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Abstract
Chronic hepatitis B virus (HBV) infection is an international health problem with 
extremely high mortality and morbidity rates. Although current clinical chronic 
hepatitis B (CHB) treatment strategies can partly inhibit and eliminate HBV, viral 
breakthrough may result due to non-adherence to treatment, the emergence of 
viral resistance, and a long treatment cycle. Persistent CHB infection arises as a 
consequence of complex interactions between the virus and the host innate and 
adaptive immune systems. Therefore, understanding the immune escape 
mechanisms involved in persistent HBV infection is important for designing novel 
CHB treatment strategies to clear HBV and achieve long-lasting immune control. 
This review details the immunological and biological characteristics and escape 
mechanisms of HBV and the novel immune-based therapies that are currently 
used for treating HBV.

Key Words: Hepatitis B virus; Innate immunity; Adaptive immunity; Immune tolerance; 
Therapeutic strategy
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Core Tip: Chronic hepatitis B (CHB) infection is an international health problem. 
Current clinical CHB treatment strategies can partly inhibit and eliminate hepatitis B 
virus (HBV), but cannot achieve long-lasting immune control of the virus. Persistent 
CHB infection arises as a consequence of the complex interactions between HBV and 
the host innate and adaptive immune systems. Therefore, it is important to understand 
the immunological mechanisms involved in CHB infection. In this review, we detail the 
immune biological characteristics and escape mechanisms of HBV and discuss novel 
immune-based therapies.
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INTRODUCTION
Hepatitis B virus (HBV) is a small hepatotropic, enveloped DNA virus. Hepatitis B is an international 
health problem caused by HBV infection. Currently, approximately 257 million people worldwide are 
chronic HBV carriers with a high risk of developing chronic liver diseases such as liver cirrhosis and 
hepatocellular cell carcinoma (HCC). Each year, approximately 1 million patients die of HBV-related 
liver diseases[1,2]. Current clinical treatment strategies for chronic hepatitis B (CHB) mainly include 
pegylated interferon-α (PEG-IFN-α) and nucleos(t)ide analogues (NAs). Unfortunately, current 
treatments have limitations and often fail to achieve long-term virologic control.

Generally, the host innate and adaptive immune systems play critical roles in eliminating HBV upon 
infection. However, HBV has evolved and developed efficient strategies for escaping host immune 
surveillance, which results in persistent infections. The majority of HBV infections occur in newborn 
infants with the presence of immunological defects, characterized by a lower quality and quantity of 
HBV-specific T cells and B cells. In addition, maternal hepatitis B e antigen (HBeAg) can induce the 
Kupffer cells (KCs) of the offspring by upregulating programmed death-ligand 1 (PD-L1) to suppress 
the HBV-specific CD8+ T cells response to support HBV persistence after birth[3]. In addition, HBV 
circumvents endogenous type I interferon (IFN-I) responses[4] and inhibits the function of innate and 
adaptive immune cells[5]. Prolonged exposure of T cells to large quantities of viral antigens, such as 
hepatitis B surface antigen (HBsAg) and HBeAg, induces a defective T-cell response with the loss of 
effector functions and increased inhibitory receptor expression, facilitating viral persistence. Moreover, 
HBV infection affects the expression of human leukocyte antigen (HLA)-II alleles, including HLA-DP, 
HLA-DQ, and HLA-DR, on antigen-presenting cells (APCs)[6], which in turn impairs antigen 
presentation capacity with induction of an inefficient T-cell response, leading to persistent HBV 
infection.

The clinical outcomes of patients with CHB are highly based on the complex interactions between 
HBV and the host innate and adaptive immune systems. In this review, we detail the interaction 
between HBV and the host immune system to understand the immunological and biological character-
istics of and escape mechanisms involved in CHB infection, and present the current immune-based 
therapies for CHB treatment.

HBV ESCAPES INNATE IMMUNE SURVEILLANCE
Innate immune responses act as the first line of immune defense against viruses, bacteria, and tumors. 
Complement components, chemokines, and cytokines are soluble factors that form parts of the innate 
system. Granulocytes, dendritic cells (DCs), macrophages, mast cells, and natural killer (NK) cells are 
important effector cells[7,8]. Commonly, an effective innate immune response is initiated when 
pathogen-associated molecular pattern (PAMP) molecules bind pattern recognition receptors (PRRs), 
which stimulates chemokine and proinflammatory cytokine production, and innate immune cell 
activation, resulting in the elimination of viruses[9]. Here, we described the interaction between HBV 
and innate immunity (Figure 1).

HBV infection and IFN-I
PRRs, which are widely expressed by KCs, hepatic DCs, liver sinusoidal endothelial cells (LSECs), and 
hepatocytes, can recognize PAMPs from HBV and induce antiviral immune responses, resulting in the 
secretion and IFN-I and other inflammatory cytokines. IFN-I, as a major component of the innate 
immune response, is critical for HBV clearance. However, HBV circumvents endogenous IFN-I 
responses through multiple pathways to sustain persistent HBV infection.

