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Abstract
The liver is a key organ involved in a wide range of functions, whose damage can 
lead to chronic liver disease (CLD). CLD accounts for more than two million 
deaths worldwide, becoming a social and economic burden for most countries. 
Among the different factors that can cause CLD, alcohol abuse, viruses, drug 
treatments, and unhealthy dietary patterns top the list. These conditions prompt 
and perpetuate an inflammatory environment and oxidative stress imbalance that 
favor the development of hepatic fibrogenesis. High stages of fibrosis can 
eventually lead to cirrhosis or hepatocellular carcinoma (HCC). Despite the 
advances achieved in this field, new approaches are needed for the prevention, 
diagnosis, treatment, and prognosis of CLD. In this context, the scientific com-
munity is using machine learning (ML) algorithms to integrate and process vast 
amounts of data with unprecedented performance. ML techniques allow the 
integration of anthropometric, genetic, clinical, biochemical, dietary, lifestyle and 
omics data, giving new insights to tackle CLD and bringing personalized 
medicine a step closer. This review summarizes the investigations where ML 
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techniques have been applied to study new approaches that could be used in inflammatory-
related, hepatitis viruses-induced, and coronavirus disease 2019-induced liver damage and 
enlighten the factors involved in CLD development.

Key Words: Machine learning; Liver inflammation; Liver disease; Viral diseases; Comorbidity
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Core Tip: Chronic liver disease has become a global burden, and new approaches need to be explored to 
tackle this disease. In this context, machine learning techniques bring a whole new set of opportunities to 
study novel approaches and biomarkers for prevention, diagnosis, treatment, and prognosis of inflam-
matory and virus-related liver diseases. The application of machine learning algorithms constitutes a 
pivotal piece of personalized medicine, allowing the integration of different phenotypical and genotypical 
data for a precision outcome concerning inflammatory liver comorbidities in non-communicable and viral 
diseases.

Citation: Martínez JA, Alonso-Bernáldez M, Martínez-Urbistondo D, Vargas-Nuñez JA, Ramírez de Molina A, 
Dávalos A, Ramos-Lopez O. Machine learning insights concerning inflammatory and liver-related risk 
comorbidities in non-communicable and viral diseases. World J Gastroenterol 2022; 28(44): 6230-6248
URL: https://www.wjgnet.com/1007-9327/full/v28/i44/6230.htm
DOI: https://dx.doi.org/10.3748/wjg.v28.i44.6230

INTRODUCTION
The liver is a key organ involved in relevant homeostatic metabolic and detoxifying human functions
[1]. Thus, the liver is the epicenter of an organ-organ network weaving a series of complex interactions 
in the organism, which makes liver damage an underlying adverse condition in a whole set of diseases. 
Chronic liver disease (CLD) can be caused mainly by alcoholic liver-related dysfunctions, hepatitis B 
virus (HBV), hepatitis C virus (HCV), drug treatments, or non-alcoholic fatty liver disease (NAFLD), as 
recently updated to the term metabolic-associated FLD (Figure 1)[2,3]. Patients with liver-related 
diseases need frequent follow-ups and careful monitoring since CLD can eventually lead to cirrhosis or 
hepatocellular carcinoma (HCC) if not diagnosed on time for treatment or surgery. These CLD-related 
conditions have become a global burden, whose mortality associated rates have increased over the years 
reaching more than 2 million deaths worldwide[4].

CLD is usually accompanied by an unhealthy inflammatory environment[5]. The immune response is 
a fundamental process to maintain homeostasis within the organism defense machinery and is charac-
terized by the secretion of proinflammatory cytokines, like interleukin (IL)-1, tumor necrosis factor-α 
(TNF-α), and prostaglandin E2, in an acute manner in order to resolve sudden damage[5]. However, if 
sustained over time, these abnormal levels of inflammatory cytokines cause low-grade inflammation 
(LGI). LGI is a silent condition that predisposes to the development of metabolic and infectious diseases 
that has become a worldwide health issue[6]. Patients with CLD, such as non-alcoholic steatohepatitis 
(NASH), present impaired immune function, dysbiosis, insulin resistance (IR) and LGI, all of which can 
aggravate infectious disease progression and perpetuate excess of adipose tissue, are characterized by 
overstimulation of the production of adipose-derived inflammatory molecules[5,7-9].

The liver also secretes important hepatokines that act as signaling proteins modulating functions in 
other organs and are involved in a wide range of conditions, such as IR and adipogenesis[1]. For 
instance, fibroblast growth factor-21 (FGF-21) is a mediator participating in glucose metabolism mainly 
secreted by the liver that modulates adipogenesis, while fetuins, liver-derived plasma proteins, are 
participating in metabolic impairment and inflammation[1]. A dysregulation in systemic cytokines 
prompts fat accumulation in hepatocytes, which in turn promotes local secretion of proinflammatory 
hepatokines, leading to liver steatosis and IR. In addition, immune cells also find difficulty in this 
inflammatory environment to exert their role appropriately. Persistent inflammatory signals over time 
also abnormally activate immune cells, impairing the body’s ability to fight infection, repair tissue 
damage, or recover from possible poisoning. Inflammation comes hand in hand with an increase in 
oxidative stress, a state characterized by an imbalance in favoring the accumulation of higher reactive 
oxygen (ROS) and nitrogen species. These molecules in unusual concentrations damage the cell and 
environmental milieu by promoting the expression of proinflammatory genes, resulting in a vicious 
cycle. Thus, CLD presents an oxidative atmosphere, probably linked to the proinflammatory state[10,
11]. This environment is the perfect setting for the fibrogenic process to unfold, an underlying condition 
of CLD that is characterized by progressive accumulation of fibrillar extracellular matrix in the liver
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Figure 1  Factors involved in the development of chronic liver disease triggering associated processes that lead to increased fibrosis 
stage.

[12]. The stage of hepatic fibrosis has been associated with the risk of mortality and liver-related 
morbidity in patients with NAFLD[13], virus-induced hepatitis[14,15], and alcoholic-derived liver 
disease[16], eventually leading to HCC.

In this context, infection by human hepatitis viruses (HHVs) is the most common cause of hepatitis, 
leading to the activation of the immune system, and the subsequent inflammatory response[17]. HBV 
and HCV acute infections can be resolved with antiviral and immune therapy. However, in a significant 
percentage they can progress to chronic hepatitis. This persistent infection can lead to comorbidities 
outside the liver, like arthritis, vasculitis, myalgia, and peripheral neuropathies[18]. Moreover, another 
new infectious disease appeared in late 2019 that can cause liver damage: Coronavirus disease 2019 
(COVID-19). COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
infection, and it has become a global health issue since its outbreak in 2020 was declared a pandemic. 
Beyond lung function, COVID-19 can affect a wide variety of tissues, like the gastrointestinal tract, 
kidneys, and liver, with an underlying adverse inflammatory environment[19]. This inflammatory-
related condition has been strongly associated to metabolic status and worsening diseases like obesity, 
diabetes, and hypertension[7,20-22]. For instance, COVID-19 can increase hepatic lipid accumulation by 
mitochondrial and endoplasmic reticulum (ER) dysfunction or worsen NAFLD if it was already present. 
A recent systematic review depicted that the parameters normally used for liver impairment screening 
were significantly increased in COVID-19 patients[23], placing CLD as a risk factor for progressive and 
severe COVID-19[24,25].

