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Abstract
Irritable bowel syndrome (IBS) is a common clinical label for medically 
unexplained gastrointestinal symptoms, recently described as a disturbance of the 
microbiota-gut-brain axis. Despite decades of research, the pathophysiology of 
this highly heterogeneous disorder remains elusive. However, a dramatic change 
in the understanding of the underlying pathophysiological mechanisms surfaced 
when the importance of gut microbiota protruded the scientific picture. Are we 
getting any closer to understanding IBS’ etiology, or are we drowning in 
unspecific, conflicting data because we possess limited tools to unravel the cluster 
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of secrets our gut microbiota is concealing? In this comprehensive review we are 
discussing some of the major important features of IBS and their interaction with 
gut microbiota, clinical microbiota-altering treatment such as the low FODMAP 
diet and fecal microbiota transplantation, neuroimaging and methods in 
microbiota analyses, and current and future challenges with big data analysis in 
IBS.

Key Words: Microbiota; Neurogastroenterology; Irritable bowel syndrome; Microbiota-
gut-brain axis; Structural and functional magnetic resonance imaging; Machine learning; 
Big data analysis

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Molecular biology, advanced neuroimaging and computer science is 
emerging to transform our understanding of the role of gut microbiota in irritable 
bowel syndrome (IBS). Herein, we provide an overview and discuss the role of gut 
microbiota in IBS, the clinical microbiota-altering interventions the low FODMAP diet 
and fecal microbiota transplantation, the role of brain-imaging and gut microbiota 
analyses, the importance of method selection, metadata, perspectives for improving 
microbiota role predictions, and big data analysis, in the seeking of understanding IBS 
pathology.

Citation: Hillestad EMR, van der Meeren A, Nagaraja BH, Bjørsvik BR, Haleem N, Benitez-
Paez A, Sanz Y, Hausken T, Lied GA, Lundervold A, Berentsen B. Gut bless you: The 
microbiota-gut-brain axis in irritable bowel syndrome. World J Gastroenterol 2022; 28(4): 412-
431
URL: https://www.wjgnet.com/1007-9327/full/v28/i4/412.htm
DOI: https://dx.doi.org/10.3748/wjg.v28.i4.412

INTRODUCTION
Irritable bowel syndrome – a disturbance of the microbiota-gut-brain axis 
Irritable bowel syndrome (IBS) is a chronic biopsychosocial disorder manifested by 
recurrent abdominal pain and alterations in stool form or frequency[1]. The condition 
affects 4%-10% of the global population and is associated with markedly reduced 
quality of life[2,3]. In addition to genetic predisposition, adverse life events, 
psychosocial factors, chronic and acute stress, and gastrointestinal (GI) infections[1], 
mounting evidence suggests the gut microbiota play a key role in IBS.

Because of its heterogeneity and unclear etiology, clear biomarkers and therapeutic 
targets for IBS have been difficult to identify. As a term, “IBS” is collective for 
medically unexplained disturbances of the bidirectional communication between the 
gut and the brain. These disturbances are multifactorial and include visceral 
hypersensitivity, low-grade inflammatory responses, intestinal motility disturbances, 
alterations of central nervous system (CNS) processing, and alterations in gut 
microbiota composition[1]. In the gut, a well-functioning microbiota is highly adapted 
to the host and carries out biochemical and metabolic processes that are important for 
host function. Signals coming from the gut microbiota modulate aspects of 
homeostasis through neural, endocrine and immune communication pathways 
between the gut and the brain[4,5]. Together, this has established the concept of the 
microbiota-gut-brain (MGB) –axis (Figure 1).

The vagus nerve serve as a major MGB pathway modulator. It is composed of 
somatic and afferent fibers (80%) and general and special visceral efferent fibers (20%). 
Under normal circumstances, the vagus nerve sense and is activated by diet-
responsive gut microbes and metabolites such as short-chain fatty acids (SCFAs), or 
endocrine factors, enzymes, and neurotransmitters such as serotonin, dopamine, 
acetylcholine, glutamate, γ-aminobutyric acid (GABA), and noradrenaline[6-9]. Each 
of these factors are potentially affected by alterations in microbiota composition and 
are involved in IBS pathology, as shown in Figure 1. In the intestines, vagal endings 
synapse onto neurons of the enteric nervous system (ENS), which governs the function 
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of muscular, neuro-hormonal, and secretory systems of the GI tract to generate 
patterns of functional digestion. In IBS, the pathophysiology implicates altered gut 
microbiota composition, impaired intestinal mucosal integrity, and low-grade inflam-
mation[10]. In addition to pathways through the circulatory system, several of these 
factors may also trigger fluctuations in the activity of the ENS with subsequent effect 
on the brain. This relationship of reciprocal signals may be disturbed to the degree of 
chronic IBS. In the chronic IBS brain, efferent signals may be perceived as unpleasant 
or painful, potentially leading to chronic visceral discomfort or pain[11].

The heterogeneity of the “healthy gut microbiota” has made it difficult to identify a 
clear IBS microbial signature. Indeed, the composition of gut microbiota composition 
is influenced by multiple factors, e.g., geographic location, ethnicity, dietary choices, 
medication use, and pathogens, summarized by Adak et al[12]. Hence, the human gut 
microbiota composition is highly diverse. This heterogeneity makes is difficult to 
provide a clear definition to what a “healthy microbiota” is. Nevertheless, some 
features are considered important characteristics: a high level of diversity, a favorable 
amount of butyrate-producing bacteria, and resistance and resilience - the ability to 
withstand a disturbance promoting a shift in the composition and the attribute to 
return to its initial composition, functionally or taxonomical, following this 
disturbance[12,13]. On the contrary, in disease the microbiota composition is often 
associated with a decreased microbial diversity and loss of the typical balance between 
the host and the microorganisms[13], a so-called  “dysbiosis” (a debated concept[14,15]
), linked to several systemic and local human diseases.