Chronic HBV infection downregulates the expression of Toll-like receptor 3 (TLR3), retinoic acid-
inducible gene I (RIG-I), and melanoma differentiation-associated protein 5 (MDA-5) in DCs and 
hepatocytes, leading to the reduction of responsiveness to PAMPs and impairment of IFN-I synthesis
[10]. A previous study found that HBV infection upregulates microRNA-146a (miR-146a) expression in 
hepatocytes, inhibiting the expression of RIG-I-like receptors and in turn suppressing IFN-I 
transcription[11]. Additionally, HBsAg, HBeAg, HBx, and HBV virions themselves can inhibit IFN-β 
synthesis by downregulating mitochondrial antiviral signaling (MAVS) and interfering with the 
interaction between MAVS and RIG-I[12].

https://www.wjgnet.com/1007-9327/full/v28/i9/881.htm
https://dx.doi.org/10.3748/wjg.v28.i9.881


Zhao HJ et al. Immune escape mechanisms of HBV

WJG https://www.wjgnet.com 883 March 7, 2022 Volume 28 Issue 9

Figure 1 The interaction between hepatitis B virus and innate immunity. A: Hepatitis B virus (HBV) suppression of the type I interferon (IFN-I) 
response. HBV infection inhibits IFN-I transcription and signal transduction and IFN-β synthesis; B: HBV affects the function of dendritic cells (DCs). HBV upregulates 
programmed death-ligand 1 and induces regulatory DCs that exhibit extremely low T cell-stimulatory capacity and interleukin-12 production; C: HBV affects the 
function of macrophages. HBV-related antigens affect macrophage polarization (M1/M2), contributing HBV clearance or HBV persistence; D: HBV affects the function 
of neutrophils. HBV-related antigens decrease neutrophil extracellular trap release, which facilitates HBV immune escape, replication, and persistence; E: HBV 
affects the function of natural killer (NK) cells. HBV-related antigens and HBV-derived exosomes dampen the Retinoic acid-inducible gene I, nuclear factor kappa B, 
and p38 mitogen-activated protein kinase signaling pathways, resulting in the functional suppression of NK cells during chronic hepatitis B infection. DCs: Dendritic 
cells; DDX3: DEAD-box RNA helicase 3; ERK: Extracellular-regulated kinase; HBc: Hepatitis B core antigen; HBe: Hepatitis B envelope antigen; HBs: Hepatitis B 
surface antigen; HBx: HBV X protein; HBV: Hepatitis B virus; IFN-α: Interferon-α; IFN-β: Interferon-β; IFN-γ: Interferon-γ; IFN-I: Type I interferon; IFNAR: Interferon-α 
receptor; IKK-ε: IB kinase ε; IL-1β: Interleukin-1β; IL-6: Interleukin-6; IL-10: Interleukin-10; IL-12: Interleukin-12; IRF3: Interferon regulatory factor 3; ISGs: Interferon-
stimulated genes; ISGF3: Interferon-stimulated gene factor 3; JAK: Janus kinase; JNK: c-Jun N-terminal kinase; M1: M1-like macrophages; M2: M2-like 
macrophages; MAPK: Mitogen-activated protein kinase; MAVS: Mitochondrial antiviral-signaling protein; miR-146a: microRNA-146a; MyD88: Myeloid differentiation 
primary response gene 88; NET: Neutrophil extracellular trap; NK: Natural killer; NKG2D: Natural killer group 2 member D; NKG2A: Natural killer group 2 member A; 
NF-B: Nuclear factor kappa B; PD-1: Programmed cell death protein 1; pDCs: Plasmacytoid DCs; PD-L1: Programmed death-ligand 1; PI3K: Phosphatidylinositol 3-
kinase; Pol: Hepatitis B virus polymerase; Pro-IL-1β: IL-1β precursor; RIG-I: Retinoic acid-inducible gene I; STAT1: Signal transducer and activator of transcription 1; 
STAT2: Signal transducer and activator of transcription 2; TBK1: TANK-binding kinase 1; TGF-β: Transforming growth factor-β; TLR2: Toll-like receptor 2; TLR3: Toll-
like receptor 3; TLR9: Toll-like receptor 9; TNF-α: Tumor necrosis factor-α; TRIF: Toll/IL-1 receptor domain-containing adaptor inducing IFN-β; Tyk2: Tyrosine kinase 
2.

Binding of IFN-I to the IFN receptor can induce the activation of IFN-stimulated genes (ISGs), thereby 
directly inhibiting HBV infection. However, HBV can extensively impair IFN-I-induced signal 
transduction and dampen IFN-I-mediated immune responses[4]. HBx is able to reduce transcription of 
the IFN-α receptor (IFNAR1) and downregulate tyrosine kinase 2, which is essential for cell surface 
IFNAR1 expression[13]. Additionally, matrix metalloproteinase 9, which is increased in the peripheral 
blood mononuclear cells of patients with CHB, binds to IFNAR1 and facilitates its phosphorylation, 
ubiquitination, subcellular distribution, and degradation[14]. HBV can inhibit the activities of IFN-
stimulated response elements with lower ISG expression by disrupting the intracellular Janus 
kinase–signal transducer and activator of transcription 1 (STAT1) signaling pathway. HBV-induced 
miR-146a downregulates cellular STAT1 levels and blocks STAT1-Tyr701 phosphorylation in 
hepatocytes[11]. HBV polymerase interferes with the binding of DEAD-box helicase 3 X-linked (DDX3) 
to the TANK-binding kinase 1/IκB kinase epsilon complex and the induction of IFN-stimulated gene 
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factor 3 (ISGF3) to inhibit IFN-β induction[10]. In addition, HBV polymerase suppresses interleukin 1 
beta (IL-1β) production by inhibiting nuclear factor kappa B (NF-κB) signaling and the inflammasome-
caspase-1 pathway, resulting in IFN-α resistance and persistent HBV infection[15].

