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Abstract
BACKGROUND 
The microbes and metabolomics of microbiota dysbiosis in the gut in the different 
phases of hepatitis B virus (HBV) infection are not fully understood.

AIM 
To investigate the specific gut microbiota and metabolites of the immune-tolerant 
(IT) and immune-active (IA) phases of chronic hepatitis B (CHB).

METHODS 
Clinical fecal samples from healthy individuals and patients in the IT and IA 
phases of HBV infection were collected. Next, non-target metabolomics, bioinfor-
matics, and 16S rDNA sequencing analyses were performed.

RESULTS 
A total of 293 different metabolites in 14 phyla, 22 classes, 29 orders, 51 families, 
and 190 genera were identified. The four phyla of Firmicutes, Bacteroidetes, 
Actinobacteria, and Proteobacteria were the most abundant, accounting for 99.72%, 
99.79%, and 99.55% in the healthy controls, IT-phase patients, and IA-phase 
patients, respectively. We further identified 16 genera with different richness in 
the IT phase and IA phase of HBV infection. Of the 134 named metabolites, 57 
were upregulated and 77 were downregulated. A total of 101 different metabolic 
functions were predicted in this study, with 6 metabolic pathways having the 
highest enrichments, namely carbohydrate metabolism (14.85%), amino acid 

https://www.f6publishing.com
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metabolism (12.87%), lipid metabolism (11.88%), metabolism of cofactors and vitamins (11.88%), 
xenobiotic biodegradation (9.9%), and metabolism of terpenoids and polyketides (7.92%).

CONCLUSION 
These findings provide observational evidence of compositional alterations of the gut microbiome 
and some related metabolites in patients with IT-phase or IA-phase HBV infection. Further studies 
should investigate whether microbiota modulation can facilitate the progression of CHB and the 
cause-effect relationship between the gut microbiota and CHB.

Key Words: Microbes; Metabolomics; Gut microbiota; Immune-tolerant phase; Hepatitis B virus

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: This article provided observational evidence of compositional alterations of gut microbiome and 
some related metabolite in patients with immune-tolerant phase hepatitis B virus (HBV) infection and 
immune-active phase HBV infection.
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INTRODUCTION
As a disease of public health significance, hepatitis B often leads to liver cirrhosis or hepatocellular 
carcinoma (HCC). Currently, there are few effective treatments and strategies for eliminating hepatitis B 
virus (HBV) infection. The immune-tolerant (IT) phase is the first stage of HBV infection, and recent 
studies suggest that HBV-infected patients in this phase suffer from a high risk of HCC and death[1-3]. 
However, anti-HBV treatment is not generally recommended at this stage. The IT status of patients 
largely determines the patients’ outcomes. Thus, the identification of factors that affect the consequences 
of HBV infection is crucial for eliminating this disease.

Recent studies indicate that the gut microbiota is involved in chronic hepatitis B (CHB) as well as 
other liver diseases[4-6]. Some commensal bacteria regulate the host metabolic pathways by improving 
food-derived energy or modulating the host-derived compounds that alter metabolism[7-9]. In addition, 
there are various gut microbiota in patients with CHB, hepatitis B-related liver cirrhosis, or HCC[10-12]. 
To date, information about the gut microbiota in patients at the initial phase of HBV infection remains 
largely unknown. We believe that studies on the gut microbiota of HBV-infected patients in the IT phase 
would help to elucidate the underlying mechanism of HBV IT as it will provide valuable information 
about the immune environment for HBV and its long-term existence.

Most studies on the microbiome have been cross-sectional with samples collected at a single time 
point, and only some studies have been performed with samples from different stages of HBV infection
[12-15]; moreover, few comparisons of HBV-infected patients and healthy individuals have been carried 
out in these studies. CHB patients may develop recurrent active hepatitis, while the IT phase may 
change into the immune-active (IA) phase at a later stage in patients[16], which can lead to a substantial 
change in the composition of the gut microbiota. Therefore, understanding how the gut microbiota 
change from the IT phase to the IA phase will be important for the development of potential 
microbiome-targeting therapeutic drugs to combat HBV infection. Furthermore, this dynamic variation 
in gut microbiota in HBV-infected patients may help us to identify unique bacterial taxa that would 
contribute to postponing disease progression.