Multiple studies have shown differences in the gut microbiota between IBS and 
healthy controls[16-20]. A comprehensive systematic review from 2019 showed that 
patients with IBS have increased levels of the bacterial families Enterobacteriaceae, 
Lactobacillaceae and Bacteroidales, whereas Bifidobacterium, Faecalibacterium, and 
Clostridiales were decreased compared to healthy controls[21]. On the contrary, 
Hugerth et al[22] recently reported no distinct microbiota signature of IBS in a random 
Swedish population of 3556 participants. Here, the between-sample divergence was 
higher in IBS compared to controls from the same population-sampling frame, but no 
clear biomarker of IBS was revealed. There are multiple individual reports on 
differences in distribution patterns of constipation predominant IBS (IBS-C), IBS with 
mixed constipation and diarrhea (IBS-M), and diarrhea predominant IBS (IBS-D), 
summarized by, among others, Liu et al[23], and Wang et al[24]. Pozuelo et al[25] found 
butyrate- and methane-producing bacteria were less abundant in IBS-D and IBS-M 
patients. However, Pittayanon et al[21] summarized six studies from 130 patients with 
IBS-M, demonstrating no significant difference between subtypes. Interestingly, 
intestinal bacterial composition has been reported to be highly dependent on sample 
type and regional localization. Also, mucosa-associated bacterial composition of the 
sigmoid colon differ between patients with IBS and healthy controls[26].

Indeed, the absence of a universal definition of what a “healthy microbiota” is, in 
addition to lack of consistency in sequencing methodology, study protocols, inter-
individual variation that dominate intra-individual variation, definitions of “controls”, 
and different statistical methodologies being used have made the search for a common 
pathological IBS microbiota signature difficult. The importance of method selection, 
metadata, and perspectives for improving microbiota role predictions are discussed 
more thoroughly in section “Intestinal microbiota analyses”, below.

Another factor to consider is the impact of the circadian rhythm on gut microbiota 
variability. Both the level of host-derived autoantibodies and peptides and nutrient 
availability give fluctuations in the gut microbiota, and both are associated with 
circadian rhythm oscillations[6]. At least 10% of operational taxonomic units may 
oscillate due to the circadian rhythm, which is important to consider when collecting 
and analyzing fecal samples[27]. Thus, we might be in the mere beginning of 
understanding how alterations in gut microbiota may lead to the disruption of the 
intricate host-gut-microbiota-interaction. Is it a cause or a result of IBS pathology? In 
the last decade, much knowledge has been gained from clinical microbiota-altering 
interventions such as the low FODMAP-diet and fecal microbiota transplantation 
(FMT), which has emerged as debatably successful treatment strategies. However, 
their effects on the MGB-axis are still far from understood.
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Figure 1 Integration of multimodal and interdisciplinary approaches for big data analysis in irritable bowel syndrome. Created with 
BioRender.com. ANS: Autonomic nervous system; CNS: Central nervous system; FODMAP: Fermentable oligosaccharides, disaccharides, monosaccharides and 
polyols; FMT: Fecal microbiota transplant; 5-HT: 5-hydroxytryptamine (serotonin); SCFAs: Short chain fatty acids; GABA: γ-aminobutyric acid; TLRs: Toll-like 
receptors.