CLD is a global health problem, and new methods are needed to tackle this life-threatening condition. 
In this line, this review aims to explore machine learning (ML)-based approaches to manage CLD and 
develop biomarkers for diagnosis and prognosis. Its goal is to shed light on the factors involved in CLD 
to help health professionals in clinical management with the support of ML and identify new targets 
that can define therapeutic care lines in viral infections and non-communicable diseases (NCD), with an 
impact on liver functions with an inflammatory component. This includes the new disease, COVID-19.

MECHANISMS BY WHICH NCD AND INFLAMMATORY/IR PHENOMENA CAN AFFECT 
LIVER FUNCTION
The incidence of NCD, such as cardiovascular diseases and diabetes, has skyrocketed in the last 
decades, pressing authorities to establish developmental goals to achieve in the near future in terms of 
decreasing NCD-caused mortality[26]. Some of the risk factors that contribute to the development of 
NCD are excess of adipose tissue and high levels of glycemia. In this context, adipose tissue plays a key 
role in the development of FLD by secreting adipokines and other molecules, like free fatty acids (FFA)
[8].
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An energy excess prompts fat accumulation in the organism and the subsequent dysregulation of this 
tissue. This is of relevance since an inflamed adipose tissue results in increased levels of FFA and pro-
inflammatory cytokines, IR, and infiltration of macrophages in the liver by the activation of Th1 and 
Th17 cells[8]. FFA enter the liver through the portal vein and trigger a series of reactions. For instance, 
they serve as ligands to toll-like receptor-4 complex, stimulating the production of TNF-α through the 
activation of nuclear factor-kappa B, favoring an inflammatory environment. Moreover, the excess of fat 
drives the polarization state of this increased number of macrophages from anti-inflammatory M2 to 
proinflammatory M1 macrophages and prompts fat accumulation in the liver and IR[8]. Adipose-
derived macrophages also secrete inflammatory molecules, like TNF-α and IL-6, and adipokines, such as 
visfatin [also named nicotinamide phosphoribosyl transferase (NAMPT)]. NAMPT has gained relevance 
as a pivotal molecule linking adipose tissue and FLD. NAMPT is a pleiotropic molecule that can be 
found in an extracellular (eNAMPT) or an intracellular (iNAMP) form. Studies indicate that eNAMPT 
has enzyme and cytokine-like activity, stimulating the release of proinflammatory cytokines. 
Meanwhile, iNAMPT catalyzes the rate-limiting step in nicotinamide adenine dinucleotide (NAD+) 
formation. Because of this NAD+ boosting property, levels of iNAMPT have been proposed as 
beneficial for the homeostasis of the cell due to influencing the activity of NAD-dependent enzymes, 
such as sirtuins (SIRT). Remarkably, SIRT1 plays a key role in the liver by modulating the acetylation 
status of target molecules in lipid metabolism[27].

Furthermore, IR is characterized by hyperglycemia and the subsequent hyperinsulinemia to 
counteract high glucose levels, being a risk factor for NCDs, particularly type 2 diabetes, where it has 
been closely linked to oxidative stress[28]. A normal insulin signaling pathway starts with the activation 
of the insulin receptor so that it can bind to phosphoinositide 3-kinase to ultimately activate protein 
kinase B (Akt). Activated Akt drives glucose entry into the cell by promoting GLUT4 expression and 
glycogen synthesis[29]. Oxidative stress impairs this signal transduction through many different 
mechanisms, like inhibiting the transcription factors insulin promoter factor 1 and peroxisome prolif-
erator-activated receptor gamma, which mediate insulin and GLUT-4 expression, respectively. 
Moreover, under hyperglycemic conditions, fetuin A hepatokine inhibits the insulin receptor and 
promotes inflammation, while FGF-21 inhibits lipid accumulation and increases insulin sensitivity. 
Dysregulation of this hormones, together with oxidative stress imbalance, lead to impaired insulin 
signaling[30].

The metabolic conditions underlying the development of NCD are complex, and they often reinforce 
each other, perpetuating an inflammatory environment and oxidative stress imbalance. As the orches-
trating organ, these processes converge in the liver, affecting metabolic functions and setting the basis 
for the onset of the fibrogenic process characteristic of CLD.

MECHANISMS BY WHICH VIRAL INFECTIONS AND INFLAMMATORY/IR PHENOMENA 
CAN AFFECT LIVER FUNCTION
Persistent virus-associated liver damage can progress to CLD, which pressures health systems with a 
big social and economic burden. Although lots of resources have been invested to study the molecular 
mechanisms that mediate this process, results are diverse and still under investigation by the scientific 
community. HHVs directly infect hepatocytes, and the internalization into the cell is believed to happen 
by endocytosis, requiring the interaction with several host cell factors[17]. However, viral entry of HBV 
and HCV within hepatocytes is unclear, and further research is needed to elucidate this question. 
Sodium taurocholate co-transporting polypeptide was recently identified as an HBV receptor that 
would mediate HBV cell entry[31]. In the case of HCV, specific intercellular adhesion molecules appear 
key to cell adhesion and subsequent internalization[32].

Regarding HBV and HCV replication, it has been found that liver X receptor-α (LXR-α) plays a key 
role. LXR-α is a transcription factor whose activation triggers the expression of different genes that 
directly or indirectly modulate these viruses’ replication as well as the lipid and inflammatory 
alterations associated to CLD[33]. This inflammation is also mediated by the nucleotide-binding 
oligomerization domain-like receptor protein 3, which is activated by the abnormal production of ROS 
after a viral infection occurs in the liver. This ROS increase is associated with a decreased expression of 
nuclear factor-e2-related factor-2, a transcription factor that regulates ROS/recepteur d’origine nantais 
balance by maintaining redox homeostasis. These alterations compromise the normal state of the cell, 
laying the foundations on which the fibrotic process of CLD begins[11].

In the case of COVID-19, the mechanisms by which liver damage can occur are more unclear, but it is 
widely accepted that inflammation plays a huge role. This infection can trigger an exaggerated immune 
response leading to an uncontrolled cytokine release, also known as a “cytokine storm”. It is charac-
terized by abnormal levels of IL-6, IL-1, C-C motif chemokine ligand (CCL)-5, chemokine (C-X-C motif) 
ligand (CXCL)-8, CXCL-1, and TNF-α among others[19]. This inflammatory cascade affects bile duct 
function since cytokines like TNF-α, IL-1, and IL-6, can induce hepatocellular cholestasis by downregu-
lating hepatobiliary uptake and excretory systems[34].
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Furthermore, the presence of this inflammatory environment can upregulate the expression of 
angiotensin converting enzyme 2 (ACE2) receptor in different tissues, like the adipose tissue and the 
liver[35-39]. This is of relevance since ACE2 receptors are the main cell entrance of the SARS-CoV-2 
virus, and they are present in different tissues. Particularly in the liver, the cholangiocytes (characteristic 
cells of the bile duct)[40], as well as liver vascular endothelial cells[41], express ACE2 receptors. 
Hepatocytes and cholangiocytes are permissive to the SARS-CoV-2 virus, mediating subsequent 
entrance into the liver[42]. Several studies have found that ACE2 expression in hepatocytes is increased 
under hypoxia[43], a frequent condition in COVID-19 patients, and fibrotic conditions[44]. Besides 
ACE2 receptors, transmembrane serine protease 2 (TMPRSS2) and paired basic amino acid cleaving 
enzyme (FURIN) have been noted as significant for infection in the liver[45,46]. In this context, ACE2 
expression is increased in patients in HCV-related cirrhosis[44], whereas TMPRSS2 and FURIN 
expression are upregulated in patients with obesity and NAFLD[47]. Moreover, infection by SARS-CoV-
2 increases glucose-regulated protein 78 and 94, two biomarkers of ER stress[48,49], and impairs 
mitochondrial function[50]. This process is of interest since this state has been associated with de novo 
lipogenesis in hepatocytes[51], which could eventually lead to steatosis in these patients.