The present study focused on the dynamic profiles of the gut microbiota in IT-phase patients and IA-
phase HBV-infected patients without liver fibrosis by 16S rDNA sequencing and analysis. We aimed to 
identify changes of bacteria involved in the transition from the IT phase to the IA phase in HBV-infected 
patients and to illustrate the regulation of both microbiota and metabolites. The results will provide a 
new perspective for the noninvasive diagnosis and treatment of IT-phase HBV-infected patients.

https://www.wjgnet.com/1007-9327/full/v28/i35/5188.htm
https://dx.doi.org/10.3748/wjg.v28.i35.5188
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MATERIALS AND METHODS
Recruitment of participants
HBV-infected patients in the IT phase or the IA phase were recruited from The First Affiliated Hospital 
of Fujian Medical University from January 2018 to December 2020. All HBV-infected patients were at 
least 18-years-old, hepatitis B surface antigen positive for ≥ 6 mo, and hepatitis B virus e-antigen 
positive; moreover, the IT patients had a normal alanine aminotransferase level (< 40 IU/L), HBV DNA 
> 1 million IU/mL, and no fibrosis found by FibroScan analysis[17]. The IA patients had an HBV DNA 
serum concentration of > 20000 IU/mL as well as elevated alanine aminotransferase and/or aspartate 
aminotransferase levels[17]. However, patients who suffered from other non-HBV diseases/infections 
were excluded from the study. Samples from healthy volunteers were blindly collected, and participants 
who had received antiviral therapy, immunotherapy, probiotics, or antibiotics within 8 wk before 
enrollment were excluded. Verbal informed consent was provided by all participants. The experimental 
protocol and participant enrollment procedure were approved by the Ethics Review Committee of the 
university and were conducted according to the Declaration of Helsinki guidelines.

Clinical measurements
Liver stiffness measurements were conducted using a FibroScan instrument. Measurements with more 
than ten successful acquisitions were obtained (with a rate > 60% and an interquartile range < 30%). In 
addition, the alanine aminotransferase, aspartate aminotransferase, glutamyl transpeptidase, total 
bilirubin, albumin, globulin, and alpha-fetoprotein levels were measured. HBV serological testing was 
performed with the Architect platform (Abbott Laboratories, Chicago, IL, United States). HBV DNA was 
tested by a quantitative PCR assay (PG Company, Shenzhen, China).

Sampling, DNA extraction, and PCR
Fecal samples were obtained from all participants, filtered with a 2-mm sieve to remove interferents, 
and then stored at -80 °C for the following experiments. Total bacterial DNA extraction was performed 
with a PowerSoil DNA Isolation Kit (MoBio Laboratories, Carlsbad, CA, United States), and the purity 
and quality of the genomic DNA were checked by electrophoresis on 0.8% agarose gels. The V3-4 
hypervariable region of bacterial 16S rDNA was amplified by previously reported conserved primers: 
338F (5’-ACTCCTACGGGAGGCAGCAG-3’) and 806R (5’-GGACTACHVGGGTWTCTAAT-3’)[18]. For 
each sample, the 10-digit barcode sequence was added to the 5’-end of the forward and reverse primers 
(provided by Allwegene Company, Beijing, China). The PCR was carried out on a Mastercycler 
Gradient (Eppendorf, Germany) using a reaction volume of 25 μL, containing 12.5 μL of KAPA 2G 
Robust Hot Start Ready Mix, 1 µL of forward primer (5 µmol/L), 1 µL of reverse primer (5 µmol/L), 5 
µL of DNA (total template quantity of 30 ng), and 5.5 µL of H2O. The cycling parameters were 95 °C for 
5 min, followed by 28 cycles of 95 °C for 45 s, 55 °C for 50 s, and 72 °C for 45 s, with a final extension at 
72 °C for 10 min.

Three PCR products per sample were pooled to mitigate reaction-level PCR biases. The PCR products 
were purified using a QIAquick Gel Extraction Kit (QIAGEN, Germany), quantified using real-time 
PCR, and sequenced at Allwegene Company, Beijing, China. Deep sequencing was done with the Miseq 
platform at the Allwegene Company (Beijing, China). The raw data were first screened, and sequences 
were removed from consideration if they were shorter than 200 bp, had a low quality score (≤ 20), 
contained ambiguous bases, or did not exactly match the primer sequences and barcode tags. Qualified 
reads were separated using the sample-specific barcode sequences and trimmed with Illumina Analysis 
Pipeline Version 2.6. Thereafter, the dataset after cleaning was analyzed using the Quantitative Insights 
into Microbial Ecology (QIIME) platform.

All sequences were clustered into operational taxonomic units (OTUs) at a similarity level of 97%[19] 
to generate rarefaction curves. The Ribosomal Database Project classifier tool was used to analyze 
different taxonomic groups[20]. The Venn diagram was built by the R package program. Shared taxa 
presented in all groups were defined as the core microbiota. Clustering analysis and principal 
component analysis were performed by using the R package, as described previously[21]. The evolution 
distances were analyzed with the unweighted pair group method and an arithmetic mean clustering 
tree[22]. Heatmaps of the top 20 OTUs were generated using Mothur, as described in a previous study
[23].