CLINICAL MICROBIOTA-ALTERING TREATMENT IN IBS – THE LOW 
FODMAP DIET AND FECAL TRANSPLANTATION 
Dietary intervention
Diet is an environmental factor that is pivotal in shaping the architecture of gut 
bacteria. Although genetics have been assumed to be of great importance[28], a recent 
study shows that environmental factors, such as diet, are dominating[29]. In the 
symbiotic host/bacteria relationship, gut bacteria depend on host intake of complex 
polysaccharides to facilitate growth. As hosts, humans depend on gut bacteria to break 
down complex nutrients resistant to human GI metabolism and metabolites produced 
from fermentation, such as SCFAs.  In IBS, foods play an important role among the 
contributing factors to symptom induction. In fact, the majority of patients with IBS 
experience increased symptom burden after food intake[30], despite the lack of 
objective evidence for food hypersensitivity or allergies[31]. Several underlying 
mechanisms generating symptoms are proposed to be involved[32]: (1) Local effects in 
the small and large intestine are caused by fermentable oligosaccharides, 
disaccharides, monosaccharides and polyols (FODMAPs). Intake of these short-chain 
carbohydrates have an osmotic effect in the gut lumen, increasing small intestinal 
water content and introduce undigested food particles to the gut bacteria who readily 
ferment them, causing gas production in the colon leading to abdominal pain as a 
consequence of a sensitive ENS i.e.: visceral hypersensitivity[33]. In 2017, Varjú et al[34] 
compared standard dietary therapy for IBS and the low FODMAP diet in 2017. Both 
diets showed to alleviate symptoms, but the low FODMAP diet showed a better 
therapeutic effect. However, with the available data on diet interventions in IBS, a low 
FODMAP diet has the greatest evidence of efficacy[35], with the most updated 
systematic review reporting significant improvements in GI symptoms and quality of 
life compared to control diets or habitual diets[36]; (2)  Gut microbiota alterations and 
bacterial fermentation might have a role in food-related symptoms. Inexplicably, 
contradicting findings regarding different microbiota compositions between patients 
with IBS and healthy controls are often reported[21,22]. A recent matched case-control 
study from a Thai population reported no distinction in the gut microbiota between 
IBS-D and healthy subjects[37]. Here, the authors accredit the discordant results from 
those conducted in Western countries as an effect of different dietary lifestyles 
affecting the gut microbiota, suggesting that alterations in gut microbiota is not the 
main pathogenic mechanism of IBS-D in Thai patients[37]. In the Swedish random 
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population, patients with IBS showed higher heterogeneity in microbiota composition 
compared to healthy individuals[22]. However, we need to keep in mind that bacterial 
fermentation capability may be more dependent on bacterial function rather than 
composition alone[38]. Nevertheless, differences in composition may still matter 
because it could result in differences in the effectiveness of a function[39]. Despite 
good documentation of a low FODMAP diet on symptom alleviation[36], FODMAP 
restriction is of concern due to possible unhealthy changes in gut microbiota 
composition with unknown consequences. Depriving the gut bacteria of carbohydrate 
and prebiotic substrates will shift the gut microbiota to ferment e.g., proteins and/or 
some amino acids, leading to production of potentially harmful compounds, 
summarized by Oliphant and Allen-Vercoe[40]. Desai et al[41] investigated gnotobiotic 
mice colonized with human gut microbiota fed a fiber-deprived diet. Because of fiber 
deficiency, the gut microbiota fed on the colonic mucosa layer that originally acted as a 
defense barrier against pathogens, leading to heighted pathogen susceptibility. 
Multiple features of alterations in the gut microbiota composition after a low 
FODMAP diet are reported, such as a lower total bacteria load, a lower absolute 
abundance of luminal Actinobacteria, Bifidobacteria, Clostridium cluster IV, Faecalibac-
terium prausnitzii, and a lower concentration of the SCFA butyrate[42-44]. These 
studies all report on short-term interventions compared to baseline or habitual diets. 
The inconsistency of the study results are intriguing. McIntosh et al[45] comparing a 
low and a high FODMAP diet found a higher bacteria richness and diversity of 
Actinobacteria, Firmicutes, and Clostridiales in patients with IBS-D/-M in the low 
FODMAP group, while a high FODMAP diet decreased the relative abundance of gas-
producing bacteria[45]. The sparse documentation of the long-term consequences 
beyond 8-12 wk of FODMAP restrictions does evoke certain skepticism. The highly 
restrictive nature of the diet may lead to disordered eating habits and demands much 
effort and motivation from patients. These factors highlight the importance of reintro-
duction of FODMAPs after the strict phase in the clinical management of patients with 
IBS[46]. Inter-individual variability and high inconsistency between clinical findings 
have made the search for a microbiota signature to predict treatment outcome 
challenging[47]; and (3) Systemic immune and inflammation responses may also 
contribute in symptom generation in IBS. McIntosh et al[45] showed that urinary 
histamine levels were substantially reduced following a low FODMAP diet[45], 
leading to hypothesizing that a low FODMAP diet might be beneficial in a subset of 
patients with a particular microbiota profile leading to high histamine production, 
hence where histamine is being a pathophysiology modulator of importance[32,45]. 
Our group were the first to report reduced levels of pro-inflammatory IL-6 and IL-8, 
but not TNF-α, after a 3-wk low FODMAP diet. Simultaneously, selected bacteria 
associated with anti-inflammatory properties, e.g. Faecalibacterium prausnitzii and 
Bifidobacterium, total levels of SCFAs and n-butyric acid, decreased[43]. Others have 
reported that SCFAs may have anti-inflammatory and immunomodulatory effects, as 
summarized by Tan et al[48], indicating that our findings present a paradox. Indeed, 
the full connection between diet intake, gut microbiota and its metabolites, and 
immune and inflammatory responses remains elusive. Herein, the intestinal barrier, 
gut integrity and low-grade inflammation is further discussed in section “Intestinal 
barrier and gut integrity”, below.

Fecal microbiota transplantation
In fecal microbiota transplantation (FMT) screened stool from a healthy donor is 
transferred to a recipient with the purpose of altering the diversity of the gut 
microbiota. FMT is recommended as a therapeutic strategy in Clostridioides difficile 
(CDI) infection, and has also been demonstrated effective in inflammatory bowel 
disease and IBS[49]. There are multiple routes of FMT delivery available including 
colonoscopy, nasogastric tube, nasoduodenal tube, enema and oral capsules. Each of 
these modalities has been associated with varying clinical success. Additionally, 
whether the donor sample is fresh or frozen, or derived from a related or unrelated 
donor may result in different outcomes. Many recent randomized controlled trial 
(RCT) studies in IBS have been published, although with conflicting results. In a meta-
analysis of five RCTs, overall FMT did not significantly improve IBS symptoms[50]. 
Here, the results were largely contradictive; one study showed amelioration of 
symptoms with FMT over placebo, while another study demonstrated superiority of 
placebo over FMT. The explanation for such contradictory results may be due to the 
heterogeneity of the disease. Another explanation may be the route of FMT adminis-
tration. A recent double blinded RCT recruited 90 IBS patients and randomly assigned 
them to active treatment (n = 60) or placebo (n = 30) where fresh transplant was 
delivered with colonoscope to coecum[51]. FMT induced significant symptom relief in 
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patients with IBS, compared to controls. In 2020, our group investigated the effect of a 
single FMT using different stool dosages (30 g and 60 g) of frozen feces, delivered to 
the distal duodenum through a gastroscope. Placebo was the patient’s own 
(autologous) feces. Here, patients responded best to the higher dosage. This study 
concluded that utilizing a well-defined donor with a normal dysbiosis index and a 
favorable specific microbial signature is important for a successful FMT[52]. Data on 
long-term follow-up post FMT in IBS have been sparse. However, 1-year effects were 
recently reported by Holvoet et al[53]. In a doubled blinded RCT of patients with 
treatment-refractory IBS with predominant bloating, patients were randomly assigned 
to single dose nasojejunal administration of donor stools or autologous stools[53]. 
Here, FMT relieved symptoms compared to placebo (autologous transplant), although 
the effects decreased over 1 year. A second FMT restored the response in patients with 
a prior response. Evidently, fecal samples from responders had higher microbiota 
diversity before administration of donor material than fecal samples from non-
responders and distinct baseline composition, but unfortunately, no specific marker 
taxa were associated with response[53]. In addition, 5-year effects were recently 
reported in a retrospective analysis by Cui et al[54]. In this single-center retrospective 
study, patients with all subtypes of IBS were assigned to receive FMT through 
nasojejunal administration, colonoscopy administration, or freeze-dried capsules from 
healthy, screened donors[54]. Considering all patients, regardless of route of adminis-
tration, 50% of patients reported gradual symptom improvement after one month to 
70% and 75% after one and two years, respectively. After five years, 60% of patients 
experienced improvement. This decline suggests that repetitive FMT may be required 
for a sustained effect[54].