The use of therapeutic drugs can be another underlying cause of liver damage[3]. Because of 
detoxifying functions, the liver is subject to drug-induced damage coming from a wide range of 
approved drugs. Oncology drugs account for most hepatotoxicity cases, followed by those used for 
infectious diseases[3]. Since the beginning of the COVID-19 pandemic, a wide range of different 
treatments (antivirals, antibiotics, antimalaria, or corticosteroids) have been used in the absence of an 
efficient drug to treat severe infections. This pharmacological administration could explain that drug-
induced liver injury appears in nearly 25% of COVID-19 patients[23], a consequence to consider when 
addressing liver damage in this disease.

ML APPROACHES IN INFLAMMATORY AND LIVER-RELATED COMORBIDITIES IN NON-
COMMUNICABLE AND VIRAL DISEASES
Despite all the advances in the mechanisms driving the onset of these diseases, new techniques to detect 
innovative biomarkers for diagnosis and prognosis as well as to discover novel drugs are needed, for 
example artificial intelligence (AI). AI seeks to mimic human behavior, and within this science, ML is 
the most common approach[52]. The advances in computational science in the last decades have 
permitted the development of powerful algorithms based on this science. ML algorithms are partic-
ularly relevant for biological research because they allow the processing and integration of the huge 
amount of data that the latest advances in this field have brought by applying statistical methods to 
enable machines to improve experiences. This methodological approach can be categorized into two big 
groups: Supervised and unsupervised learning. In supervised algorithms, data is tagged in order to 
train the algorithm and fit it appropriately, whereas if it is unsupervised, the algorithm learns patterns 
from unlabeled data[53]. ML algorithms are generally assessed by simple methodologies like sensitivity, 
specificity, and accuracy. While sensitivity evaluates the proportion of true positives correctly identified, 
specificity evaluates the proportion of true negatives. Meanwhile, the accuracy value indicates the 
number of times the model is correct[54].

Supervised algorithms can be divided into two categories depending on the purpose: Prediction, in 
which the algorithm is fed and trained predictive models to data; or classification, which consists in 
clustering data within explanatory groups[55,56]. Predictive algorithms are based on regression models, 
and the most used are linear and logistic regression (LR), support vector machine (SVM), support vector 
regression (SVR), extra tree regression (ETR), artificial neural networks (ANN), and decision trees (DT). 
Regression models analyze the influence of one or multiple variables on a nominal or ordinal categorical 
outcome. ANN are more complex mathematical models (deep learning algorithms) that mimic the brain 
neural network, like the convolutional neural network (CNN), in which an input is fed through a 
hidden layer of many different well connected and structured nodes to produce a final output. In deep 
neuronal network (DNN) models, a great number of hidden successive layers use the output from the 
previous layer as input in a more complex algorithm. DT can also classify data, like random forest (RF) 
or gradient boosting (GB) models. Instead of minimizing error, these models determine thresholds 
derived from input data, assigning weight values to variables. Other models of classification are the 
Ada-Boost, Bayesian network (BN), Naïve Bayes (NB), K-Nearest Neighbors (KNN), and linear 
discriminant analysis (LDA) that group data into clusters[55,56]. All these models can shed light into 
biological questions and are normally used indistinctively to obtain the best performance with the same 
dataset. For instance, Mijwil and Aggarwal[57] analyzed and compared 7 ML algorithms to predict 
appendix illness in the same dataset, revealing that certain models performed better than others, 
allowing for higher accuracy and results.

In FLD, the common techniques used in diagnostics are based on techniques like ultrasonography 
and magnetic resonance imagining (MRI). These methods are subjective, and the informed outcome 
mainly relies on the interpretation of the professional carrying out the procedure. Several investigations 
have studied the implementation of ML in order to classify FLD and other liver diseases by using 
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images from ultrasounds, computed tomography (CT), and MRI[58,59]. However, the downside of this 
approach is that the quality of the images differs from one another because of several factors, such as 
equipment precision and interpersonal differences, for instance. Therefore, there is a need for ML 
approaches to help in image segmentation, and some authors have already implemented this technique 
to improve clinical practice[60,61].

Moreover, ML can help with the integration of more complex information beyond imaging to study 
and diagnose liver diseases since patients with CLD in the developmental phase require frequent 
follow-ups to check the progress of the disease and early detection changes in the diagnosis[58]. For 
example, patients with HHV-induced CLD are normally on antivirals. However, there is no consensus 
or guidelines about when to stop antiviral therapy or even if quitting these drugs will increase HCC 
risk. Therefore, new approaches need to be established to classify and prevent the development of more 
severe illnesses, like cirrhosis or cancer. In this line, ML approaches can be used to measure liver 
fibrosis, optimize diagnosis, and predict disease progression of CLD[62]. Table 1 summarizes selected 
studies that have used ML for these purposes, which have been collected for this review, and Table 2 
summarizes the most repeated inputs from all compiled ML models along with the most repeated 
predictive results for the main four inflammation-related liver conditions.

ML in inflammation-related liver disease
In recent years, promising results have been found when applying ML approaches in CLD. Regarding 
prevention, Fialoke et al[63] screened 108139 patients to identify those diagnosed with benign steatosis 
and NASH, a type of NAFLD, train ML classifiers for NASH and healthy (non-NASH) populations, and 
predict NASH disease status on patients diagnosed with NAFLD according to aspartate transaminase 
(AST), alanine transaminase (ALT), and platelet (PLT) levels. In this line, another study detected body 
mass index (BMI), triglycerides (TG), gamma-glutamyl transpeptidase (GGT), ALT, and uric acid as the 
top 5 features contributing to NAFLD, with the BN model performing the best[64]. Accordingly, Yip et 
al[65] selected TG, ALT, white blood cell count, high-density lipoprotein cholesterol (HDL-c), glycated 
hemoglobin A1c (HbA1c), and the presence of hypertension as the six variables to build ML models, of 
which Ada-Boost outperformed the others individually and described the NAFLD status in 922 subjects.