Based on these findings, IFN-I is used for the treatment of CHB. IFN-α-mediated HBV suppression is 
correlated with the levels of apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (known 
as APOBEC) and the base excision repair gene Nei endonuclease VIII-like 3[16]. IFN-α can also epigenet-
ically regulate the HBV covalently closed circular DNA (cccDNA) minichromosome by disrupting 
general control non-depressible 5-mediated histone H3 lysine 79 methylation succinylation, resulting in 
the clearance of HBV cccDNA[17]. Imam et al[18] identified sterile alpha motif domain containing 4A as 
an important anti-HBV ISG that binds to and triggers degradation of the unidentified Smaug-
recognition region sequence in viral RNA. ISG20 can induce the degradation of HBV RNA by selectively 
recognizing and binding N6-methyladenosine. In addition, tripartite motif containing 5 gamma 
suppresses HBV replication by interacting with the HBx protein, which promotes HBx ubiquitination at 
residue K48 and its subsequent degradation[19]. MX dynamin like GTPase 2 reduces HBV cccDNA by 
indirectly impairing the conversion of relaxed circular DNA to cccDNA[20]. Interestingly, IFN-α can 
also induce soluble factors that compete with HBV for binding to heparin glycosaminoglycans, thereby 
inhibiting HBV infection[21]. In addition to its direct antiviral effects on HBV, IFN-I indirectly exerts 
antiviral functions by activating immune cells. IFN-I can quickly recruit and activate NK cells and DCs, 
promoting the initiation of adaptive immunity[5,22], which in turn contributes to the elimination of 
HBV.

HBV infection and DCs
As professional APCs, DCs serve as a bridge between the innate and adaptive immune responses[23]. 
Recent data have shown that functional impairment of DCs by HBV infection fails to induce efficient 
anti-HBV immunity, leading to CHB infection and the progression of liver disease[24]. Previous data 
have demonstrated that patients with CHB have significantly fewer peripheral blood DCs than control 
subjects, accompanied by a functional decline and directly causing HBV-specific T cell dysfunction[24]. 
Compared to those of healthy donors, myeloid DCs (mDCs) isolated from patients with CHB display 
limited antigen-presenting capacity and migration capacity, features that are accompanied by the 
decreased expression of interleukin 6 cytokine family signal transducer (also known as gp130)[24]. 
Persistent HBV infection downregulates cluster of differentiation 80 (CD80), CD83, CD86, and CD40 
expression in DCs, which suppresses the transduction of costimulatory signals to T cells. In addition, 
HBsAg reduces IL-12 production by mDCs by disrupting the c-Jun N-terminal kinase (JNK)–mitogen-
activated protein kinase (MAPK) pathway, resulting in a markedly tolerogenic phenotype[25]. HBcAg 
upregulates programmed death-ligand 1 (PD-L1) by activating the phosphoinositide 3-kinase 
(PI3K)–AKT, extracellular-regulated kinase (ERK), and p38 signal transduction pathways, which 
suppresses HBV-specific T cell immune function[26]. HBeAg induces the conversion of bone marrow-
derived DCs into CD11bhi PIR-B+ regulatory DCs, which exhibit extremely low T-cell stimulatory 
capacity and IL-12 production[27]. Furthermore, HBV particles, especially HBsAg, downregulate TLR 
expression and abrogate TLR9-triggered maturation of plasmacytoid DCs, resulting in the significantly 
decreased secretion of certain cytokines such as IL-12, tumor necrosis factor alpha (TNF-α), IFN-α, IFN-
λ1, and IFN-λ2[28-30]. In addition, chronic HBV infection impairs IFN-α secretion and pDC maturation 
in response to TLR7 ligands[28].

HBV infection and macrophages
Macrophages are important innate immune cells that fight against pathogen infection and can interact 
with lymphocytes by activating and inhibitory surface molecules. HBV can affect the functions of 
monocytes and macrophages, thereby contributing to persistent HBV infection. HBV infection promotes 
the activation of anti-inflammatory macrophages with increased IL-10 production, which support the 
functional inactivation of CD8+ T cells.

KCs, which are localized in liver sinusoids, are the largest population of innate immune cells in the 
liver[31]. They are stationary and able to effectively phagocytose cellular debris, foreign material, or 
pathogens, acting as critical sentinels for liver homeostasis[32]. Chronic HBV infection induces the 
production of immunomodulatory mediators such as IL-10 and transforming growth factor beta (TGF-β
), and the expression of PD-L1 and PD-L2 by KCs, suppressing anti-HBV T cell responses. Furthermore, 
upon HBV infection, elderly mice have a significantly higher number of TNF-α-producing Ly6C+ 
monocytes and a much lower number of IL-10-secreting KCs than younger mice, facilitating HBV 
clearance[33]. However, KCs can play different roles in the presence of different HBV antigens[34]. 
Boltjes et al[35] found that KCs could interact with HBsAg, which induced secretion of the proinflam-
matory cytokines IL-6 and TNF that was substantially increased compared with that seen in healthy 
controls. In vivo experiments have demonstrated that HBcAg interacts with KCs upon TLR2 activation, 
mediating humoral and cellular tolerance via IL-10 production during CHB infection, and TLR2 
knockout or KC depletion leads to an accelerated HBV clearance and improved HBV-specific CD8+ T cell 
responses[36]. HBeAg suppresses lipopolysaccharide-induced NOD-, LRR- and pyrin domain-
containing protein 3 activation and IL-1β maturation in KCs by inhibiting NF-κB phosphorylation and 
reactive oxygen species production[37]. Nonetheless, HBeAg can play two distinct roles in macrophage 
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function. Upon HBV infection, maternal HBeAg enhances PD-L1 expression in KCs with an M2-like 
anti-inflammatory phenotype, which suppresses the HBV-specific cytotoxic T lymphocyte (CTL) 
response and leads to HBV persistence; however, in control mice born to HBeAg-negative mothers, 
HBeAg promotes the M1 proinflammatory phenotype, contributing to HBV clearance[3].