There are many hopes for the future in IBS treatment, and FMT capsules are one of 
them. Capsules are beneficial because the route of administration is much less 
demanding than endoscopy, they put much less stain on the patient, and can be orally 
administered by the patients themselves at home. Halkjær et al[55] performed a RCT 
study in patients with moderate-to-severe IBS. FMT resulted in altered gut microbiota 
composition, but patients in the placebo group experienced greater symptom relief 
compared to the treatment group after three months. Supporting this, Aroniadis et al
[56] also found that placebo capsules did not induced symptom relief compared with 
placebo. Hence, the efficacy and safety of FMT in IBS is still under evaluation. Most 
researchers and clinicians strongly believe that more research is required before the 
FMT can become an openly available treatment option. A significant question that 
remains to be answered is whether the described dysbiosis in IBS is a consequence 
rather than cause of MGB-axis dysfunction in IBS. The varying abovementioned 
results may indicate that altering gut microbiota is not enough to obtain clinical 
improvement in IBS. FMT is a highly requested treatment among patients with IBS, 
and many practitioners find it difficult to refuse patients treatment that may be 
beneficial. However, researchers are calling for caution on FMT as a treatment of IBS
[57]. With reference to safety, patients have reported adverse effects of abdominal 
pain, cramping or tenderness, diarrhea or constipation, in contrast to 2% in the placebo 
group[52]. In march 2020, the US Food and Drug Administration issued a warning of 
potential risk for serious infections due to FMT caused by enteropathogenic or 
Shigatoxin-producing E. coli that occurred following investigational use of an FMT 
product supplied by a stool bank, from pre-screened donors[58]. Hence, different 
study designs with larger cohorts are required to examine the efficacy and safety of 
FMT in IBS.

Indeed, the complex interplay between the host and gut microbiota is not fully 
elucidated, but certain features in IBS are documented to be involved, including 
luminal interactions and its pivotal role in the regulation of the immune system. 
Whether altered microbiota composition, function and abundance is the cause or a 
consequence of IBS, we need to understand more about their interplay with us as 
hosts, and importantly, the intestinal barrier and gut integrity in IBS.

INTESTINAL BARRIER AND GUT INTEGRITY 
Molecular biology has revealed the presence of structural and functional alterations of 
the intestinal epithelial barrier and mild activation of the immune system both locally 
in the intestinal mucosa and systemically, in IBS. We now know that changes in 
intestinal permeability create a passage for microbiota and their metabolites from the 
lumen to the ENS, immune cells and systemic circulation, features that are associated 
with low-grade inflammation in IBS. Intestinal barrier dysfunction is present in a 
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significant proportion of reported IBS studies, especially in the IBS-D and post-
infectious subtype[59]. The association between impaired barrier function and 
symptoms in IBS are not fully understood but visceral hypersensitivity and pain is 
possibly explained by exposure of the submucosal neuronal and immune apparatus. 
Under normal conditions, the intestinal barrier consists of a monolayer of polarised 
epithelial cells, coated with a thick layer of mucus[60]. As a part of the host defence 
system, the mucus layer entraps pathogens and is inhabited by commensal microbes 
such as Bacteroides, Firmicutes, and Lactobacillus whose products, such as IgA, 
contribute to the prevention of pathogen colonization[61]. Microbiota also produce 
proteases and protease inhibitors that can modulate the host immune response. In IBS, 
dysbiosis-derived proteases are thought to contribute to loss of barrier function, 
immune activation, and symptom generation through activation of protease-activated 
receptors (PARs)[62]. Recently, higher levels of fecal proteolytic activity has been 
identified in IBS, particularly in patients suffering from post-infectious IBS[63]. 
Notably, this was associated with changes in microbiota composition, suggesting that 
specific microbes contribute to increased production or inadequate suppression of 
proteases and subsequent activation of PARs that may lead to intestinal barrier 
dysfunction.

In normal barrier permeability, the space between epithelial cells are sealed by tight 
junctions and maintained by a complex network of protein interactions. In IBS, the 
expression levels of tight junction proteins, such as Occludin, Zonula occludens-1, and 
Claudin-1, have been found to be reduced in the duodenum, jejunum and colon[59,64]. 

Interestingly, microbiota has been found to regulate the expression of tight junction 
proteins[65], and enhanced bacterial passage over the barrier has been observed[66].

In the intestinal mucosa, mast cells comprise 2%-3% of the immune cell pool of the 
lamina propria, and increased intestinal mast cell concentration or activation is one of 
the most consistent pathological findings in IBS[67-69]. Mast cells possess a great 
number of stimulatory molecules which allow interaction with a multitude of partners, 
including immune and non-immune cells. Activated mast cells release mediators such 
as histamine, serotonin, proteases, and prostaglandins, and they also secrete cytokines 
and chemokines. Their interactions are indeed complex. Some mast cells interact with 
both the commensal microbiota and the nervous system by signalling to enteric 
neurons though serotonin while being influenced by neurotransmitters such as 
substance P or noradrenalin[70]. In IBS, mast cell-induced activation of enteric neurons 
may contribute to visceral hypersensitivity[66,71]. Indeed, some bacteria specifically 
affect mast cells function and activation, but the role of dysbiosis-mast cell-interaction 
in IBS is yet to be elucidated.