More recently, Pei et al[66] designed a ML model that integrated medical records as a clinical variable 
to classify FLD. Concretely, they selected the variables of age, height, BMI, hemoglobin, AST, glucose, 
uric acid, low-density lipoprotein cholesterol (LDL-c), alpha-fetoprotein, TG, HLD-c, and carcinoem-
bryonic antigen. They tested six different ML models in 3419 participants, of which 845 were diagnosed 
with FLD: LR, RF, ANN, KNN, extreme gradient boosting (XGBoost) (a type of GB model), and LDA. 
Results from these authors showed that the XGBoost model had the highest performance, followed by 
LR and ANN, to predict the risk of FLD. BMI, uric acid, and TG levels were the top three variables 
associated to FLD risk across the six analyzed models.

When it comes to diagnosis and treatment, several ML models have been tested for different 
purposes obtaining good specificity, sensitivity, and accuracy values[62]. For example, to determine the 
stage of liver fibrosis, some authors have used CT images processed by segmentation algorithms. Choi 
et al[67] used CNN upon CT images, whereas Chen et al[68] employed RF, KNN, SVM, and the NB 
classifiers with real-time tissue elastography imaging, age, and sex as feeding variables. In both cases, 
the ML approach outperformed the classical methods. Regarding treatment, different ML models have 
been used to define the best therapy for liver diseases such as carcinomas and virus-induced hepatitis. 
Jeong et al[69] used DNN to classify intrahepatic cholangiocarcinoma susceptible to adjuvant therapy 
following resection according to laboratory and clinicopathological markers and found it more accurate 
than the commonly used staging system.

Wübbolding et al[70] studied the prediction of early virological relapse analyzing soluble immune 
markers using supervised ML approaches like KNN, RF, and LR. This study showed that IL-2, 
monokine induced by interferon γ/CCL9, RANTES/CCL5, stem cell factor, and TNF-related apoptosis-
inducing ligand in combination were more reliable in predicting virological relapse than viral antigens. 
In the same way, researchers have used ML classifiers to explore new methods able to better predict 
prognosis of liver diseases[71-74]. The weighted variables are usually CT images and/or biochemical 
parameters that involved invasive and costly methods. However, researchers have recently proposed 
volatile organic compounds as new biomarkers for progression and prognosis of liver disease. These 
researchers monitored isoprene, limonene, and dimethyl sulfide concentrations from a breath sample in 
liver patients compared to healthy subjects. They used regression ML models (LR, ETR, SVR, and RF) to 
demonstrate that these approaches together with breath profile data can predict clinical scores of liver 
disease[75]. These findings are promising and open the way for new, safe, and non-invasive approaches 
to study liver function and for diagnosis purposes.

ML methods have been employed when studying the comorbidities of liver-related diseases, like 
obesity, diabetes, and cardiovascular diseases[53,55,76]. For example, ML algorithms have been built to 
study the risk factors associated to overweight and obesity development, showing that BMI, age, dietary 
pattern, blood test results, socioeconomic status, and sedentarism were key factors when studying 
excess of adipose tissue[77]. In this line, further research has revealed by ML techniques that the 
minutes devoted to physical activity in one week[78], as well as specific species of gut microbiota[79], 
are also crucial for obesity prediction. ML algorithms have also elucidated the risk factors of childhood 
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Table 1 Summary of machine learning articles studying virus and inflammatory-related liver damage

Ref. Objective Subjects Variables ML model Performance Observations/remarks

Fialoke et al
[63]

To predict NASH in 
NAFLD patients

n = 108139, NASH and 
healthy (non-NASH) 
populations

Demographic 
data, type 2 
diabetes status, 
and blood 
biomarkers 

RF, 
XGBoosting, 
DT, LR

AUROC of 88% 
by XGBoosting

The average and maximum 
value of ALT appeared 
was the most important 
variable

Ma et al[64] To predict NAFLD in 
the general population

n = 10508, Subjects who 
attended a health 
examination

Age, blood 
biomarkers, and 
anthropometric 
data

LR, RF, SVM, 
baggin, DT, LR, 
KNN, BN, 
hidden NB, 
AdaBoosting, 
AODE

83% accuracy, 
0.878 specificity, 
0.675 sensitivity, 
and 0.655 F-
measure score by 
BN

BMI, TG, GGT, ALT and 
uric acid were the top five 
predictors

Yip et al[65] To detect NAFLD for 
the general population

n = 500, involving 
NAFLD patients and 
healthy subjects

Demographic, 
clinical data and 
blood biomarkers

LR, RIDGE 
regression, 
AdaBoosting, 
DT

AUROC of 90% 
by AdaBoosting

ALT, HDL-c, TG, HbA1c 
and white blood cells to 
predictors

Pei et al[66] To identify FLD in 
general patients

n = 3419, patients of 
which 845 had FLD

Age, anthropo-
metric, and blood 
biomarkers

RF, ANN, 
KNN, 
XGBoosting, 
LDA

0.9415 accuracy, 
0.9306 AUC, and 
0.9091 sensitivity 
by XGBoosting

Uric acid, BMI, and TG 
were the top three risk 
factors

Choi et al[67] To stage liver fibrosis n = 7461, patients with 
pathologically 
confirmed liver fibrosis

Age, sex, clinical 
data, CT images, 
and liver fibrosis 
stage

CNN Overall staging 
accuracy of 79.4% 
and an AUROC 
of 0.96, 0.97, and 
0.95 for 
diagnosing 
significant and 
advanced 
fibrosis, and 
cirrhosis, 
respectively

The model outperformed 
the radiologist’s 
interpretation, APRI, and 
FIB-4 index

Chen et al[68] To stage liver fibrosis 
in patients with CHB

n = 513, patients with 
confirmed liver fibrosis

Age, sex, CT liver 
images

RF, KNN, 
SVM, NB

0.8118-0.9125 
accuracy by RF 
for all stages

The adopted classifiers 
significantly outperformed 
the liver fibrosis index 
method

Jeong et al[69] To classify susceptible 
individuals for 
adjuvant treatment in 
patients with ICC after 
resection

n = 1421, ICC patients Age, sex, clinical 
data, and blood 
biomarkers

DNN AUC of 0.78 The model was found to be 
more accurate than the 
traditional AJCC stage 
classifier

Wübbolding et 
al[70]

To identify immune 
profiles for the 
prediction of early 
virological relapse

n = 284, patients with 
CHB and treated with 
NA antivirals

Age, sex, and 
analytical and 
blood biomarkers

KNN, RF, LR AUC of 0.89 The combination of IL-2, 
MIG/CCL9, 
RANTES/CCL5, SCF, and 
TRAIL was reliable in 
predicting viral relapse

Hong et al[71] To predict esophageal 
varices in patients 
with HBV related 
cirrhosis

n = 197, patients with 
HBV-related cirrhosis

PLT count, spleen 
width, and portal 
vein diameter

ANN Sensitivity of 
96.5%, specificity 
of 60.4%, 
accuracy of 86.8%

The model obtained a 
positive predictive value of 
90.00%; and a negative 
predictive value of 80.85%

Zhong et al[72] To compare the 
prognostic 
performance of ALBI 
and CTP grades for 
HCC treated with 
TACE combined with 
sorafenib as an initial 
treatment

n = 504, HCC patients ALBI and CTP 
grades BCLC 
stage, clinical data 
and plasma α-
fetoprotein

