting SREBP1c gene expression. These findings are relevant to 
NAFLD since dyslipidemia in patients with NAFLD is atherogenic in nature and it is characterized by 
increased levels of serum TG. Furthermore, elevated TG levels in the circulation are associated with 
metabolic syndrome and cardiovascular disease[117].

Metastasis-associated lung adenocarcinoma transcript 1 
Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is one of the highly conserved 
lncRNAs shown to play a significant role in many diseases, including cancer, diabetes, and insulin 
resistance. A previous study showed that excess PA increases MALAT1 expression, activated SREBP1c 
and induced intracellular lipid accumulation in hepatocytes, whereas inhibition of MALAT1 expression 
decreased nuclear SREBP1c level and lipid accumulation both in vitro and in vivo[118]. Further analysis 
by these authors revealed that the reduction of MALAT1 in the liver improved insulin sensitivity in 
ob/ob mice. They concluded that MALAT1 may promote hepatic steatosis and insulin resistance by 
increasing nuclear SREBP1c protein stability in hepatocytes[118]. Furthermore, results from lncRNA 
profiling in the liver biopsies of NAFLD patients demonstrated the potential of MALAT1 as a regulator 
of liver inflammation and fibrosis and insulin resistance by targeting the C-X-C motif chemokine ligand 
5[119]. Consistent with these observations, another study found that MALAT1 expression was 
significantly increased in NASH patients compared to NAFLD individuals with simple steatosis and 
controls[120]. Previous studies have reported that MALAT is overexpressed in both HCC cell lines and 
clinical tissue samples[121,122], providing additional evidence that this lncRNA could be used as a 
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biomarker of liver damage and HCC development.

Nuclear enriched abundant transcript 1 
Nuclear enriched abundant transcript 1 (NEAT1) is a nuclear lncRNA involved in various liver diseases
[123]. It is involved in adipogenesis processes, including lipolysis, lipid uptake, and LDL oxidation. A 
recent study indicated that the NEAT1 and mTOR signaling pathway proteins were increased in 
NAFLD in vitro and in vivo while downregulation of NEAT1 alleviated NAFLD via the mTOR/S6K1 
signaling pathway in rat model[124]. Additionally, NEAT1 plays an important role in the activation of 
estrogen receptor alpha to regulate water-glycerol transporter (AQP7)-mediated hepatic steatosis[125]. 
Chen et al[126] found that NEAT1 promotes steatosis by sponging miR-146a-5p, subsequently increasing 
the expression of Rho-kinase1 (ROCK1) and significantly inducing the AMPK/SREBP pathway. 
Silencing of NEAT1 alleviated fibrosis and inflammatory responses by regulating the miR-506/GLI3 
axis in an NAFLD cellular model[127]. A recent study indicated that NEAT1 and paternally expressed 
gene 3 were highly expressed in the liver and HSCs from NASH mice and silencing of NEAT1 
effectively reduced the fibrotic characteristics of HSCs in the setting of NASH[128]. These results 
corroborate previous findings by Leti et al[119] indicating that NEAT1 is upregulated in the fibrosis of 
NASH patients compared to controls. Together, these studies highlight the potential value of NEAT1 for 
aiding in the prognosis and diagnosis of NASH.

Ultra-conserved element 
Ultra-conserved element (UC372) is a lncRNA associated with impaired homeostasis of lipid 
metabolism and may play a role in the pathogenesis of NAFLD. UC372 is upregulated in a murine 
model of T2DM (db/db mice), HFD-fed mice, and NAFLD patients, indicating a role in liver steatosis 
and fatty liver[129]. Mechanistically, UC372 may drive hepatic steatosis through binding to pri-miR-
195/pri-miR-4668, thus preventing miR-195/miR-4668 from regulating the expression of target genes 
associated with lipid synthesis and uptake, including acetyl-CoA carboxylase, fatty acid synthase, 
stearoyl-CoA desaturase 1, and lipid uptake-related genes such as CD36[129]. These preliminary results 
suggest that UC372 may be a promising target for therapies combating hepatic steatosis.