Metabolic pathway and non-target metabolomics
Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis 
based on the 16S rDNA was performed. The OTU table derived from QIIME was compared using the 
Kyoto Encyclopedia of Genes and Genomes and MetaboAnalyst (http://www.metaboanalyst.ca/) 
databases, and the metabolic function of the gut microbiota was predicted based on the findings. The 
abundances of functional genes were visualized as heatmaps by the R package.

For metabolite extraction, a 10-μL aliquot of each sample was mixed with 990 μL of the extraction 
solvent (acetonitrile/methanol/water, 2:2:1), and the mixture was vortexed for 30 s, incubated at -20 °C 
for 1 h, and then centrifuged at 12000 rpm and 4 °C for 15 min. Finally, the supernatant was diluted 10 

http://www.metaboanalyst.ca/
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times for ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) 
analysis[24]. UHPLC separation was performed on an Agilent 1290 Infinity II series UHPLC system 
(Agilent Technologies). Mobile phase A included both 10 mmol/L ammonium formate and 10 mmol/L 
ammonia, while mobile phase B was acetonitrile. The temperatures for the column and the autosampler 
were set at 35 °C and 4 °C, respectively[25].

Statistical analysis
One-way analysis of variance was performed to compare continuous variables between two groups. The 
Wilcoxon signed rank test, Kruskal–Wallis test, χ2 test, or Student’s t test was used to compare 
categorical variables between groups. All statistical analyses were calculated either in the R package 
(version 3.6.1) or SPSS (version 26.0). P values less than 0.05 were considered as significant differences.

RESULTS
Overview of gut microbial community shift in patients
To differentiate the characteristics of the gut microbiota in IT-phase HBV-infected patients, IA-phase 
HBV-infected patients, and healthy individuals, 16S rDNA gene sequencing was performed on the stool 
samples from 14 IT-phase HBV-infected patients, 10 IA-phase HBV-infected patients, and 13 healthy 
donors (Table 1). A total of 1521813, 411189, and 1109236 sequences were acquired for the IT, IA, and 
healthy groups, respectively, after excluding low-quality reads. A total of 19556 clean tags were 
obtained, of which 824 OTUs were matched. After applying strict trimming criteria to exclude low-
quality clean tags, the numbers of OTUs for healthy individuals, IT-phase patients, and IA-phase 
patients were 633, 662, and 489, respectively, as shown in Table 2. A total of 95, 132, and 27 OTUs 
existed independently in the healthy controls, IT-phase patients, and IA-phase patients, respectively 
(Figure 1). There were no significant differences in the Chao1, Shannon, and Simpson indices among the 
IT, IA, and healthy groups (all P values > 0.05, Table 2). The bacterial communities in the healthy 
individuals were relatively more heterogeneous than those found in the IT- or IA-phase patients. The IT 
and IA patients could be separated from the healthy individuals by non-metric multidimensional 
scaling and principal component analysis (Figure 2A and B). Partial least squares discriminant analysis 
showed structural differences in the gut bacterial community structure among the groups, indicating 
that the classification model was effective (Figure 2C).

Predominant bacteria at different levels
To show the abundance of bacteria of all fecal samples, 14 phyla, 22 classes, 29 orders, 51 families, and 
190 genera were identified, and the dominant gut microbiota are shown in Supplementary Table 1 and 
Figure 3. The four phyla of Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria were the most 
abundant, accounting for 99.72%, 99.79%, and 99.55% in the healthy controls, IT-phase patients, and IA-
phase patients, respectively. In detail, the highest relative abundance of Actinobacteria, which reached 
7.32%, was found in the healthy group. Meanwhile, compared with the healthy control and the IA-
phase patients, the IT patients had the highest abundance of Bacteroidetes (33.27%). The IT-phase patients 
had less Firmicutes (61.00%) and Actinobacteria (2.71%) than the IA-phase patients. Clostridiales, Bacter-
oidales, Selenomonadales, Bifidobacteriales, Coriobacteriales, Erysipelotrichales, Lactobacillales, and Enterobac-
teriales were the most abundant bacteria at the order level in all three groups.

For the genus level, an abundance of Bacteroides (16.19%), Prevotella 9 (9.04%), and Megamonas (7.66%) 
was found in the IT-phase patients. However, Blautia (19.20%) and Faecalibacterium (12.68%) were 
enriched in the IA-phase patients. Interestingly, the healthy groups had more Eubacterium rectale 
(6.69%), Eubacterium hallii (4.03%), Bifidobacterium (3.87%), and Dorea (3.23%). In addition, Faecalibac-
terium and Blautia accounted for a high proportion in the IA-phase patients; these bacteria are involved 
in butyrate short-chain fatty acid metabolism and inhibit inflammation.