ANN - The ALBI grade had higher 
importance in survival 
prediction compared to the 
CTP one

Shi et al[73] To predict in-hospital 
mortality after 
primary liver cancer 
surgery

n = 22926, HCC surgery 
patients

Age, sex, clinical, 
and hospital data

ANN, LR 97.28% of 
accuracy and 
84.67 % of 
AUROC by ANN

ANN model had higher 
overall performance 
indices and accurately 
predicted in-hospital 
mortality

Shi et al[74] To predict 5-yr 
mortality after surgery 
for HCC

n = 22926, HCC surgery 
patients

Age, sex, clinical, 
and hospital data

ANN, LR 96.57 % of 
accuracy and 
88.51 % of 
AUROC by ANN

Surgeon volume was the 
top predictor parameter

Patnaik et al To predict liver n = 28, healthy patients Age, anthropo- LR, RF, SVR, R2 values of 0.78, Isoprene, limonene and 
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[75] function-related scores 
(MELD, APRI, CTP) 
using breath 
biomarkers

compared to n = 17, 
liver patients

metric data, blood 
biomarkers, breath 
analysis

ETR 0.82, and 0.85 for 
CTP score, APRI 
score, and MELD, 
respectively, by 
ETR

dimethyl sulfide can be 
potential biomarkers for 
liver disease

Butt et al[85] To diagnose the stage 
of hepatitis C

n = 968, patients with 
HCV

Age, anthropo-
metric data, blood 
biomarkers, and 
histological 
staging

ANN, RF, 
SVM, 
XGBoosting

98.89% precision 
by ANN

The model performed 
better than previously 
presented models by other 
authors

Wei et al[87] To predict HBV and 
HCV-related hepatic 
fibrosis

n = 490, HBV patients; n 
= 254, and 230 HCV 
patients

Age, BMI, 
analytical data 
(FIB-4 score), and 
liver biopsy

GB, DT, RF AUROC of 0.918 
by GB

GB outperformed the FIB-4 
predictive score

Barakat et al
[89]

To predict and stage 
hepatic fibrosis in 
children with HCV

n = 166, children with 
CHC

Analytical data 
(APRI and FIB-4 
scores)

RF AUCs of 0.903 for 
any type of 
fibrosis

RF outperformed FIB-4 and 
APRI predictive score

Konerman et al
[88]

To predict progression 
of HCV

n = 72683, veterans with 
CHC

Age, BMI, 
demographic, and 
blood biomarkers 
(APRI score)

CS and LGT 
Cox and 
boosting

AUROC of 0.830 
and 0.77 
sensitivity by 
LGT boosting 
model for 1 yr 
follow-up

APRI and PLT count were 
top predictors in the LGT 
boosting model

Wong et al[86] To predict HCC in 
patients with CVH

n = 86804, CHV 
patients, of which 6821 
with HCC

Age, sex, clinical 
data, and blood 
biomarkers

LR, RIDGE 
regression, 
AdaBoosting, 
RF, DT

AUROC of 0.992 
and 0.837 by RF 
in training and 
validation cohort, 
respectively

ML models obtained better 
AUROCs than HCC 
traditional risk scores

Feldman et al
[91]

To predict DAA 
therapy duration in 
hepatitis C

n = 3943, HCV patients 
with 
sofosbuvir/ledipasvir as 
the first course of DAA, 
of which n = 240, 
received the prolonged 
DAA treatment

Age, sex, and 
clinical data 
(including 
hepatitis C record 
data)

XGBoosting, 
RF, SVM

AUC of 0.745 by 
XGBoosting

Results showed age, 
comorbidity burden, and 
type 2 diabetes status as 
new predictors for DAA 
therapy duration

Kamboj et al
[92]

To predict repurposed 
drugs for HCV

n = 17968, HCV 
molecular fingerprints

Experimentally 
validated small 
molecules from 
the ChEMBL 
database with 
bioactivity against 
HCV NS3, 
NS3/A4, NS5A 
and NS5B proteins

SVM, ANN, 
KNN, RF

R2 value of 0.92 
by SVM

Results identified more 
than 8 repurposed 
treatments anti-HCV

Tian et al[93] To predict HBsAg 
seroclearance

n = 2235, patients with 
CHB, of which 106 
achieved HBsAg 
seroclearance

Age, BMI, 
demographic and 
clinical data, and 
blood biomarkers

LR, RF, DT, 
XGBoosting

AUC of 0.891 by 
XGBoosting

Level of HBsAg followed 
by age and HBV DNA 
were the top predictors

Chen et al[94] To predict HBV-
induced HCC using 
quasispecies patterns 
of HBV

n = 307, CHB patients; n 
= 237, HBV-related HCC 
patients

rt nucleic acid and 
rt/s amino acid 
sequences

SVM, RF, 
KNN, LR

AUC of 0.96, and 
accuracy of 0.90 
by RF

HBV rt gene features can 
efficiently discriminate 
HCC from CHB

Mueller-
Breckenridge 
et al[95]

To classify HBeAg 
status in HBV patients 
using virus full-length 
genome quasispecies

n = 352, CHB untreated 
patients

Matrix of allele 
frequencies (0.1-
0.99) and the 
associated HBeAg 
status

RF Range balanced 
accuracy of 0.8-1

n1896GA, n1934AT, 
n1753TC mutants were the 
highest-ranking variables

Kayvanjoo et 
al[96]

To predict HCV 
interferon/ribavirin 
therapy outcome 
based on viral 
nucleotide attributes

n = 76, gene attributes HCV nucleotide 
attributes

DT, SVM, NB, 
DNN

Accuracy of 
84.17% by SVM 
in responder vs 
relapser of 
subtype 1b 
sequences

Dinucleotides UA and UU 
were top predictors in the 
combination treatment 
outcome

Li et al[98] To distinguish 
influenza from 
COVID-19 patients

n = 398, COVID-19 and 
influenza cases 

Age, sex, blood 
biomarkers, 
clinical data, and 
CT and X-ray 
scans

XGBoosting, 
RF, and LASSO 
and RIDGE 
regression 
models

AUC of 0.990, 
sensitivity of 
92.5% and a 
specificity of 
97.9% by 
XGBoosting

Age, CT scan result, and 
temperature were top three 
predictors

Bhargava et al To detect novel n = 31454, images KNN, SRC, 99.14 of accuracy SVM model classified with CT or X-ray scans
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[99] COVID-19 and 
discriminate between 
pneumonia

acquired from nine 
distinct datasets of 
COVID-19 patients

ANN, SVM by SVM the highest recognition rate 
the images as normal, 
pneumonia, and COVID-19 
positive

Bennett et al
[97]

To predict early 
severity and clinically 
characterize COVID-
19 patients

n = 174568, patients 
with a positive lab test 
for COVID-19

Age, sex, 
demographic, 
anthropometric 
and clinical data, 
and blood 
biomarkers

RF, LR, 
XGBoosting

AUROC of 0.87 
by XGBoosting

Age, oxygen respiratory 
rate, and blood urea 
nitrogen were ranked as 
top predictor for severity 
outcome