Maternally expressed gene 3 
Maternally expressed gene 3 (MEG3), also known as gene trap locus 2, is another lncRNA that plays a 
regulatory role in the carcinogenesis and progression of several types of cancer. MEG3 is also suspected 
to be involved in the pathogenesis of NAFLD. In this respect, an early study reported that expression of 
hepatic MEG3 was consistently decreased in the chemokine (C-C motif) ligand 4 (CCl4)-induced mouse 
progressive liver fibrosis model compared to normal tissues, and HSCs may be one of the main sources 
of the MEG3 Levels present in CCl4-treated livers[130]. The same study revealed that MEG3 was also 
downregulated in human liver fibrotic tissues compared with control liver tissues. In line with this these 
studies, Huang et al[131] showed that the downregulation of MEG3 in in vitro and in vivo models of 
NAFLD is negatively correlated with lipogenesis-related genes, and that overexpression of MEG3 
alleviates lipid overaccumulation in HepG2 cells. The downregulation of MEG3 in two models of 
NAFLD (free fatty acid-challenged primary hepatocytes and HFD-induced mouse) was also indicated in 
a more recent study by Zou et al[132].

In contradiction with these results, hepatic MEG3 Levels are significantly increased in liver fibrosis 
and NASH cirrhosis in human patients[133]. Similarly, MEG3 was shown to be one of the most differen-
tially expressed lncRNAs in the vascular endothelium in diet-induced obese mice, and its expression 
was elevated in human nonalcoholic fatty livers and NASH livers, whereas its knockdown potentiated 
obesity-induced insulin resistance and impaired glucose homeostasis[134]. These conflicting results 
underline the complexity of MEG regulation, and further studies are required to clarify the biological 
significance of MEG3 and its potential role MEG3 either as a biomarker or a therapeutic target for 
NAFLD.

Highly upregulated in liver cancer 
The lncRNA highly upregulated in liver cancer (HULC) was the first identified lncRNA specifically 
overexpressed in HCC. HULC, a functionally important lncRNA, promotes HCC growth, metastasis 
and drug resistance[135]. HULC expression was found to be increased in the liver tissue of NAFLD rats
[136]. Inhibition of this lncRNA improves hepatic fibrosis and lipid deposition and decreases hepatocyte 
apoptosis in rats with NAFLD via inhibition of the mitogen-activated protein kinase signaling pathway 
in liver tissue[136]. Interestingly, the antidiabetic drug metformin was also reported to decrease HULC 
by inhibiting the expression of specificity protein 1 transcription factor in liver cancer cells[137]. Indeed, 
metformin was shown to improve insulin resistance and hyperinsulinemia and increase insulin 
sensitivity. This drug is now recommended and has proven to be effective for the treatment of NAFLD
[138]. Collectively, these findings suggest that HULC could be a promising target for NAFLD diagnosis, 
staging, and therapy.



Zaiou M. Noncoding RNAs in nonalcoholic fatty liver disease

WJG https://www.wjgnet.com 5119 September 21, 2022 Volume 28 Issue 35

Homeobox transcript antisense intergenic RNA 
Homeobox (HOX) transcript antisense intergenic RNA (HOTAIR) is a lncRNA that resides on a 
boundary of the HOXC locus on chromosome 12q13.13. HOTAIR is increased in different forms of 
cancers and involved in diverse cellular functions. In NAFLD, free fatty acid treatment promotes TG 
accumulation in HepG2 cells, significantly induces HOTAIR expression and inhibits phosphatase and 
tensin homolog expression[139]. A recent study reported that HOTAIR was activated in NAFLD, and 
HOTAIR knockdown significantly inhibited the development of NAFLD via mediation of miR-130b-
3p/ROCK1/AMPK axis, further suggesting a target for NAFLD[140]. HOTAIR shows several oncogenic 
functions in HCC and its expression levels are increased in liver fibrosis, which causes acceleration of 
carcinogenesis in hepatitis B virus-infected patients[141]. Other investigations have reported that 
HOTAIR can serve as a competing endogenous RNA to sponge miR-29b and then repress DNMT3b, 
which contributes to hepatic fibrosis[141].