Linear discriminant analysis effect size analysis to identify specific microbial taxa related to IT and IA 
patients
Linear discriminant analysis (LDA) effect size modeling was applied to identify specific bacterial taxa 
associated with different stages of CHB (Figure 2D and E). There were markedly significant differences 
in the community compositions in CHB patients compared with the healthy individuals. There were 12 
and 6 significantly different taxa in the IT- and IA-phase patients, respectively. The five most enriched 
genera in the IT-phase patients were Senegalimassilia (LDA score = 4.38, P < 0.05), Prevotella 2 (LDA score 
= 4.24, P < 0.01), Alloprevotella (LDA score = 4.09, P < 0.05), Sutterella (LDA score = 3.67, P < 0.001), and 
Haemophilus (LDA score = 3.58, P < 0.05). The four most enriched genera in the IA-phase patients 
included Blautia (LDA score = 4.78, P < 0.01), Faecalibacterium (LDA score = 4.51, P < 0.05), Clostridium 
innocuum group (LDA score = 4.23, P < 0.01), and Faecalitalea (LDA score = 3.76, P < 0.05) (Supple-
mentary Table 2). These significantly different gut microbial taxa can be used as potential noninvasive 
biomarkers for the diagnosis of different immune phases of infection in CHB.

https://f6publishing.blob.core.windows.net/da4a50bc-09a9-4666-8187-bc6496f853d4/WJG-28-5188-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/da4a50bc-09a9-4666-8187-bc6496f853d4/WJG-28-5188-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/da4a50bc-09a9-4666-8187-bc6496f853d4/WJG-28-5188-supplementary-material.pdf
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Table 1 Basic information and clinical characteristics of healthy individuals, immune-tolerant phase hepatitis B virus infection patients, 
and immune-active phase hepatitis B virus infection patients

Characteristic H, n = 13 IT, n = 14 IA, n = 10 P value

Sex, M/F 9/4 9/5 7/3 0.949

Age in yr 26.4 ± 0.8 26.9 ± 5.8 36.2 ± 11.3 0.004

HBsAg as log10 IU/mL NA 4.62 ± 0.18 3.83 ± 0.81 < 0.001

HBeAg as log10 S/Co NA 3.18 ± 0.08 1.21 ± 1.70 < 0.001

HBV DNA as log10 IU/mL NA 7.81 ± 0.80 6.28 ± 1.70 < 0.001

AFP in ng/mL 2.06 ± 0.82 2.49 ± 1.05 22.61 ± 40.82 0.045

TBIL in μmol/L 5.9 ± 3.1 12.7 ± 5.3 19.5 ± 9.2 < 0.001

ALB in g/L 48.8 ± 3.5 45.8 ± 2.9 43.0 ± 4.9 0.002

GLO in g/L 24.4 ± 4.0 26.6 ± 4.4 29.3 ± 4.3 0.017

ALT in U/L 22.0 (18.0, 29.0) 29.5 (23.7, 33.0) 277.5 (101.5, 410.8) < 0.001

AST in U/L 16.0 (12.0, 22.0) 23.0 (19.5, 27.8) 111.0 (67.0, 143.5) 0.006

GGT in U/L 25.7 ± 11.5 18.5 ± 9.4 72.7 ± 64.9 0.001

TBA in μmol/L 2.3 (1.9, 3.4) 5.6 (4.2, 8.4) 13.9 (5.5, 31.1) 0.012

LSM in kPa 4.99 ± 0.99 5.11 ± 1.01 6.38 ± 0.72 0.026

H: Healthy; IT: Immune-tolerant; IA: Immune-active; HBsAg: Hepatitis B surface antigen; HBeAg: Hepatitis B virus e-antigen; HBV: Hepatitis B virus; AFP: 
Alpha-fetoprotein; TBIL: Total bilirubin; ALB: Albumin; GLO: Globulin; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; GGT: Gamma 
glutamyl transpeptidase; TBA: Total bile acid; LSM: Liver stiffness measurement; M: Male; F: Female; NA: Not available.

Table 2 Species richness indices in the fecal samples

Group Healthy controls, n = 14 IT phase HBV infection, n = 13 IA phase HBV infection, n = 10 P value

OTUs 633 662 489

α-diversity indexes, median

Chao1 264.310 233.825 227.000 0.924

Shannon 5.020 4.720 4.705 1.739

Simpson 0.940 0.885 0.915 1.666

IT: Immune-tolerant; IA: Immune-active; HBV: Hepatitis B virus; OTUs: Operational taxonomic units.