Except for KCs, monocyte-derived macrophages are critical for regulating the anti-HBV immune 
response and disease pathogenesis during HBV infection. Intrahepatic macrophages that had 
phagocytosed HBcAg show anti-inflammatory over proinflammatory functions and favor the 
maintenance of infection. In addition, HBsAg inhibits TLR2-induced phosphorylation of p38 MAPK and 
JNK MAPK with reduced production of IL-6, TNF-α, and IL-12 in human monocytes[38]. Previous 
findings have also shown that HBsAg can interact with monocytes and induce the MyD88–NF-κB-
signaling pathway with high expression of the inhibitory molecules PD-L1, IL-10, and TGF-β, thereby 
initiating an immunosuppressive cascade[39]. In contrast to HBeAg and HBsAg, HBcAg from HBV-
infected hepatocytes upregulates IL-23 secretion in monocyte-derived macrophages and enhances 
macrophage-mediated angiogenesis[40]. In addition, HBV-induced M2-like macrophages promote the 
immunosuppressive activity of regulatory T (Treg) cells by enhancing cytotoxic T-lymphocyte-
associated antigen 4 (CTLA-4), inducible T cell costimulator, and CD39 expression levels in an 
amphiregulin-dependent manner[41], impairing T helper type 1 cell immune responses and accelerating 
liver fibrosis and pathology.

HBV infection and neutrophils
Neutrophils exhibit protective functions against microbial infections via phagocytosis, degranulation, 
and the formation of neutrophil extracellular traps (NETs). Recent results have shown that HBV might 
suppress the neutrophil response. For example, neutrophils from patients with liver cirrhosis show a 
decreased capability for NET release, accompanied by the reduced expression of CD69 and CD80[42]. 
Additionally, HBV-related antigens, such as HBeAg and HBcAg, decrease NET release by decreasing 
p38 MAPK and ERK phosphorylation and autophagy, which facilitates HBV immune escape, 
replication, and persistence[43].

HBV infection and NK cells
As the main effector cells of the innate immune system, NK cells constitute up to 40%–50% of human 
liver lymphocytes, and serve as the first line of defense against pathogens. Activated cytolytic CD56dim 
NK cells expressing NKp46, NKp30, and perforin are associated with efficient HBV containment[44,45]. 
Additionally, antibody-mediated activation of NK cells plays a vital role in resolving HBV infection[45]. 
Abnormal NK cell receptor expression and hepatic NK cell dysfunction contribute to persistent CHB 
infection and HCC progression, which are related to the poor prognosis and survival of patients with 
liver cancer[46]. The levels of activating receptors (e.g., NKp30, NKp46, and natural killer group 2 
member D [NKG2D]) and cytokines (e.g., IFN-γ and TNF-α) are significantly decreased in patients with 
CHB, which is accompanied by the higher secretion of inhibitory NK cell receptors such as T cell 
immunoglobulin and mucin domain-containing protein 3 (Tim-3), NKG2A, and IL-10[47]. In addition, 
the decreased expression of CD122, the common β chain of the IL-2 receptor on CD56dim NK cells, is 
associated with NK cell dysfunction during CHB infection[48].

The roles of circulating HBV-related antigens (e.g., HBsAg and HBeAg) in mediating NK cell 
inhibition remain unclear. Recently, we found that HBsAg and HBeAg directly interact with NK cells 
and act as inhibitory mediators by interfering with the activation of STAT1, NF-κB, and p38 MAPK, 
which in turn impairs NK cell cytotoxicity and cytokine production[49]. HBsAg downregulates STAT3 
expression, which is partially correlated with degranulation and cytokine production in patients with 
HBeAg-negative CHB[50]. Additionally, HBsAg-treated monocytes promote the conversion of NK cells 
into IL-10-producing regulatory NK cells via PD-L1 and major histocompatibility complex, class I, E 
signals, which contribute to persistent CHB infection[39]. Importantly, exosomes derived from patients 
with CHB shuttle HBV nucleic acids into NK cells and then dampen the RIG-I, NF-κB, and p38 MAPK 
signaling pathways, resulting in the functional suppression of NK cells during CHB infection[51]. miR-
146a is significantly elevated in patients with CHB and modulate both NK and T-cell responses[52]. 
Interestingly, we found that miR-146a in NK cells can be induced by exogenous IL-10 and TGF-β, which 
in turn leads to NK cell dysfunction by directly targeting STAT1, accompanied by weakened IFN-γ and 
TNF-α secretion in patients with CHB[53].