Fatty liver-related lncRNA 2 
The lncRNA fatty liver-related lncRNA 2 (FLRL2) is located in the intronic region of the aryl 
hydrocarbon receptor nuclear translocator-like (Arntl) gene, and Arntl is predicted as a cis target of 
FLRL2. FLRL2 was identified as a potential key molecule in the pathogenesis of NAFLD. This nuclear-
localized lncRNA is downregulated in the NAFLD mouse model, suggesting a role in the pathogenesis 
of this disease[142]. Further mechanistic studies have demonstrated that overexpression of FLRL2 
alleviates NAFLD through activation of the Arntl-SIRTA pathway, inhibits lipogenesis, and reduces 
hepatic steatosis in HFD mice[143]. These results render FLRL2 another promising therapeutic 
candidate for the treatment of NAFLD and its complications. Finally, the above-discussed lncRNAs with 
their potential functions in NAFLD are also summarized in Table 2.

circRNAs in NAFLD
As their name implies, circRNAs are single-stranded covalently closed RNA species formed through 
back-splicing. Distinct characteristics of circRNAs, such as high stability, evolutionary conservation 
among species, exonuclease resistance, and existence in body fluids endow this class of RNAs with 
numerous potential functions ranging from miRNA and protein sponges to gene transcriptional 
regulators and protein/peptide translators. Moreover, circRNAs are dysregulated in numerous 
pathological conditions and may potentially serve as novel diagnostic biomarkers and therapeutic 
targets.

Although there is increasing evidence linking circRNAs to the pathogenesis of metabolic diseases, 
studies centered on the investigation of circRNAs in NAFLD were only recently conducted[144-146]. 
Data from recent literature suggest that circRNAs are involved in several fundamental processes 
governing the onset and progression of NAFLD and display aberrant expression[147]. For instance, a 
circRNA_0046367 was decreased in HFD-induced hepatic steatosis[148]. Subsequently, the authors of 
this study demonstrated that normalization of circRNA_0046367 Levels prevents lipid peroxidation and 
mitochondrial dysfunction in steatosis through miR-34a sponging and PPARα downregulation. In a 
further analysis, the same research laboratory identified an additional circRNA: circRNA_0046366, 
whose expression was also diminished during free fatty acid-induced hepatocellular steatosis in high 
fat-treated HepG2 cells[149]. In HepG2 cells with hepatic steatosis induced by high-fat stimulation, 
circRNA_021412 was associated with hepatic steatosis via the circRNA_021412/miR-1972/LPIN1axis
[150]. circRNA microarrays analysis in an HFD mouse model revealed that circScd1 expression was 
significantly decreased in NAFLD tissues compared to that in controls. Consistent with this, knockdown 
of circScd1 promoted hepatosteatosis through the regulation of the Janus kinase 2 and signal transducer 
and activator of transcription 5 signaling pathway[151]. In an in vitro model of NAFLD, Hsa_ci-
rc_0048179 was shown to attenuate free fatty acid-induced steatosis via Hsa_circ_0048179/miR-188-
3p/glutathione peroxidase 4 signaling[152]. circRNA profiling in a NASH mouse model identified 
circRNA_29981 as the circRNA most significantly differentially expressed in this setting[153].

More recently, Jin et al[147] indicated that the circRNA_002581-miR-122-CPEB1 axis aggravates 
NASH partially through autophagy suppression, while silencing of circRNA_002581 significantly 
attenuated lipid droplet accumulation, eliminated liver damage in both mouse and cellular models of 
NASH. Chen et al[154] indicated that silencing of circ_0071410 alleviates hepatic stellate activation, a key 
step of liver cirrhosis. HSCs are the primary cell type responsible for liver fibrosis. In the CCl4-induced 
mouse model of liver fibrosis, mmu_circ_34116 was able to inhibit HSCs activation[155]. In a mouse 
model of NAFLD, Chen et al[156] found that circ_0057558 can promote NAFLD by regulating ROCK1/ 
AMPK signaling through targeting miR-206. Interestingly, a novel mitochondrial genome-encoded 
circRNA termed mitochondrial steatohepatitis-associated circRNA ATP5B regulator (SCAR) was 
identified recently[157]. The latter study found SCAR to be significantly downregulated in liver 
fibroblasts from patients with NASH. Additionally, the overexpression of SCAR inhibited 
mitochondrial reactive oxygen species output and fibroblast activation via shutting down mitochondrial 
permeability transition pore. More importantly, in vivo targeting of SCAR alleviated HFD-induced 
cirrhosis and insulin resistance implying that circRNA SCAR may serve as a therapeutic target for 
NASH[157].
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Table 2 Relevant dysregulated long noncoding RNAs associated with alterations in liver metabolism and nonalcoholic fatty liver 
disease

lncRNA Expression Main functional and pathophysiological effects Ref.