Günster et al
[100]

To identify 
independent risk 
factors for 180-d all-
cause mortality in 
COVID-19 patients

n = 8679, hospitalized 
COVID-19 patients

Age, sex, BMI, and 
clinical data

LR AUC of 0.81 A high BMI and age were 
strong risk factors for 180-d 
all-cause mortality, while 
female sex was protective

Deng et al[101] To identify clinical 
indicators for COVID-
19

n = 379, patients, 62 
with COVID-19 and 317 
with pneumonia

Age, sex, 
demographic and 
clinical data, and 
blood biomarkers

EBM AUC of 0.948 Variables grouped under 
liver function was top the 
predictor category for 
COVID-19 prediction

Lipták et al
[102]

To identify 
gastrointestinal 
predictors for the risk 
of COVID-19-related 
hospitalization

n = 680, patients Age, sex, clinical 
data, and blood 
biomarkers

RF AUC of 0.799 AST was top predictor for 
hospitalization

Elemam et al
[103]

To identify immuno-
logical and clinical 
predictors of COVID-
19 severity and 
sequelae

n = 37, COVID-19 
patients; n = 40, controls

Age, sex, BMI, 
clinical data, and 
blood biomarkers

Stepwise linear 
regression

AUC of 0.93 for 
cytokines as 
predictors. AUC 
of 0.98 for 
biochemical 
markers as 
predictors

IL-6 and granzyme B were 
top potential predictors of 
liver injury in COVID-19 
patients

Mashraqi et al
[104]

To predict adverse 
effects on liver 
functions of COVID-
19 ICU patients

n = 140, COVID-19 
patients admitted to 
ICU

Blood biomarkers 
and existence of 
liver damage

SVM, KNN, 
ANN, NB, DT

AUC of 0.857 and 
precision of 0.95 
by SVM

AST and ALT were top 
predictors of liver damage 
in these patients

Soltan et al
[106]

To evaluate a 
laboratory-free 
COVID-19 triage for 
emergency care

n = 114957, emergency 
presentations prior to 
the global COVID-19 
pandemic and n = 437, 
COVID-19 positive

Blood biomarkers, 
blood gas, and 
vital signs

LR, 
XGBoosting, 
RF

AUROC range of 
0.9-0.94 by 
XGBoosting for 
datasets

The model could 
effectively triage patients 
presenting to hospital for 
COVID-19 without lab 
results

Gao et al[111] To predict mortality in 
patients with alcoholic 
hepatitis

n = 210, alcoholic 
hepatitis patients

Age, clinical data, 
blood biomarkers, 
and omics data 
sets (metage-
nomics, 
lipidomics, and 
metabolomics)

GB, LR, SVM, 
RF

AUC of 0.87 by 
GB for 30-d 
mortality 
prediction using 
the dataset 
combining 
clinical data, 
bacteria and 
MetaCyc 
pathways and for 
and 90-d 
mortality 
prediction using 
the fungi dataset

The model performed 
better than the currently 
used MELD score

NASH: Non-alcoholic steatohepatitis; NAFLD: Non-alcoholic fatty liver disease; CHB: Chronic hepatitis B virus infection; HCC: Hepatocellular carcinoma; 
HCV: Hepatitis C virus; CHC: Chronic hepatitis C virus infection; CVH: Chronic viral hepatitis; RF: Random forest; DT: Decision trees; LR: Logistic 
regression; SVM: Support vector machine; KNN: K-nearest neighbors; BN: Bayesian network; NB: Naïve Bayes; AODE: Aggregating one-dependence 
estimators; FLD: Fatty liver disease; ANN: Artificial neural networks; LDA: Linear discriminant analysis; CNN: Convolutional neural network; DNN: Deep 
neuronal network; SRC: Sparse representative classifier; EBM: Explainable boosting machine; CS: Cross-sectional; LGT: Longitudinal; HBsAg: Hepatitis B 
surface antigen; HBeAg: Hepatitis B virus e antigen; BMI: Body mass index; ALT: Alanine transaminase; AST: Aspartate transaminase; APRI: Aspartate 
transaminase/platelet ratio index; COVID-19: Coronavirus disease 2019; CT: Computed tomography; GB: Gradient Boosting; AUC: Area under the curve; 
AUROC: Area under the receiver operating characteristic curve; ICU: Intensive care unit; IL-6: Interleukin 6; DAA: Direct-acting antiviral; MELD: Model 
for end-stage liver disease; TG: Triglycerides; HbA1c: Glycated hemoglobin A1c; ICC: Intrahepatic cholangiocarcinoma; ML: Machine learning; ETR: Extra 
tree regression; AJCC: American Joint Committee on Cancer; CXCL: chemokine (C-X-C motif) ligand; CCL: C-C motif chemokine ligand; SVR: Support 
vector regression; MIG: Monokine induced by interferon γ; SCF: Stem cell factor; TRAIL: Tumor necrosis factor-related apoptosis-inducing ligand; PLT: 
Platelet; GGT: Gamma-glutamyl transpeptidase; HDL-c: High density lipoprotein cholesterol; FIB-4: Fibrosis-4; HBV: Hepatitis B virus; TACE: 
Transarterial chemoembolization; BCLC: Barcelona Clinic Liver Cancer.
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Table 2 Summary of the most repeated inputs of the machine learning models with the most repeated predictor outcomes for the four 
main inflammatory-related liver conditions

Inflammatory-related liver 
condition Inputs Most repeated predictors

FLD Age, sex, blood biomarkers, and demographic, anthropo-
metric, and clinical data

BMI, uric acid, TG, and ALT levels

Liver fibrosis Age, sex, and CT images Better diagnosis compared to classical methods like 
APRI and FIB-4 indexes

Virus-induced hepatitis Age, sex, blood biomarkers, and demographic, anthropo-
metric, and clinical data 

AST, PLT levels, APRI index, and age

COVID-19 Age, sex, blood biomarkers, CT images, and demographic, 
anthropometric, and clinical data

Age, BMI, CT images, oxygen rate, AST, and ALT 
levels

FLD: Fatty liver disease; CT: Computed tomography; BMI: Body mass index; TG: Triglycerides; ALT: Alanine transaminase; AST: Aspartate transaminase; 
PLT: Platelet; APRI: Aspartate transaminase/platelet ratio index; COVID-19: Coronavirus disease 2019; FIB-4: Fibrosis-4.

obesity, of which parental BMI and the upbringing environment play a huge role[80-82]. Furthermore, 
researchers have observed by training a multivariate LR model with a dataset of 3634 children and 
adolescents’ vitamin intake that vitamins A, D, B1, B2, and B12 were associated in a negative manner 
with obesity in this cohort[83]. These results are of interest since new insights are needed to discover 
novel targets to tackle comorbidities that affect liver function.

ML in hepatitis virus-induced liver damage
HBV and HCV infections can dangerously become chronic if not treated early and with the right 
treatment[84]. While scientists are still relentlessly working on an effective vaccine against HCV, a good 
and efficient diagnosis is key to prevent chronic HCV infection (CHC), and ML algorithms have been 
elucidated for this purpose. Thus, Butt et al[85] designed an ANN model and trained it with a dataset of 
19 variables, among which age, sex, BMI, transaminase, and PLT count levels were included. The 
algorithm was able to better identify the stage of hepatitis C compared to other XGBoost, RF, and SVM 
models tested by other researchers with a higher precision rate and a decreased miss rate.