A potential marker of low-grade inflammation in IBS is altered levels of cytokines. 
Multiple cytokine profiles of patients with IBS have been reported, but they are highly 
inconsistent. Some has found increased levels of circulating pro-inflammatory 
cytokines such as IL-6, IL-8, IL-17, and TNF-α[72-74], or reduced levels of the anti-
inflammatory cytokine IL-10[72]. Other studies indicate no difference between patients 
with IBS and healthy controls [75,76]. Interestingly, associations between altered 
cytokine profiles and changes in gut microbiota have been observed. A study by 
Hustoft et al[43] found reduced levels of IL-6 and IL-8 and decreased levels of 
Actinobacteria, Bifidobacterium, and Faecalibacterium prausnitzii after three weeks of 
the low FODMAP diet. Changes in cytokine levels could thus indicate an abnormal 
mucosal immune response associated with changes in the gut microbiota.

Increased expression of Toll-like receptors (TLRs) is an interesting finding in 
patients with IBS[77,78]. These receptors are found on many different cells, including 
intestinal epithelial cells and immune cells, and they interact in close relation to neural 
and immune receptors that are involved in the homeostatic regulation in the gut 
mucosa[79]. TLRs recognise specific microbial components of both commensal and 
pathogenic bacteria and play a role in immunologic tolerance to commensals and 
defend against pathogens[80]. In association with increased levels of TLRs, changes in 
both cytokine profiles and gut microbiota have been observed in patients with IBS, 
suggesting that an altered microbiota profile may influence TLR expression and 
immune activation[78].

Indeed, dysbiosis may induce intestinal barrier loss and increased intestinal 
permeability that cause bacterial products and metabolites to permeate the epithelial 
barrier, thus triggering an inflammatory response[81].  Mast cells are ‘‘gate keepers’’, 
and they are not only involved in allergic reactions, but also in host defence including 
recruitment and activation of other immune cells which may evoke the symptom 
generation. We believe that further studies should be more focused on which 
triggering factors that are involved in the link between gut microbiota, intestinal 
permeability, and intestinal mucosal response in patients with IBS. Indeed, changes in 
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intestinal permeability create a passage for microbiota and their metabolites from the 
lumen to the ENS, immune cells, and systemic circulation, features whose effect on the 
brain should also be investigated.

NEUROIMAGNING AND GUT MICROBIOTA IN IBS
The MGB-axis represent a paradigm shift in both neuroscience, gastroenterology and 
systems medicine. See Mayer et al[82] for a visionary and integrative systems-biology-
based model approach to IBS. GI symptoms such as heartburn, indigestion, acid reflux, 
bloating, pain, constipation, and diarrhea can be triggered by emotional and 
psychosocial factors. Conversely, GI symptoms alter CNS processing in the absence of 
detectable organic disease and are implicated in neurological disorders and psychiatric 
conditions such as anxiety, depression, autism spectrum disorder (ASD), and 
Parkinson’s disease. Brain imaging modalities and techniques are valuable tools that 
can non-invasively extract both structure and function in the living brain at the 
millimeter scale and at a temporal resolution down to seconds. To study the IBS brain, 
or more generally, applying brain imaging to explore disorders of gut-brain 
interaction and relation to gut microbiota, the most important modality with whole 
brain coverage is likely magnetic resonance imaging (MRI)[83,84]. Among the plethora 
of MRI measurement techniques, there are (1) Structural MRI (sMRI), providing 3D 
images with high spatial resolution and various types of soft tissue contrast enabling 
quantitative assessment of brain morphometry such as volumes of different brain 
structures or regions, local and patch-wise cortical thickness and gyrification, and 
localized MR signal intensity patterns, e.g., radiomics[85]; (2) diffusion MRI (dMRI), 
measuring directional and tissue-dependent water diffusion at the microscopic scale 
enabling quantitative assessment of tissue microarchitecture, e.g., metrics such as 
fractional anisotropy (FA) derived from the voxel-wise diffusion tensor estimation, 
and large-scale structural connectivity between brain regions obtain by fiber-tracking 
algorithms; and (3) functional MRI (fMRI), based on blood-oxygen-level-dependent 
(BOLD) contrast imaging sensitive to local neuronal activity across the brain in 
situations where the brain is exposed to cognitive, emotional or sensory stimuli given 
under experimental control, or being in “resting state” where brain activity is assumed 
to be intrinsic due to spontaneous fluctuations in the paramagnetic BOLD signal and 
thereby detectable even in the absence of an externally prompted task or a specific 
sensory stimulus. A large proportion of neuroimaging studies, partly also targeting 
IBS, have focused on structural and functional brain connectivity using a combination 
of dMRI and/or fMRI recordings and topological network analysis based on graph 
theory[86-89], and more recently also deep learning methods and graph convolution 
approaches for functional annotation of cognitive states[90,91]. It is expected that these 
deep learning methodologies will also penetrate imaging and network-based analysis 
in IBS research[82].