Furthermore, the Wilcoxon and Kruskal-Wallis rank sum tests showed the abundance at different 
taxonomic levels with P < 0.05 and FDR q < 0.1 (Supplementary Table 3). The top 20 gut microbiota at 
the genus level consisted of Bacteroides, Prevotella 9, Megamonas, Blautia, Faecalibacterium, Roseburia, 
Fusicatenibacter, Anaerostipes, Prevotella 2, Ruminococcus 2, Phascolarctobacterium, Alloprevotella, Bifidobac-
terium, Subdoligranulum, Dialister, Eubacterium rectale, Eubacterium eligens, Dorea, Eubacterium hallii, and 
Streptococcus. Moreover, the shared species between the significantly different gut microbiota and the 
top 20 gut microbiota were Blautia, Faecalibacterium, Fusicatenibacter, Prevotella 2, Alloprevotella, and 
Eubacterium hallii group, which might be highly associated with the outcomes of CHB in different 
phases. The differences found in this study revealed the dysbiosis involved in the development of CHB 
and the aberrant ecological networks of microbial communities during infection.

Longitudinal analysis of patients in the IT phase of HBV infection
Longitudinal follow-up analysis showed that 3 patients progressed from the IT phase to the IA phase 
and required medical treatments. The change in the microbiota of these 3 patients during treatment was 
studied. The abundance of Firmicutes and Actinobacteria increased, while the abundance of Bacteroidetes 
and Proteobacteria decreased at the phylum level (Figure 4A). Moreover, Bacteroides, Alistipes, and 
Bilophila were mostly abundant in the IT phase, while Actinomyces, Adlercreutzia, and Streptococcus were 
more abundant in the IA phase (Figure 4B and C). A decreased ratio of Bacteroidetes to Firmicutes was 
observed, which might be involved in inflammatory disorders in the IA phase.

https://f6publishing.blob.core.windows.net/da4a50bc-09a9-4666-8187-bc6496f853d4/WJG-28-5188-supplementary-material.pdf
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Figure 1 Operational taxonomic units in healthy controls, immune-tolerant phase patients, and immune-active phase patients. IT: Immune-
tolerant; IA: Immune-active; H: Healthy.

Microbial functional dysbiosis in IT and IA patients and co-occurrence network analysis
To identify the bacterial functional alteration in IT and IA patients, we analyzed the functional potential 
of gut microbiota with PICRUSt analysis. A total of 101 different metabolic functions were predicted in 
this study, with 6 metabolic pathways having the highest enrichments, namely carbohydrate 
metabolism (14.85%), amino acid metabolism (12.87%), lipid metabolism (11.88%), metabolism of 
cofactors and vitamins (11.88%), xenobiotic biodegradation (9.90%), and metabolism of terpenoids and 
polyketides (7.92%). In addition, the functional roles of the bacteria were highly related to infectious 
diseases, including bacterial infection (50.00%) and parasitic infection (33.33%) as well as cardiovascular 
disease (10.00%) and neurodegenerative disease (10.00%) (Supplementary Table 4). The parasitic 
infectious disease-related gene subgroups (P = 0.03) in the IA-phase patients were highly enriched 
(Figure 5). The cell motility-related genes were highly enriched in the IA-phase patients (Figure 5A), 
while the transport and catabolism-related genes (P = 0.03) were significantly enriched in the IT-phase 
patients. However, signal transduction-related genes were significantly enriched in the healthy controls 
(P < 0.01) (Figure 5B). The replication repair-related genes and digestive system-related genes in the IT-
phase patients were more abundant than in the other groups, but the difference between the three 
groups was not statistically significant (Figure 5C and E). Moreover, the digestive system disease-
related gene subset (P = 0.02) was highly enriched in the IT-phase patients (Figure 5D). Genes that are 
related to the amino acid metabolism glycosyl biosynthesis cofactors and vitamin metabolism were 
more enriched in the IT-phase patients than in the healthy controls (P < 0.01) (Figure 5F). These 
observed results suggested that changes in the bacterial composition can significantly alter gene 
function, which may contribute to the development of CHB.

As shown in the co-occurrence network analysis using Cytoscape software (Supplementary Figure 1), 
five genera (Dorea, Bifidobacterium, Bacteroides, Blautia, and Romboutsia) were highly positively 
correlated. Dorea and Bifidobacterium exhibited the highest degree of linkage, while Dorea and 
Bacteroides had the least degree of linkage.

Non-target metabolomics analysis
A total of 293 substantially different metabolites were identified, among which 134 metabolites had an 
MS2.name provided by the mass spectrometry qualitative matching analysis. A total of 57 metabolites 
were upregulated, while 77 were downregulated. The different metabolites are shown in Supple-
mentary Table 5.

DISCUSSION
To date, there are limited studies showing the role of dysbiosis of the gut microbiota in HBV-infected 
patients during the different immune phases of infection. This study revealed the profiles of the gut 
microbiota during HBV infection from the IT phase to the IA phase. The results suggested that the 
diversity, composition, and functionality of the microbiota changed from the IT phase to the IA phase 
and were related to the progression of CHB.