Promotes cell proliferation, migration, and invasion in several 
different human cancers including HCC

Promotes hepatic steatosis and insulin resistance

Hepatic MALAT1 levels are higher in NASH patients with 
fibrosis

MALAT1 ↑

Promotes NAFLD progression and increase with the severity of 
the disease 

[119-122]

Promotes adipogenesis, lipogenesis, and lipid absorption

Modulates fibrosis and inflammatory responses

NEAT1 ↑

Silencing NEAT1 alleviated fibrosis and inflammatory in a 
NAFLD cellular model

[124,126,127]

Involved in lipid metabolism and glucose homeostasisMEG3 ↓

Correlates with steatosis and inflammation (NASH) in patients 
with NAFLD 

[131-134]

Promotes HCC growth and metastasis

Promotes NAFLD development

HULC ↑

Metformin decreases HULC expression

[135,136]

Activates lipid accumulation in hepatocytes and promotes 
hepatic steatosis development 

Expression profile is significantly increased in oleic acid-
induced steatosis and during the development of HFD-induced 
NAFLD

HOTAIR ↑

Accelerates liver fibrosis and carcinogenesis

[139-141]

Decreases endoplasmic reticulum stress and liver inflammationFLRL2 ↓

Alleviates NAFLD and steatosis in mouse model

[143]

FLR2: Fatty liver-related lncRNA 2; H19: H19 imprinted maternally expressed transcript; HCC: Hepatocellular carcinoma; HFD: High-fat diet; HOTAIR: 
HOX transcript antisense RNA; MALAT1: Metastasis-associated lung adenocarcinoma transcript 1; lncRNAs: Long noncoding RNAs; MEG3: Maternally 
expressed 3; NAFLD: Nonalcoholic fatty liver disease; NASH: Nonalcoholic steatohepatitis; NEAT1: Nuclear paraspeckle assembly transcript 1; HULC: 
Hepatocellular carcinoma upregulated long noncoding RNA.

Together, these findings suggest that certain circRNAs, including those summarized in Table 3, are 
likely to contribute to NAFLD phenotype, which makes them attractive targets for the development of 
diagnostic and interventional pharmacology. However, circRNA data are still lacking functional 
evidence and their underlying mechanisms are still awaiting elucidation. Nevertheless, further carefully 
designed prospective studies to emphasize and validate the potential use of circRNAs as NAFLD 
biomarkers are expected to yield new insights into the pathogenesis of this disease state.

CONCLUSION
The findings from the above research clearly indicate that alterations in miRNA, circRNA and lncRNA 
expression play critical roles in cellular physiology and many diseases, including NAFLD and cancer. 
Thus, these ncRNA subsets are promising non-invasive biomarkers for the diagnosis and stratification 
of patients with NAFLD and could inform future personalized treatments designed for this condition. 
Even though the concept is promising and optimism is high, there is a consensus that research in the 
field still has limitations and technical challenges. (1) Sustained research efforts in the ncRNAs field 
have aimed to develop biomarkers to support the diagnostic process in patients with NAFLD. Unfortu-
nately, most of the studies were carried out in subjects who already display patterns of worsening 
symptoms and are seeking medical care. To overcome this challenge, an alternative option would be to 
investigate the status of ncRNAs in the general population, which may assess the risk and capture early 
stages of disease initiation and evolution. This strategy could help achieve early diagnosis in individuals 
at risk for NAFLD but yet asymptomatic, and determine whether the overserved aberration in ncRNA 