Keeping the systems view on IBS, the term radiomicrobiomics was coined by De 
Santis, Moratal and Canals in their perspective paper on advancing along the gut-
brain axis through big data analysis for diagnostic and prognostic purposes[92]. The 
term was introduced with reference to the efforts of combining microbiota sequencing 
data from the gut microbiota with imaging-based features that can be obtained from 
the conversion of brain images into mineable tabular data or graph representations in 
a network context. Interestingly, the gut microbiota seems to influence complex 
physiological systems other than the gut-brain axis and the pathophysiology of IBS, 
systems that are homeostatically regulated, partly involving CNS and ANS processing. 
These are blood pressure and the development and pathogenesis of hypertension, 
glycemic control, development of obesity and diabetes, mood regulation, and anxiety 
and depression[93-96]. In all these cases, neuroimaging and network analysis will be 
an important window to the brain and its interplay with microbiota composition and 
dynamics. More specifically, exploring the associations between neuroimaging 
parameters, such as brain regional volumes and gray matter densities assessed with 
sMRI, microstructural patterns assessed with dMRI and derived FA-values, or interre-
gional functional connectivity in e.g. the salience network, visceroceptive, pain 
processing, or emotion-regulating networks assessed with resting state fMRI and 
specific gut microbiota signatures, has the potential of vastly enhancing our 
knowledge on gut-brain interactions in IBS. In neuroimaging of the IBS brain, one of 
the most consistent findings are alterations in the structure and function of key regions 
of the somatosensory network, including the globus pallidus, putamen, and caudate, 
composing the basal ganglia[83]. It has also been reported increased gray matter 
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density (GMD) in the hypothalamus and decreased GMD in the prefrontal cortex in 
the IBS brain[97]. In rectal distention experiments, patients with IBS had a differential 
brain response in the pain matrix and default mode network[89]. Neuroimaging 
studies has also revealed gender-differences in IBS brain network alterations. Female 
IBS patients showed increased cortical thickness in the pre- and post-central gyrus and 
decreased thickness in the bilateral insula and the left subgenual anterior cingulate 
cortex (sgACC), compared to healthy female controls. Connecting emotions and 
altered brain function in IBS, patients with IBS and comorbid alexithymia have 
different brain responses to rectal distention in the right insula[98]. As a first in our 
field, Norlin et al[99] recently provided evidence that the vulnerability to fatigue in IBS 
is associated with connectivity within a mesocorticolimbic network as well as immune 
activation in the form of enhanced plasma levels of TNF-α, compared to controls. 
Indeed, there has been published a large series of papers on brain imaging in IBS, and 
now, evidence for disrupted subcortical and cortical regions mediated by gut 
microbial modulation are emerging. Labus et al[100] reporting associations between 
brain region-to-region functional connectivity and microbiota found a correlation 
between Clostridia and Bacteroidia with connectivity of the thalamus, the basal 
ganglia (caudate nucleus, putamen, pallidum, nucleus accumbens), the superior part 
of the precentral gyrus, the anterior insula and ventral prefrontal regions. Recently, the 
same lab also reported on fecal metabolites and resting state fMRI[101]. Here, the 
differences in histidine, cysteine, glycine, glutamate, spermidine, and anserine were 
significantly associated with the alteration in left dorsal part of the posterior cingulate 
gyrus to the left putamen. Also, the changes in histidine, tryptophan, uracil, 2-
deoxyuridine, thymidine, and succinate were differentially associated with the 
alteration in the right superior frontal gyrus to the right putamen. Interestingly, this 
interaction may be mediated by aberrant tryptophan signaling in IBS, which is 
important because it is a substrate for serotonin synthesis.

In combining brain imaging data, molecular and genetic data, and metagenomic 
data for joint analysis, new challenges and opportunities arise in the attempt to 
elucidate the mechanisms and biomarkers of IBS. This endeavour is further described 
and discussed in the section “Big data analysis” below.

INTESTINAL MICROBIOTA ANALYSIS
Importance of method selection
Microbiome research is advancing rapidly, improving the precision of taxonomy and 
functional surveys and minimizing methodological limitations. After almost two 
decades of the earliest intestinal microbiota surveys in humans, we have advanced 
towards recommendation of quasi-standard methodological procedures to make next-
generation sequencing (NGS) data comparable across studies. Notwithstanding, the 
complete implementation of standards is challenging, given the wide variety of 
commercial options for sampling, DNA extraction, amplicon generation, library 
preparation, and DNA sequencing that users fit at their own convenience, making 
cost-effectivity prevailing. In this regard, the International Human Microbiome 
Standards consortium has agreed that stool sampling requires minimal processing (no 
addition of preservation buffers and nuclease inhibitors) to maintain microbiota DNA 
and RNA integrity, thus facilitating sampling, storage and transport logistics by 
donors and patients. Besides, stool sub-sampling was revealed to produce minimal 
variation within individuals[102,103]. Among the multiple methodological steps, DNA 
extraction introduces the larger variation across experiments, and chemical (muralytic 
enzymes) or physical cell-wall disruption (bead-beating) methods during DNA 
extraction are recommended to gain the representation of some microbial species 
during massive and parallel sequencing and taxonomy data appraisals[103,104]. 
Taxonomy surveys via amplification and sequencing of bacterial 16S rRNA gene are 
widespread because of their cost-effectivity. A large collection of tools (e.g., QIIME2, 
Mothur, DADA2, etc.) and reference repositories (SILVA, RDP, Greengenes, GTDB) 
have been developed for such an aim. However, this methodology allows reliable 
identifications mostly at the family and genus levels. Also taxonomy classification 
depends on the region amplified[105,106] and, accordingly, inconsistencies have been 
found across studies. Currently, most of the studies are sequencing the V4 or V3-V4 
hypervariable regions because of their larger genetic variation and discriminatory 
power, facilitating re-use and comparisons across different studies.
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Metagenomic analysis, based on non-targeted massive DNA sequencing, 
outperforms the 16S rRNA gene hypervariable region sequencing, although it is much 
more expensive. Gigabase-level information normally recovered from individual 
samples permit inspection of microbial species present in human samples and other 
ecologically complex environments[107,108]. The discriminatory capability of this 
approach is constantly improved thanks to the existence of comprehensive genome 
catalogues[109], compiling a huge amount of microbial genetic variability and making 
it possible sample profiling at the strain level[110]. In addition to the detailed 
taxonomy surveys, metagenomics makes functional appraisals feasible via DNA read 
mapping strategies using curated and comprehensive repositories (e.g., KEGG, COG, 
eggnog databases). The functional analysis has also been developed for 16S rRNA 
gene amplicon sequencing data (namely PICRUSt). However, the predictions made 
with such an approach have a high degree of uncertainty due to the ambiguous 
taxonomic assignments of the 16S rRNA readouts and absence of functional variation 
information at the species level (minimal gene/functions shared on multiple genome 
examinations – pangenome – within a single species).