HBV ESCAPES ADAPTIVE IMMUNE SURVEILLANCE
Adaptive immunity plays a critical role in HBV infection, accompanied by antigen specificity and 
sustained memory responses. Under the stimulation of APCs, HBV-specific CD4+ T cells and CD8+ T 
cells are activated and then secrete antiviral cytokines such as IL-12, IFN-γ, and TNF-α, and induce CTL 
responses to kill HBV-infected hepatocytes[54]. In addition, follicular helper T (Tfh) cells promote B cell 
differentiation into plasma cells, which are capable of producing HBV-specific antibodies[55]. Recent 
studies have demonstrated that newborn infants have immunological defects, and the inability to 
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induce HBV-specific T- and B-cell responses have been found in neonatal animals, which develop 
chronic HBV infection[3,56]. Furthermore, chronic HBV infection can suppress the adaptive immune 
system and dampen HBV clearance, leading to persistent HBV infection in patients with CHB.

HBV infection and HLA-II
HLA in APCs plays a critical role in initiating the host antiviral immune response against HBV infection 
due to its capacity to attract and bind peptides. HLA-I molecules can present HBV peptides to CD8+ 
cytotoxic T lymphocytes, resulting in the direct cytolysis of HBV-infected hepatocytes. HLA-II alleles, 
including HLA-DP, HLA-DQ, and HLA-DR, encode MHC-II molecules that present exogenous antigens 
to CD4+ T cells[57,58]. Different HLA-II alleles with particular amino acid polymorphisms determine 
which peptides can be presented to T cells. Moreover, these HLA alleles expressed on APCs contribute 
to presenting a broad range of peptides, thus determining the variability in the host immune response to 
HBV. Compared to HLA-DP and HLA-DQ, HLA-DR allele containing an extra β-chain gene whose 
product can pair with the DRα chain on APCs, is more important for the induction of sustained HBV-
specific immune response. Upon HBV infection, single nucleotide polymorphisms of HLA-II antigens 
may also contribute to the induction of immune tolerance, leading to persistent HBV infection[57,59-
62]. HBV infection reduces the expression of HLA-DP and HLA-DQ molecules on APCs, which in turn 
results in impaired antigen presentation capacity and an inefficient T-cell response[12,13]. Thus, 
polymorphisms of HLA-II genes during HBV infection can alter the antigen-binding properties of HLA-
II and affect the HBV-specific immune response, partly promoting the persistent HBV infection.

HBV infection and CD8+ T cells
HBV-specific CD8+ T cells function as key cellular effectors against HBV infection[63]. During CHB 
infection, CD8+ T cells encounter HBV antigens presented by intrahepatic APCs, such as DCs, KCs, or 
LSECs with weakened costimulatory signals, resulting in immune tolerance[64]. In addition, HBV 
infection can cause deficient secretion of inflammatory cytokines such as IL-12 and IFN-α/β in response 
to PAMP stimulation, further dampening the third signal required for CD8+ T-cell activation. 
Additionally, sustained exposure to high doses of HBV antigens (e.g., HBsAg and HBeAg) leads to 
exhausted T cells and impaired effector functions during CHB infection. Microarray analyses have 
revealed that HBV significantly upregulates the expression of the proapoptotic molecule Bcl-2-like 
protein 11 among HBV-specific CD8+ T cells, suggesting a key mechanism related to the depletion of 
CD8+ T cells during CHB infection[65]. Exhausted CD8+ T cells show reduced IL-2, IFN-γ, and TNF-α 
secretion and lost cytotoxic and proliferative capacities[66,67]. Moreover, exhausted HBV-specific CD8+ 
T cells display multiple inhibitory receptors such as PD-1, CTLA-4, CD244 (2B4), Tim-3, and lymphocyte 
activation gene 3[68], closely mimicking the transcriptional profiles of CD8+ T cells[67,69,70].

T-bet is essential for successful CD8+ T cell responses against HBV, whereas eomesodermin (EOMES) 
is a key driver of T cell exhaustion during chronic HBV infection[67,69,71]. Schurich et al[71] observed 
that reduced PD-1 expression on HBV-specific CD8+ T cells is accompanied by high levels of T-bet, 
which can increase CD8+ T cell functions[71], whereas EOMES might compensate for the lack of T-bet 
expression during HBV infection[67]. Data from a recent study showed that exhausted CD8+ T cells 
express elevated levels of the transcription factors interferon regulatory factor 4, basic leucine zipper 
ATF-like transcription factor, and nuclear factor of activated T cells 1, which in turn promote the 
expression of multiple inhibitory receptors (such as PD-1) and is accompanied by impaired antiviral 
function and cellular metabolism. However, transcription factor T cell factor 1 (TCF1) expression is 
repressed in exhausted CD8+ T cells, which is important considering that TCF1 is essential for memory T 
cell differentiation[72]. Moreover, when compared with HBV core-specific CD8+ T cells, HBV 
polymerase-specific CD8+ T cells show higher expression of CD38 and EOMES, accompanied by lower 
T-bet expression and a reduced expansion capacity[70]. Recently, transcriptome analysis of exhausted 
HBV-specific CD8+ T cells in patients with CHB revealed a lower mitochondrial potential and 
substantial mitochondrial dysfunction[73,74], whereas exposure to antioxidants or IL-12 partially 
reinvigorated the antiviral activity of HBV-specific CD8+ T cells[73,74].