Zaiou M. Noncoding RNAs in nonalcoholic fatty liver disease

WJG https://www.wjgnet.com 5121 September 21, 2022 Volume 28 Issue 35

Table 3 Relevant dysregulated circular RNAs associated with alterations in liver metabolism and nonalcoholic fatty liver disease

circRNA Expression level Main functional and pathophysiological effects Ref.

circRNA_0046367 ↑ Inhibits hepatic steatosis by preventing hepatotoxicity of lipid 
peroxidation

[148]

circRNA_0046366 ↑ Inhibits hepatic steatosis through miR-34a/PPARα [149]

circRNA_021412 ↑ Associated with hepatic steatosis [150]

circScd1 ↓ Affects steatosis on NAFLD via JAK2/STAT5 signaling 
pathways

[151]

hsa_circ_0048179 ↓ Attenuates free fatty acid-induceded steatosis by sponging of 
miR-188-3p in vitro

[152]

mmu_circRNA_29981 ↑ Regulatory role in NASH mousee model [153]

Involved in lipogenesisCirc_0057558 ↑

Promotes nonalcoholic fatty liver disease by sponging miR-
206

[156]

Correlates with steatosis-to-NASH progressionSCAR ↓

In vivo, targeting circRNA SCAR alleviates HFD-induced 
cirrhosis and insulin resistance

[157]

circRNAs: Circular RNAs; HCC: Hepatocellular carcinoma; HFD: High-fat diet; JAK2: Janus Kinase 2; NAFLD: Nonalcoholic fatty liver disease; NASH: 
Nonalcoholic steatohepatitis; PPARα: Peroxisome proliferator-activated receptor α; STAT5: Signal transducer and activator of transcription 5.

expression is the trigger or it is just a consequence of other causes such as those associated with lipid 
metabolism disorder, inflammation and immune system; (2) The role of ncRNAs as mediators of cell 
and organ crosstalk as well as their impact on different signaling pathways involved in NAFLD 
pathogenesis are not fully understood. It is now recognized that some ncRNAs are present in the 
extracellular environment and may be involved in pathophysiological condition. They may act to affect 
their targets either in an autocrine or paracrine fashion. Hence, special attention should be drawn to 
further research addressing the role of ncRNAs and their carriers (extracellular vesicles) in mediating 
potential inter-organ crosstalk in NAFLD condition, and the dynamic interaction of ncRNAs with 
metabolism cell signaling pathways. While these strategies may seem difficult to carry out and 
complete, they can be a starting point for increasing our knowledge on the role of circulating ncRNAs in 
organ crosstalk and may represent an opportunity to better understand how they affect metabolic 
homeostasis to drive the onset and progression of NAFLD and related pathological conditions; and (3) 
From a clinical perspective, approaches based on an individual ncRNA targeting or overexpression are 
what researchers are shooting for. However, each ncRNA has highly redundant roles and multiple 
functions. Indeed, a previous study revealed that a miRNA can affect a phenotype not only through a 
simple regulatory process, but via multiple targets redundantly and often incoherently, and such a 
complex regulation is difficult to assemble and control[158]. Indeed, it is becoming evident that it is 
difficult to diagnose a multifactorial disease such as NAFLD using a single ncRNA. Attempts were 
conducted to use a combination of serum circulating ncRNAs. Understanding the ncRNA-ncRNA 
crosstalk and their intricate interplay with different genetic and other epigenetic regulators including 
DNA methylation, chromatin remodeling, and components of the transcriptional and posttranscrip-
tional machineries to regulate gene networks involved in NAFLD could certainly expand our 
knowledge on the molecular mechanisms driving this disease. This approach can also lead to a 
breakdown into NAFLD subtypes which would add resolution and inform about the regulation of 
molecular processes involved in each stage of the disease by specific ncRNAs.

To sum up, this review highlights the evidence for potential subsets of ncRNAs that are associated 
with NAFLD and its pathological conditions. The findings from various human and animal studies 
clearly suggest that dysregulation in ncRNA profiles are critical factors in the initiation and progression 
of fatty liver diseases, including NAFLD. This may be an appealing argument to further explore the 
mystery of these RNA molecules and consider their clinical application as biomarkers/therapeutics in 
the prevention and treatment of NAFLD and its progressive forms.
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