In our study, analysis of α-diversity using the Chao1, Shannon, and Simpson diversity indices 
showed no significant differences among the three groups. Nevertheless, one study has reported that 
the α-diversity is increased in cirrhosis patients compared to healthy controls and positively correlated 
to the Child-Pugh score[26]. In our study, a decreased ratio of Bacteroidetes to Firmicutes was observed as 

https://f6publishing.blob.core.windows.net/da4a50bc-09a9-4666-8187-bc6496f853d4/WJG-28-5188-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/da4a50bc-09a9-4666-8187-bc6496f853d4/WJG-28-5188-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/da4a50bc-09a9-4666-8187-bc6496f853d4/WJG-28-5188-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/da4a50bc-09a9-4666-8187-bc6496f853d4/WJG-28-5188-supplementary-material.pdf
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Figure 2 Beta-diversity analysis and comparison of variation in microbiota in the three groups using the linear discriminant analysis 
effect size online tool. A: Principal component analysis on the relative abundance. Each point represents a sample, plotted by the second principal component on 
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the Y-axis and the first principal component on the X-axis and colored by group; B: Comparison of the sample distribution of different subgroups using weighted non-
metric multidimensional scaling analysis. Each sample is represented by a dot; C: Partial least squares discrimination analysis. Each point represents a sample; D: 
Histogram of the linear discriminant analysis (LDA) scores for differentially abundant genera between groups (a logarithmic LDA score > 3 indicated a higher relative 
abundance in the corresponding group compared to the other group); E: The taxonomic cladogram obtained from the LDA effect size analysis of 16S sequences and 
taxonomic representation of statistically significant differences between groups. The diameter of each circle is proportional to the taxon abundance. LDA: Linear 
discriminant analysis; IT: Immune-tolerant; IA: Immune-active; H: Healthy.

Figure 3 Distribution of the predominant bacteria at different taxonomic levels (phylum, class, order, family, and genus). A-E: Stacked bars 
of the phylum, class, order, family, and genus level in healthy controls, immune-tolerant phase hepatitis B virus infection, and immune-active phase hepatitis B virus 
infection. IT: Immune-tolerant; IA: Immune-active; H: Healthy.

patients progressed from the IT phase to the IA phase, while another study has demonstrated that the 
ratio of Bacteroidetes to Firmicutes increased in patients with HBV-related cirrhosis compared to that of 
healthy individuals[27]. These results in different studies indicate that the results may vary greatly 
depending on the grouping. In addition, our results suggest that the composition of the gut microbiota 
had changed in the early stages of HBV infection. Furthermore, metabolic changes at different stages of 
HBV infection were also observed by PICRUSt analysis. Consistent with another study[27], these results 
suggest that changes in the composition of the gut microbiota can significantly alter gene function, 
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Figure 4 Comparison of variations in the microbiota of 3 patients before and after disease progression using the linear discriminant 
analysis effect size online tool. A: Distribution of the predominant bacteria at the phylum level in the 3 patients in the immune-tolerant and immune-active 
phases; B: The taxonomic cladogram obtained from linear discriminant analysis effect size analysis of 16S sequences and taxonomic representation of statistically 
significant differences between the two groups. The diameter of each circle is proportional to the taxon abundance; C: Histogram of the linear discriminant analysis 
scores for differentially abundant genera between the two groups (a logarithmic linear discriminant analysis score > 3 indicated a higher relative abundance in the 
corresponding group compared to the other group). LDA: Linear discriminant analysis; IT: Immune-tolerant; IA: Immune-active.

which may have a potential role in HBV-infected patients.
When compared to the healthy controls, there was a correlation between some gut microbiota in 

patients at the IT and IA phases. Notably, the IT group presented a high relative abundance of Senegali-
massilia, Prevotella 2, Alloprevotella, Sutterella, and Haemophilus; while the IA group showed a high 
relative abundance of Blautia, Faecalibacterium, Clostridium innocuum group, and Faecalitalea. Some 
Prevotella strains have been reported as potentially clinically important pathobionts in human diseases 
by increasing the levels of interleukin (IL)-23, IL-1, IL-8, IL-6, and C-C motif chemokine ligand 20[28]. In 
addition, Alloprevotella is enriched in fecal samples from patients with chronic kidney disease[29]. 