ML algorithms have been applied and compared to traditional methods used to follow HHV-induced 
advanced liver disease[86-88]. For instance, Wei et al[87] used a GB model trained with the same 
variables that the formula fibrosis-4 (FIB-4) uses, which are age, AST, ALT and PLT levels in a cohort of 
490 HBV patients, and two cohorts of HCV patients (n = 240 each). The GB model outperformed FIB-4 
score in classifying hepatic fibrosis and the existence of cirrhosis. Barakat et al[89] designed an RF model 
that also outperformed the FIB-4 score, as well as the AST/PLT ratio index (APRI), for prediction and 
staging of fibrosis in children with hepatitis C. In this line, data of 72683 veterans with CHC were used 
to predict the progression of the disease. GB models were used and compared with cross-sectional or 
linear models fed with variables like transaminases levels, alkaline phosphatase (ALP), PLT, AST, APRI, 
albumin, bilirubin, glucose, white blood cells, and BMI were included in the dataset. Results showed 
that APRI, PLT, AST, albumin, and AST/ALT ratio were the best predictors for featuring CHC 
progression[88].

Regarding therapy, CHC can be effectively treated with direct-acting antiviral (DAA) therapy, a 
novel treatment that targets viral non-structural proteins. Although it has null side effects compared to 
standard treatment, it has some downsides. Treatment failure in a low percentage of the cases, a very 
high cost, and no treatment duration established[90]. New methods to define this therapy duration are 
needed to optimize adherence and success. Feldman et al[91] studied the prediction of DAA treatment 
duration in hepatitis C patients using XGBoost, RF, and SVM models. They used the dataset of 240 
patients with prolonged first course of DAA against another dataset of 3478 patients on standard 
duration. Age, sex, comorbidities, and previous hepatitis C treatment record were considered. The 
predictive model constructed with XGBoost obtained the best performance in predicting prolonged 
DAA treatment, in which the presence of cirrhosis, type 2 diabetes, age, HCC, and previous standard 
treatment were the most determining variables. Meanwhile, Kamboj et al[92] used ML approaches in the 
search of repurposed drugs that could target non-structural proteins, developing regression-based 
algorithms able to identify inhibitors of these proteins, and proposing new drugs to test in CHC.

A huge milestone when treating chronic HBV infection (CHB) is seroclearance of HBV surface 
antigen (HBsAg)[84]. It has been demonstrated that seroclearance of HBsAg is associated to a better 
prognosis in CHB. Some authors used ML models to predict HBsAg seroclearance in a cohort of 2235 
patients, of which 106 achieved it. They used XGBoost, RF, and LR, among other models, and tested a 
total of 30 categorical and continuous variables, including sex, drinking history, initial diagnosis and 
treatment, age, BMI, and serum and radiological indicators. Results revealed that the XGBoost model 
showed the best predictive performance, indicating that HBsAg levels were the best predictor for 
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HbsAg seroclearance, followed by age, and the DNA level of HBV[93].
Interestingly, ML has also contributed to personalized medicine in this field. HHVs evolve and adapt 

to different cellular environments in order to escape immune responses and drugs to survive. These 
adaptations rely on high mutagenetic activity, especially within the target genes of antivirals. Regarding 
HBV, Chen et al[94] used ML to identify patients with HCC or CHB based solely on genetic differences 
and found that the RF model impressively discriminated both cases based on the rt gene sequence of 
HBV. Moreover, Mueller-Breckenridge et al[95] ultra-deep sequenced 400 HBV samples and used an RF 
model to classify the status of a particular HBsAg according to the novel viral variants encountered. 
Results showed five genotypes that could benefit from personalized healthcare. In the case of HCV, 
Kayvanjoo et al[96] built several ML algorithms and trained them with two datasets of responders vs 
non-responders of antiviral therapy in HCV infection caused by two different strains. These investig-
ations reported novel genetic markers that could predict therapy response with high accuracy. These 
results are very promising since they contribute to bringing personalized medicine to the public system.

ML in COVID-19-induced liver damage
A recent systematic review depicted that the parameters normally used for liver impairment screening 
were significantly increased in COVID-19 patients[23]. Particularly, several studies showed that levels 
of AST and/or ALT can increase in these patients up to 20%, bilirubin up to 14%, ALP up to 6%, and 
GGT levels up to 21%. Prothrombin is a protein synthesized in the liver that results in thrombin, a 
protein with a critical role in coagulation function. Prolonged prothrombin is a symptom of decreased 
production of coagulation factors, characteristic of liver disease. For this reason, the prolonged 
prothrombin time (PT) is another parameter usually checked when screening for liver injury, and it has 
been described that COVID-19 patients present nearly a 10% increase in PT[23]. Besides biochemical 
alterations, COVID-19 illness can lead to hypoxemia, impaired cardiac function, and secondary damage 
due to multiple organ dysfunction, which can result in liver injury in patients with or without prior liver 
disease. Therefore, new insights of the relationship between this recent infectious illness and liver 
disease are expected.

The use of ML approaches has been encouraged by the National COVID Cohort Collaborative 
Consortium for early detection, prediction, and follow-up of severe COVID-19 cases since the pandemic 
started[97]. For instance, some researchers used the XGBoost approach and found that age, CT scan 
result, body temperature, lymphocyte levels, fever, and coughing can classify influenza patients from 
COVID-19 patients[98]. Bhargava et al[99] tried different ML approaches to detect novel COVID-19 and 
discriminate between pneumonia using CT and X-ray scans as inputs. These authors pre-processed the 
images by normalization and then segmented them by fuzzy c-means clustering. Results showed that 
the SVM model was the one that better classified patients in COVID-19 positive, pneumonia, and 
healthy groups, obtaining a very high accuracy.

In this same line, obesity and liver disease were identified as risk factors for higher clinical severity in 
a cohort of 174568 adults with severe acute respiratory syndrome associated with SARS-CoV-2 infection 
by a multivariable LR model[97]. Interestingly, a German study of 8679 patients used an LR model and 
identified liver disease and BMI as determinant risk factors for 180-d all-cause mortality in hospitalized 
COVID-19 patients[100]. A case-control study with COVID-19 patients compared to patients with 
community-acquired pneumonia showed how, by applying a GB model, the category of liver function 
appeared as one of the top systematic predictors for COVID-19 risk factors, with albumin, total 
bilirubin, and ALT among the most important input variables[101]. Furthermore, a study with 710 
enrolled patients diagnosed with COVID-19 identified AST levels as the top predictor for COVID-19-
related hospitalization based on an RF algorithm, followed by age and diabetes mellitus[102].