CD4+ T cells
CD4+ T cells are important in regulating CD8+ T cell activation, proliferation, and memory responses 
during HBV infection[75]. Generally, a loss help of CD4+ T cells is considered the major factor involved 
in HBV-specific CTL cell failure[76]. Increasing attention has been given to the exhaustion of CD4+ T 
cells during CHB infection. Previous results have demonstrated that HBV-related antigens, such as 
HBcAg and HBsAg, can upregulate the expression of inhibitory molecules on CD4+ T cells. For example, 
Li et al[77] found that HBcAg increased PD-1 expression on CD4+ T cells via the JNK, ERK, and 
PI3K/AKT signaling pathways disrupt the function of CD4+ T cells. HBsAg increased the expression of 
human protein inhibitor of activated STAT1 expression (which is dependent on activation of the ERK 
and p38 MAPK signaling pathways), thereby contributing to the ineffectiveness of traditional 
treatments for CHB patients[78]. Data from a recent study showed that CD4+ T cells in patients with 
CHB expressed high levels of TRAIL receptors, and these T cells could be targeted by TRAIL+ NK cells, 
leading to a reduction in the number of CD4+ T cells[79]. Additionally, the decreased secretion of 
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proinflammatory cytokines (such as IL-2, IFN-γ, and IL-21) by HBV-specific CD4+ T cells contribute to 
the exhaustion of CD8+ T cell responses during chronic HBV infection[80]. CD4+ T cells also differentiate 
into CD4+ CD25+ Foxp3+ Treg cells, which secrete the suppressive cytokines IL-10 and TGF-β, resulting 
in a progressive loss of HBV-specific CD8+ T cells[81]. Thus, CD4+ T cells can directly influence HBV 
clearance by regulating CD8+ T cells.

Tfh cells express C-X-C chemokine receptor type 5 (CXCR5) and can specifically recognize and bind 
to follicular B cells expressing CXCL13, which promote the formation of affinity-matured, long-lived 
plasma cells and antibody secretion[82]. A deficiency of Tfh cells can inhibit the formation of germinal 
centers (GCs) in the spleen[83]. Thus, Tfh cells play important roles in orchestrating the humoral 
immune response and HBsAg seroconversion in patients with CHB[84]. Previous results have shown 
that the frequency of Tfh cells correlates negatively with HBsAg levels in patients with CHB after PEG-
IFN-α therapy[85]. The recovery of Tfh cell responses induces the production of anti-HBs antibodies and 
accelerates HBV clearance[55]. Additionally, Wang et al[86] found that HBV infection significantly 
increases the proportion of CD4+ CXCR5+ CD25+ Foxp3+ follicular regulatory T (Tfr) cells. Compared to 
CD25- Tfh cells, CD25+ Tfh cells express high levels of inhibitory receptors, such as PD-1 and CTLA-4, 
with lower levels of IFN-γ and IL-17 and higher TGF-β secretion. Importantly, Tfr cells can suppress the 
GC reaction of B cells and the antiviral effect of CD8+ T cells. Therefore, Tfh cell dysfunction might 
disrupt humoral immune responses during CHB infection.

B cells
Anti-HBs antibodies are protective antibodies that can prevent HBV from entering into host hepatocytes 
and can clear infectious HBV particles from the body[87,88], and B cells are essential for effective HBV 
control. Although the total number of B cells is enriched during CHB infection[89], previous data 
revealed that patients with CHB showed a decreased frequency of HBsAg-specific B cells[90]. 
Furthermore, the production of anti-HBs was defective in patients with CHB[91]. Recent findings 
indicate that hyperactivated B cells with increased expression of CD69 and CD71, have deficient prolif-
erative capacity and are unable to achieve HBsAg seroconversion in CHB patients.

Burton et al[92] found that HBsAg-specific B cells in patients with CHB exhibited a CD21- CD27- 

atypical memory B cell (atMBC) phenotype, which was accompanied by high levels of inhibitory 
receptors such as PD-1, BTLA, and CD22. atMBCs exhibit impaired survival, proliferation, and cytokine 
production and cannot normally differentiate into antibody-producing plasma cells, which dampens 
humoral immune responses in patients with CHB. Poonia et al[93] found that HBcAg binding to B cells 
can induce high expression of the inhibitory receptors Fc receptor-like 5 (FcRL4) and FcRL5 on B cells, as 
well as dysfunctional phenotypes, and can also suppress the proliferation and activation of B cells 
mediated by the B cell receptor and TLR signaling. Additionally, HBcAg drives B cell differentiation 
into IL-10-producing regulatory B (Breg) cells characterized as CD19+ CD24hi CD38hi, which suppresses 
CD8+ T cell responses[89]. Moreover, Breg cells have also been found to promote the conversion of CD4+ 
CD25− effector T cells into CD4+ CD25+ Treg cells, thereby participating in the maintenance of immune 
tolerance during chronic HBV infection[89].

In addition to antibody production, B cells are also considered professional APCs during CHB 
infection. However, the levels of costimulatory molecules (CD80 and CD40) are significantly decreased 
in circulating B cells, which might impair the interactions between B cells and effector T cells, thus 
inducing T cell exhaustion[94]. B cells can also regulate the immune response by secreting cytokines 
during CHB infection. HBeAg can stimulate B cell activation by promoting B-cell activating factor 
production via IL-6 and IFN-γ secretion[95,96], where IL-6 can play a non-cytolytic antiviral role against 
HBV by inducing cccDNA decay, reducing HBV transcription, and downregulating the NTPC receptor
[97].