Li YN et al. Omics analysis of CHB patients

WJG https://www.wjgnet.com 5197 September 21, 2022 Volume 28 Issue 35

Figure 5 Alteration of the predicted microbial functional composition from the 16S rDNA sequencing data, analyzed using Phylogenetic 
Investigation of Communities by Reconstruction of Unobserved States. A and B: Representing the differences at the cellular processes among healthy 
and patients in the immune-tolerant and immune-active phases; C and D: Representing the differences at the genetic information processing and human diseases 
among healthy and patients in the immune-tolerant and immune-active phases; E and F: Representing the differences at the organismal systems and metabolism 
among healthy and patients in the immune-tolerant and immune-active phases. IT: Immune-tolerant; IA: Immune-active; H: Healthy.
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Moreover, the gut microbiota in prediabetic individuals was found to be aberrant, with decreased 
Clostridium and increased Sutterella levels[30]. Furthermore, Sutterella has the capacity to degrade IgA, 
causing failure of therapeutics treating ulcerative colitis[31]. These findings reveal that Prevotella 2, 
Alloprevotella, and Sutterella are involved in chronic human diseases. Our results also indicate that 
Prevotella 2, Alloprevotella, and Sutterella are specifically related to HBV infection in the IT phase, 
suggesting their role of mediating viral escape from the host immune response.

Blautia, Faecalibacterium, Clostridium innocuum group, and Faecalitalea were identified as signature gut 
microbiota related to HBV infection in the IA phase. Notably, an elevated abundance of Blautia has been 
shown to alleviate the severity of lethal acute graft-versus-host disease[32]. In addition, Benítez-Páez et 
al[33] proposed that Blautia luti and Blautia wexlerae might help to reduce the inflammation that is linked 
to obesity-related complications. Moreover, Blautia is positively associated with the pathophysiology of 
type 2 diabetes[34]. Furthermore, Faecalibacterium prausnitzii, belonging to Faecalibacterium, is a major 
constituent of the gut microbiota in healthy individuals. This bacterium, which has anti-inflammatory 
activity, is decreased in patients with inflammatory bowel diseases such as Crohn’s disease. Inte-
restingly, Blautia and Faecalibacterium have been shown to be beneficial in a healthy gut[35]; these 
bacteria enhance the production of butyrate succinate and lactate, thus providing energy and reducing 
inflammation[36].

Additionally, a recent finding indicated that in patients with early HBV-related HCC, genera 
belonging to butyrate-producing bacterial families, including Ruminococcus, Oscillibacter, Faecalibacterium
, Clostridium IV, and Coprococcus decreased, while the lipopolysaccharide-producing bacteria Klebsiella 
and Haemophilus increased compared to the levels in cirrhosis patients[37]. Herein, the proportions of 
Blautia, Faecalibacterium, and Clostridium innocuum group were higher in the IA-phase patients than in 
the controls, indicating that enrichment of these three signature microbial taxa might be a sign of severe 
inflammation or exacerbation of disease. Notably, these beneficial gut microbiota might help to clear 
viral infection in the IA phase, while some gut microbiota in the IT phase might help the virus to escape 
from host immune responses. Taken together, these findings highlight an important role for the 
composition of the gut microbiota in the progression of HBV infection, which has significant clinical 
implications.

Based on the composition and structure of the gut microbiota, the metabolic function of the 
microflora was further analyzed through PICRUSt. In this study, the genes involved in glycan biosyn-
thesis and metabolism as well as cofactor and vitamin metabolism were more enriched in the IT-phase 
patients than in the healthy controls. One explanation for this finding is that Senegalimassilia, Prevotella 2, 
Alloprevotella, Sutterella, and Haemophilus are enriched in the IT phase and consume glycan as their 
energy source; the genes found in these bacteria are related to cofactor and vitamin metabolism. In 
contrast, terpenoid and polyketide metabolism-related genes were more abundant in the IA phase, 
suggesting that Senegalimassilia, Prevotella 2, Alloprevotella, Sutterella, and Haemophilus participate in the 
metabolism of terpenoids and polyketides. These results may indicate that the gut microbiota and 
metabolites contribute to the abnormal metabolism status in CHB.

Previous research has shown that the gut microbiota composition is closely related to the occurrence 
of various chronic liver diseases[38-40]. Our current study demonstrated that potential links exist 
between certain bacteria and different pathological mechanisms during CHB progression from the IT 
phase to the IA phase.

Studies using mouse models have uncovered that the gut microbiota have a vital role in overcoming 
the IT phase of viral infection at different ages[41] and that gut microbiota lead to Kupffer cell-mediated 
T cell suppression, which is associated with HBV persistence[42]. In addition, fecal microbiota 
transplantation therapy has been shown to improve the clearance rate of HBV antigens in CHB patients 
after long-term therapy[43]. Our study demonstrated that the gut microbiota composition changed at 
different phases of HBV infection. Changes in the gut microbiota composition could be a biological 
factor for the progression of CHB. We believe that the gut microbiome of CHB patients may provide a 
useful prognostic marker for disease progression, outcome prediction, and treatment and that further 
microbiome-based study may provide new insights into the pathogenesis of CHB, the etiology of its 
progression, and novel therapeutic strategies such as the use of probiotics or fecal microbiota trans-
plantation.