Metadata does matter
The interpretation of microbiome data require a proper control of covariates that many 
times are not available to be incorporated into the data analysis. This could lead to 
ambiguous (relying on the generally recognized strain-specific pathogenicity traits) 
and uncertain (plenty of false-positives) associations between the microbiota and 
health and disease states, largely influenced by confounding variables[111-113]. Of 
environmental factors, the intestinal microbiota is strongly influenced by the dietary 
patterns. Therefore, the use of dietary records around the sampling time are good 
strategies to integrate such information in the data analysis. The value of this type of 
information is even more important in microbiota-based biomarker discovery for 
example for IBS given the impact of food intake on disease symptoms[114]. 
Nevertheless, not all studies have found meaningful differences in microbiota when 
using dietary records[115,116]. There is growing evidence supporting a role of energy 
and macronutrient intake on the intestinal microbiota which could affect associations 
with health and disease. Body mass index (BMI), gender and age could affect both 
dietary habits and the intestinal microbiota and change through life differently in 
women and men[117-119]. By integrating gender, BMI, diet, and age information with 
microbiota data, the results are less influenced by the subjects' idiosyncratic variation 
and signals looking for links between gut microbes and health/disease states become 
more reliable. Moreover, pharmacological treatments given to IBS patients to tackle 
symptoms should be considered as they could bias the conclusions on the microbiota 
signatures correlated and playing a role in IBS. There is indeed extensive impact of 
non-antibiotic drugs on the composition and metabolic function of the gut microbiota
[14,120]. In summary, good practices in microbiome research for clinical application 
undoubtedly involve a meticulous metadata recording covering a large set of 
individual and lifestyle information that permit uncover unquestionably the influence 
of gut microbes in our health.

Perspectives for improving microbiome role predictions
The integration of functional omics provides information on the potential role of 
intestinal microbes and the metabolic products resulting from host-diet-microbe 
interactions and allows generating human-data-driven hypotheses which could be 
latter validated in study models. These methods turn data processing more complex 
because of multidimensionality, but provide clues on the molecular mechanism driven 
by microbe-host interactions and underlying health and disease[121]. For instance, the 
correlations of gut microbes (metagenomics) with secondary bile acids (lipidomics), 
SCFAs (metabolomics), and pro-inflammatory molecules (proteomics/cytokine arrays) 
make it possible to distinguish microbial groups that plausibly explain disease states 
or the physiological response to a particular dietary components[122-124]. The high 
individual specificity and variability of the microbiome data also requires the 
application of statistical methods that minimize false-positives during biomarker 
discovery, permit an adequate covariate control and integrate other multidimensional 
datasets. In this context, the EU COST action ML4Microbiome represents an 
interesting initiative for advising, researching, and developing advanced statistical and 
machine learning approaches applied to microbiome research that could greatly 
contribute to standardizing and improving data analysis in this field[125,126].

Promising developments have also emerged to improve, for example, the accuracy 
of the dietary assessments. These are often based on self-reported data and, therefore, 
biased affecting the interpretation of its relationship with the microbiome and health 



Hillestad EMR et al. MGB-axis in IBS

WJG https://www.wjgnet.com 422 January 28, 2022 Volume 28 Issue 4

outcomes. In this regard, metabarcoding of plant DNA has been proposed as a method 
to tacking human plant intake more accurately than using dietary questionnaires. 
Although this strategy has been only applied to gain information on plant components 
of the human diet, it looks promising to infer the dietary intakes and the resulting diet-
microbe interactions[127].

Sequencing technological advances are also helping to improve the taxonomy 
resolution of targeted amplicon-based microbiota analysis. The emergence of single-
molecule sequencing platforms (Oxford Nanopore Technologies and PacBio) has 
permitted to generate longer DNA reads, pivotal to increase the information of gene 
markers under inspection in microbial diversity assessments and to gain resolution at 
the species-level at a lower cost than metagenomics[128,129]. This methodology has 
already demonstrated good performance on microbiota surveys despite the modest 
per-base quality of its reads compared to the classical Sequencing-by-Synthesis (SBS)-
based instruments (Illumina). Its potential is even more promising to infer strain-level 
variation pivotal to determine, for example, species engraftment after FMT[130], 
which, as mentioned above, is under investigation to treat IBS[52,131].

BIG DATA ANALYSIS 
The enormous potential of big data, when harnessed efficiently by powerful statistical 
methods, mathematical models, and machine learning algorithms, often translates into 
deeper insights in multi-factorial dynamic systems, which are otherwise complicated 
to explore, describe and comprehend. The MGB-axis is a well-suited example of such a 
complex multivariate system and data science (i.e., machine learning algorithms and 
statistical analyses) is the method of choice to approach this problem. It has become 
highly evident that no single factor underlie the heterogeneous disorder of IBS. Its 
investigation requires analysis of large datasets collected from an array of clinical 
disciplines for a deeper understanding of pathophysiological mechanisms and 
pathways, and correlations with specific symptoms and symptom severity.

The large number of factors involved both from the brain and microbiota along with 
their continuous variability, yield large amount of information. These factors are 
probed using various clinical modalities across several points in time in longitudinal 
research. The number of resulting variables can range from few hundreds to tens of 
thousands and the magnitude of data can easily approach hundreds of thousands to 
several millions of data points, even for studies recruiting several tens of participants. 
This sheer scale of data combined with larger dimensionality and significant 
variability sets up a ripe case for employing sophisticated data science methods to 
study intricate relationships between brain and gut microbiota.