NOVEL IMMUNE THERAPEUTIC STRATEGIES FOR HBV
Current CHB treatments fail to cure HBV and are often accompanied by serious side effects. The long-
term use of HBV drugs may even lead to mutations in HBV polymerase and cause drug resistance[98,
99]. Therefore, to overcome the limitations of clinical CHB therapy, researchers are developing new 
immune strategies to achieve sustained virologic remission (Table 1).

Monoclonal antibodies
Sustained exposure to a high load of viral antigens leads to T cell exhaustion in patients with CHB. 
Serum HBsAg levels can be as high as 400 μg/mL in patients with CHB; thus, this phenomenon can 
play a key role in inhibiting HBV-specific immune responses. Neutralizing antibodies against HBsAg or 
preS1 eliminated HBV and restored HBV-specific immune responses to preventative HBV vaccines in 
HBV carrier mice. Gao et al[100] identified a novel monoclonal antibody (E6F6) that targets the HBsAg-
aa119-125 peptide, which can mediate long-lasting HBsAg clearance and facilitates the HBV-specific T 
cell response via Fc-gamma receptor-mediated phagocytosis. Multiple release inhibitors and monoclonal 
antibodies against HBsAg have been tested in clinical trials, such as GC1102 (a recombinant human 
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Table 1 Novel immune therapeutic strategies for clinical chronic hepatitis B treatment

Target Drug name Sponsor Phase Notes Ref.

HBsAg inhibitor REP-2139 Replicor II Reduce the level of HBsAg [101,102]

HBsAg inhibitor REP-2165 Replicor II Reduce the level of HBsAg (similar to 
REP-2139)

[102]

RIG and NOD agonist SB9200 Spring Bank IIb/III Prolonged IFN-α and IFN-β secretion; 
Reduce hepatitis virus antigen and DNA 

[107]

TLR7 agonist RO7020531 Roche Ⅰ Activate HBV-specific CD8+ T and Tfh 
cells; Reduce the frequency of Tregs and 
MDSCs

[108]

TCR-T cells HBsAg-TCR-T cells Lion TCR Pte Ⅰ Safely and efficiently reduced HBsAg 
levels; Reduced level of HBV DNA and 
HBsAg

[115]

Therapeutic vaccine TG1050 Transgene Ⅰ Reduced level of HBV DNA and HBsAg; 
Long-lasting HBV-specific T cell 
responses

[125]

Therapeutic vaccine HBsAg-HBIG (YIC) National Vaccine and 
Serum Institute

III Increase the level of IL-2; Long-lasting 
HBV-specific T-cell responses

[126]

Therapeutic vaccine Nasvac CIGB III Sustained control of HBV DNA; 
Clearance of HBeAg

[127]

Therapeutic vaccine GS-4774 Gilead III Strong immune stimulatory effect on T 
cells

[128]

HBsAg: Hepatitis B surface antigen; HBeAg: Hepatitis B e antigen; HBV: Hepatitis B virus; NOD: nucleotide-binding oligomerization domain; IFN-α: 
Interferon-α; IFN-β: Interferon-β; IL-2: Interleukin-2; MDSCs: Myeloid-derived suppressor cells; RIG-I: Retinoic acid-inducible gene I; TCR: T-cell receptor; 
Tfh: Follicular helper T cells; TLR7: Toll-like receptor 7; Tregs: Regulatory T cells.

monoclonal anti-HBs antibody, Green Cross, phase II/III), EYP001 (farnesoid X receptor agonist, Enyo 
Pharma, phase II), REP-2139 (Replicor, phase II)[101,102], REP-2165 (Replicor, phase II)[102], and 
RG7834 (Roche, pre-clinical)[103].

Cytokines
Cytokines have been widely used as immunomodulatory agents to regulate immune responses during 
CHB treatment. For example, IL-12 administration alone can induce IFN-γ secretion and the recovery of 
exhausted CD8+ T cells in patients with CHB[71]. Moreover, employing IL-12 as an adjuvant combined 
with the recombinant HBV vaccine (rHBVvac) elicits systemic HBV-specific CD4+ and CD8+ T cell 
responses and restores HBsAg-specific humoral immunity, thereby overcoming immune tolerance in 
patients with CHB[104]. Recent findings have shown that co-administering GM-CSF with the rHBVvac 
induces the secretion of HBsAg-specific IFN-γ and CTL responses to clear HBV in vivo[105]. In addition, 
IL-2, IL-15, IL-21, and IL-33 also efficiently clear persistent HBV infection and produce a long-term 
immune response against HBV reinfection[106].

TLR and RIG-I agonists
Currently, various TLR ligands are used as drugs for clinical CHB therapy, such as SB9200 (Spring 
Bank, phase IIb/III)[107], RG-7795 (Roche, phase II), RO7020531 (Roche, phase I)[108], GS-9620 (Gilead, 
phase II), GS-9688 (Gilead, phase II), RG-7854 (Roche, phase I), and JNJ-4964 (Janssen, preclinical). Data 
from previous studies have shown that GS9620 (a TLR7 agonist) can upregulate IFN-α production, 
restore the effector functions of CD8+ T cells and NK cells, and decrease HBsAg and HBeAg titers. 
Single-stranded RNA40 (a TLR8 agonist) can selectively induce IL-12, IL-18, and IFN-γ secretion by 
monocytes in patients with CHB, which is beneficial for HBV clearance[109]. SB9200, an agonist of RIG-I 
and nucleotide binding oligomerization domain containing 2, can stimulate prolonged IFN-α and IFN-β 
secretion and ISG activation and efficiently reduce hepatic woodchuck hepatitis virus antigen and DNA 
levels in infected woodchucks[107]. Interestingly, compared with entecavir administration, SB9200 
pretreatment better reduces HBV virion production[110]. Additionally, we found that a small 
interfering RNA targeting HBx (3p-siHBx) induced RIG-I activation, which improved the immune 
microenvironment and triggered the activation of NK cells and CD8+ T cells in HBV-carrier mice[111].