Although this study uncovered some insightful findings, some limitations remain. First, all patients 
enrolled in this study were from different families. Having different genetic backgrounds and dietary 
habits might affect the gut microbiota composition. In addition, the healthy donors should have had a 
similar age to the patients; however, the controls were not age-matched to the patients in this study. 
Second, only 3 patients were followed up from the IT phase to the IA phase. A larger longitudinal 
sample size will strengthen the results. Third, a real-world cross-sectional study would be beneficial to 
understand the impact of the microbiota on the progression of liver disease. Fourth, the methods we 
used have some limitations. Although transcriptomics also contributes to gene expression, the findings 
could be further confirmed if we used metagenomic sequencing rather than 16S rDNA gene sequencing. 
Metagenomic sequencing not only sequences the 16S rDNA genes, but it also sequences the whole 
genome of each bacterium. Thus, only by doing metagenomic sequencing, one can get the complete 
picture. Fifth, the functional studies of the gut microbiota are based on statistical predictions; therefore, 
further studies using germ-free animal models and related functional studies are required to investigate 
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the specific roles of the gut microbiota in CHB. Furthermore, the IT phase is an important phase that 
needs more attention.

CONCLUSION
These findings provide observational evidence of compositional alterations of the gut microbiome and 
some related metabolites in patients with IT-phase or IA-phase HBV infection. Further studies should 
investigate whether microbiota modulation can facilitate the progression of CHB and the cause-effect 
relationship between the gut microbiota and CHB.

ARTICLE HIGHLIGHTS
Research background
Chronic hepatitis B virus (HBV) infection (CHB) represents a public health problem that may progress 
to cirrhosis and hepatocellular carcinoma (HCC). HBV-infected individuals in immune tolerance (IT) are 
generally not recommended for anti-HBV treatment, owing to the absence of curative treatment and the 
evidence of a low risk of progressive liver injury in the IT patients. However, recent studies indicated 
hepatocarcinogenesis may occur in IT-phase patients; the body’s IT status is a key factor affecting the 
outcome of the disease. Therefore, finding out the factors that affect the prognosis of HBV infection is of 
paramount significance for the rapid elimination of virus and the reduction of CHB.

Research motivation
The bacterial diversity level and composition varied between CHB, hepatitis B-related liver cirrhosis, 
and HCC. Gut microbiota of healthy controls is more consistent, whereas those of CHB, hepatitis B-
related liver cirrhosis and HCC varied substantially. As the first phase of HBV progression, IT phase 
provides a favorable immune environment for HBV invasion and long-term existence, then transitions 
to immune clearance in the third decade. Therefore, in-depth study of the disease status and changes in 
the body during the IT phase is conducive to the development of new antiviral treatment methods to 
break the IT of the body and improve the antiviral efficacy and thus improve the long-term prognosis.

Research objectives
This study aimed to find some potential bacteria, linking different pathological mechanisms of IT phase 
HBV infection and some related metabolites to the IT phase of CHB infection.

Research methods
Clinical fecal samples from healthy individuals and patients in the IT and IA phases of HBV infection 
were collected. Next, non-target metabolomics, bioinformatics, and 16S rDNA sequencing analyses were 
performed.

Research results
A total of 293 different metabolites in 14 phyla, 22 classes, 29 orders, 51 families, and 190 genera were 
identified. The four phyla of Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria were the most 
abundant, accounting for 99.72%, 99.79%, and 99.55% in the healthy controls, IT-phase patients, and IA-
phase patients, respectively. We further identified 16 genera with different richness in the IT phase and 
IA phase of HBV infection. Of the 134 named metabolites, 57 were upregulated and 77 were downreg-
ulated. A total of 101 different metabolic functions were predicted in this study, with 6 metabolic 
pathways having the highest enrichments, namely carbohydrate metabolism (14.85%), amino acid 
metabolism (12.87%), lipid metabolism (11.88%), metabolism of cofactors and vitamins (11.88%), 
xenobiotic biodegradation (9.9%), and metabolism of terpenoids and polyketides (7.92%).

Research conclusions
The composition of the gut microbiota changed in the early stages of HBV infection, and changes in the 
composition of the gut microbiota can significantly alter gene function, which may have a potential role 
in HBV-infected patients.

Research perspectives
It is relatively difficult to fully understand the causal relationship between gut microbiota and HBV-
induced chronic liver disease at different stages in this real-world cross-sectional study. Nevertheless, it 
should be noted that germ-free animals are good models to study the effect of gut microbiota on human 
diseases. In a future study, it is imperative to use germ-free animal models and additional biofunctional 
assays to reveal the cause-effect relationship between gut microbiota and chronic HBV infection.
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