A stepwise linear regression model identified IL-6 and granzyme B as potential predictors of liver 
dysfunction, characterized by an elevation in the levels of ALT and/or AST[103]. Other authors 
designed a model for detecting liver damage testing different ML approaches with laboratory 
parameters as the input variables. SVM was the model with the best accuracy, and AST and ALT levels 
were the variables with the best predictive scores[104]. In this context, the newest version of the 
CURIAL model was developed to identify COVID-19 patients using vital signs, blood gas, and 
laboratory blood tests. It showed greater sensitivity, making this model a potential emergency workflow
[105,106]. All these ML-based methods would dramatically improve the time to diagnosis, free hospital 
laboratories and rooms of potential positive subjects, and reduce costs if implemented in the public 
health system.

AI has also been employed to discover potential efficient new drugs to tackle SARS-CoV-2 infection
[107]. Baricitinib is a drug initially approved for rheumatoid arthritis that was selected by ML as a 
potential drug to treat COVID-19. Researchers proved the anti-inflammatory and antiviral properties of 
this drug in human liver spheroids infected with live SARS-CoV-2 to check any potential drug-induced 
liver injury[107]. Due to the good results, researchers moved on to a clinical trial where they tested 
baricitinib in a few COVID-19 patients. Levels of liver enzymes were not altered, except for a transient 
increase in liver aminotransferases in all patients that remitted in the following 72 h without 
interrupting treatment. The authors stated that this might be reflective of disease severity rather than a 
drug-induced injury, showing overall good tolerance and results in this pilot study[108]. In summary, 
ML approaches support liver biochemistry as a prognostic tool in COVID-19 disease.
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PERSONALIZED MEDICINE IN LIVER-RELATED DISEASES SUPPORTED BY ML
In the early 21st century, the Human Genome Project started the genomic era in which new disciplines 
like precision medicine appeared. Precision medicine aims to deliver targeted treatments based on a 
group of individual factors that greatly influence the onset and progression of a disease, like omics 
sciences. This approach covers a great number of patients, overcoming potential adverse effects and 
ensuring effectiveness of the treatment. In this context, computational advances have greatly 
contributed to the escalation of this science by lowering the costs of omics analysis and allowing the 
processing and integration of an enormous amount of data based on ML algorithms (Figure 2).

ML has permitted the development of diagnostics and therapeutics based on the integration of omics 
data (genomics, epigenomic, transcriptomics, proteomics, metabolomics, and metagenomics) with 
clinical data. The ultimate goal is to bridge these omics data with the phenotype to bring molecular 
accuracy to the diagnosis, treatment, prognosis, and recurrence process of a pathological condition. This 
methodology has been used in a wide range of diseases in the search for more efficient and effective 
approaches, like heart and liver diseases[109,110]. For example, ML algorithms fed with omics data have 
been able to predict mortality in patients with alcoholic hepatitis. In this study, routine clinical variables 
of 210 patients with this disease were used to build six different datasets to assess mortality at 30 d and 
90 d. Five different ML models were tested, obtaining the best performance in predicting 30-d mortality 
with a GB model using bacteria, MetaCyc pathways, and clinical data, as well as LR using viral and 
clinical data[111].

In hepatitis B, it has been found that ML algorithms can be very useful in assessing HBV-associated 
HCC progression. Ye et al[112] analyzed 67 HBV-positive HCC samples with or without intrahepatic 
metastases and discovered key genes for metastatic progression and survival training ML models. The 
majority of them were inflammatory or related to the inflammation process, like IL-2 receptor and 
osteopontin, which encodes an extracellular cytokine ligand whose overexpression favors metastasis. 
These authors were able for the first time to draw a molecular signature useful to classify metastatic 
HBV-HCC patients, opening the way for early detection and new treatments to increase patient 
survival. In hepatitis C, the CC and CT genotypes of the rs12979860 polymorphism in the IL28B gene 
have been associated with liver fibrosis progression, being able to predict antiviral treatment effect-
iveness[113].

Moreover, ML algorithms have allowed the diagnosis of advanced liver fibrosis according to the 
rs12979860 genotype with higher performance compared to APRI and FIB-4 scores[114]. In this study, 
patients were divided into two groups according to HCV-related liver fibrosis stage: None to moderate 
fibrosis (n = 204); or with advanced fibrosis (n = 223). ML algorithms revealed the IL28B genotype as the 
first predictor, while the second predictor depended on the mentioned genotype. For instance, in CT 
patients, PLT, albumin, and age were the determining variables, while for patients with the TT 
genotype, white blood cell count was the decisive feature to assess advanced fibrosis probability.

ML approaches have also helped to categorize obesity in different subtypes based on metabolic status
[115-117]. For example, Masi et al[115] studied a cohort of 2567 subjects suffering from obesity and made 
clusters of metabolically healthy or metabolically unhealthy patients based on clinical and biochemical 
variables using two ML models. The first model showed that IR, body fat, HbA1c, red blood cells, age, 
ALT, uric acid, white blood cells, insulin growth factor-1, and GGT were the top predictors of a metabol-
ically healthy obesity, revealing the importance of liver function.

Other authors have also used ML models to classify 882 obese patients in subtypes of obesity 
according to glucose, insulin, and uric acid levels[116]. Results showed four stable metabolic clusters in 
this cohort, which were characterized by a healthy metabolic status, or by hyperuricemia, hyperinsu-
linemia, and hyperglycemia, respectively. Furthermore, Lee et al[117] explored three-way interactions 
between genome, epigenome, and dietary/lifestyle factors using GB and RF models in a subset (n = 394) 
of the exam 8 of the Framingham Offspring Study cohort. Interestingly, GB obtained the best 
performance, revealing 21 single nucleotide polymorphisms, 230 methylation sites in relevant genes 
(like CPT1A, ABCG1, and SREBF1), and 26 dietary factors as top predictors for obesity. Intake of 
processed meat, artificially sweetened beverages, French fries, and alcohol intake, among other dietary 
factors, were highly associated with overweight/obesity.

Personalized and precision medicine aims to harmonize the greatest number of factors so that 
diagnosis, prognosis, and treatment are based on the greatest number of decision elements. Much 
remains to be investigated to establish guidelines in the context of personalized medicine. However, it is 
safe to say that precision medicine will drive modern medicine, combining the most classic variables 
with the newest digital variables. Health professionals must be prepared to understand and implement 
these new technologies in the near future.

CONCLUSION
In summary, ML science can process and integrate a vast amount of different data with unprecedented 
outstanding performance. The objective of this article was to collect the information derived from ML 
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Figure 2  Data implicated in the onset of inflammatory-related liver diseases can be used to train machine learning algorithms for 
prediction, diagnosis, treatment, and prognosis of chronic liver disease, leading the way to personalized medicine.

techniques in liver damage induced by inflammatory conditions, including the new disease COVID-19. 
The main role of ML in liver pathologies is to help identify high risk patients for referral to specialized 
centers. Results show that the use of ML models have brought new insights into biology and medicine 
questions that can be very useful in determining the next directions for research in diagnosis, prognosis, 
and treatment of inflammatory and virus-related liver diseases, leading the way to personalized 
medicine. Also inflammation/IR biomarkers related to liver disease can be boosted by ML strategies. 
This review clarified and compiled the importance of the different factors involved in CLD and 
analyzed by ML algorithms, which can be useful information for clinicians, like endocrinologists and 
gastroenterologists, and other healthcare professionals with a focus on hepatology and bioinformatics.
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