The MGB scientific community appear to already recognize and acknowledge the 
importance of data science in the field of our research. For example, in their review, De 
Santis et al[92] described the potential of large amount of information emerging from 
advanced neuroimaging systems and sophisticated microbiome sequencing techniques 
to probe complex interactions in the MGB-axis. Their proposal was to combine data 
from both of these domains to analyze quantitative features for intricate relationships 
using computational analysis methods, a process they termed “radiomicrobiomics”, 
which could potentially unveil novel biological information on the MGB-axis. Similar 
ideas were expressed in another critical review whose key note suggested that 
encoding microbial information along with other necessary variables into machine 
learning algorithms could excel our understanding on GI disorders, which are 
challenging to diagnose due to multifactorial nature of underlying pathology[132]. 
Mayer et al[83,133] had stressed the need of integrating large sets of host's multi-omics 
data and microbial data with machine learning techniques to reveal novel insights into 
the MGB-axis, independent of existing theories and hypothesis. Kaur et al[134] also 
emphasized the role of machine learning in multiomics data analysis to probe MGB 
relationship and discussed a framework to move beyond prediction to prevention and 
personalized therapeutics in MGB related disorders.

In line with these proposals, reports of initiatives and on-going work where the 
MGB-axis is being explored using the discipline of data science are beginning to 
emerge. In a recent study, statistical analyses were performed on combined brain and 
microbial datasets, acquired using resting state fMRI and genetic sequencing, 
respectively[135]. Probably for the first time, clear correlation-based associations were 
drawn between certain species of microbiota and corresponding brain regions affected 
by it, a step forward in the right direction. Wu et al[136] studied the association of gut 
microbiome in ASD using an array of statistical and machine learning-based analyses 
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and realized presence of certain bacterial genera in ASD group, which could be used 
as a potential ASD biomarker. Stevens et al[137] studied association of depression 
phenotype with gut microbiome using microbial genetic information at single 
nucleotide resolution using multivariate analysis. Based on genetic data of 
microbiome, they were able to differentiate between depression and healthy cases. The 
Bergen brain-gut-microbiota study is a notable example of an on-going work that 
integrates data science with multiomics, where both brain and gut data is being 
collected from an IBS patient cohort and healthy controls, as shown in Figure 1[138]. 
BrainGutAnalytics, an advanced analysis project under the umbrella of the Bergen 
brain gut study, aims to apply sophisticated data science methods to locate IBS 
biomarkers in brain and peripheral organ systems[139].

Despite these rapidly growing applications of data science in investigating the 
MGB-axis, it appears that the full potential of data science is yet to be leveraged. Data 
science techniques, such as machine learning models, particularly thrive in scenarios 
where the sample size is high (i.e., in order of thousands or more), as it allows the 
models to adequately learn the underlying data structure by iterating over large 
number of observations. On the contrary, clinical studies are often limited by sample 
size albeit high dimensionality of data, as various studies report participant cohorts 
comprising a few tens to a few hundred subjects only[120-122]. This limited sample 
size, on one hand, impedes the development of reliable computer models and on the 
other, high feature to sample ratio could lead to overfitting of the model, which often 
result in misleading predictions[119]. One tangible way to address this problem is 
aggregation of several datasets coming from various small scale studies into a larger 
MGB-axis database, as also proposed by other researchers[80,118,121]. Such a 
collection will not only feed the needs of data starving computer models but will also 
represent diverse sectors of subject population in terms of demographics and genetic 
backgrounds, improving generalization and validation of analysis outcomes. 
However, such an initiative would only be meaningful if a highly controlled and 
uniform system of data collection could be developed and implemented across all 
participating studies. A merger of various datasets taken from isolated studies 
following their own highly customized protocols, based on variable inclusion and 
exclusion criteria, will not carry much scientific value. Similarly, an acceptable level of 
consistency in data management system across all studies is imperative for rapid data 
accessibility, interpretation and interoperability. The establishment of a larger MGB 
database would also facilitate much needed interdisciplinary collaboration in MGB 
research, as data scientists and clinicians must join forces together to solve this 
complex puzzle.

CONCLUSION
In recent years, research aiming to understand the influence of the gut microbiota on 
bidirectional interactions between the gut and brain has gained momentum. As 
described and discussed in this review, the role of microbiota in IBS is so multifaceted 
that it requires research approaches across disciplines and scientific fields, to reveal 
details of the complex interactions. Currently, most dietary or FMT interventions are 
limited to observations of transient microbial shifts within short time frames. Person-
alized responses of the host microbiota may explain some of the heterogeneity of 
research outcomes, but not all. Because IBS fluctuates between periods of remission 
and aggravation of symptoms, longitudinal sampling, multiple sample time-points, 
post-intervention follow-ups and washout periods for cross-over studies are needed to 
identify microbial changes that are missed when using cross-sectional sampling, will 
be of great importance in future studies. We know that gut microbiota profiles are 
significantly associated with alterations in intestinal gut integrity, brain micro-
structure, intrinsic neural activities, and cognitive function and mood. How this 
tremendously intricate symbiotic relationship works in IBS, remains to be unraveled. 
Multimodal and interdisciplinary clinical studies that include assessments of the gut 
microbiota composition and function in conjunction with neuroimaging and 
behavioral testing, such as the Bergen BrainGut microbiota-study[138] are necessary 
for verification of directionality and causality in the MGB-axis in IBS. Other important 
work to come are how probiotics influence gut microbiota and affect functional 
changes in the brain through gut microbiota[140]. As described in this review, the 
choice of method for analysis is important. We believe, that only through integration 
of multiple advanced techniques, such as metabolomics and neuroimaging, can we 
generate a complete picture of host and microbiota pathways in IBS.
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