Immune checkpoint blockade
Prolonged exposure to HBV leads to NK cell dysfunction and hyperexpression of immune checkpoint 
proteins in T cells. As an alternative approach, blocking the inhibitory receptor NKG2A increases the 
activity of human NK cells to promote HBsAg clearance[112]. In addition to direct anti-HBV effects, 
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recent data have shown that NK cells in patients with CHB selectively inhibit HBV-specific T cell 
responses via an IL-10-dependent pathway[39]. Furthermore, NK cells in NA-treated CHB patients 
expressing high levels of death receptor ligands, such as TNF-related apoptosis inducing ligand 
(TRAIL) or NKG2D, can mediate the lysis of activated T cells, thereby contributing to the development 
of chronic HBV infection[46,49]. Depleting inhibitory NK cells and blocking the NKG2D and TRAIL 
pathways during NA treatment further induces significant improvements in terms of HBV-specific T 
cell functions to achieve an HBV cure[79]. Additionally, blocking inhibitory receptors, such as PD-1, 
2B4, and Tim-3, can restore exhausted HBV-specific CD8+ T cells by promoting the recovery of 
cytotoxicity, cytokine production, and proliferation, offering an excellent opportunity to achieve 
sustained virologic control[113].

T cell receptor/chimeric antigen receptor T cells
The adoptive transfer of autologous T cells, such as chimeric antigen receptor (CAR) T cells, is another 
promising immunotherapeutic option for HBV therapy. These CAR T cells can directly recognize HBV 
antigens on infected hepatocytes and HBV-related HCC cells independently of HLA, without any need 
for antigen processing and presentation[114]. Qasim et al[115] found that genetically modified T cell 
receptor (TCR) T cells safely and effectively targeted HBsAg and reduced HBsAg levels in a patient with 
HBV-related HCC who had undergone liver transplantation. As an alternative strategy, CAR T cells 
expressing a recombinant HBsAg-specific antibody together with CD28 and CD3 zeta could also 
recognize and eliminate HBsAg-positive hepatocytes in vitro. Moreover, HBsAg-CAR-CD8+ T cells 
localized to the liver and rapidly reduced HBV replication without significant liver damage after 
adoptive transfer in a transgenic mouse model of HBV[116]. Additionally, HBsAg-CAR T cells 
specifically decreased plasma HBsAg, HBV-DNA, and HBV core-positive hepatocytes in persistently 
HBV-infected chimeric mice with humanized livers after adoptive transfer of HBsAg-CAR-T cells[117], 
thereby providing a potential therapeutic approach for HBV.

However, specific challenges related to TCR or CAR T-cell therapy remain for HBV treatment, 
including the risk of developing severe liver damage and the suppressive effects of transferred 
TCR/CAR T cells due to the immune tolerance of the liver. To prevent severe side effects, such as liver 
damage and uncontrolled proliferation, Kah et al[118] developed a method for transient mRNA electro-
poration into engineered HBV-TCR T cells. In a separate study, PD-1 knockdown in HBV-TCR-T cells 
increased their effector functions and ability to kill tumor cells in the PD-L1hi liver microenvironment
[119]. In addition, engineered CAR T cells to overexpress c-Jun, an AP-1 transcription factor, showed 
enhanced expansion and functional capacity with improved antitumor efficiency[120]. These findings 
have facilitated the development of TCR/CAR T cells for clinical CHB treatment.

Therapeutic vaccines
Therapeutic vaccination presents an attractive strategy for HBV eradication. A novel hepatitis B 
therapeutic vaccine could overcome immune tolerance; effectively induce powerful CD4+ T cells, CD8+ T 
cells, and humoral immune responses; and ultimately achieve sustained control of CHB infection. 
Kosinska et al[121] proposed approaches for developing safe and effective therapeutic vaccines, 
including: Designing potent vaccine components or schemes to prime antigen-specific immune 
responses; combining checkpoint inhibitors with other strategies to restore exhausted T cells; and 
Reducing HBV-related antigen levels to prevent T cell attrition and exhaustion. Based on this guidance, 
we prepared HBsAg nanogels (Ng) with chitosan (CS) and poly γ-glutamic acid (γ-PGA). Interestingly, 
we found that single-dose HBsAg CS-γ-PGA Ng immunization, especially HBsAg Ng (+), enhanced DC 
maturation and induced HBV-specific cellular and humoral immunity, and promoted the generation of 
effector memory T cells for HBV clearance[122]. Recent data also showed that a ferritin NP-preS1 
vaccine manifested an efficient antibody response, resulting in efficient viral clearance by delivering 
preS1 to SIGNR1+ DC[123]. Additionally, we demonstrated that employing poly I:C as an adjuvant 
combined with rHBVvac also efficiently and safely decreased HBV DNA, HBV RNA, and HBsAg in an 
HBV carrier mouse model. Importantly, we found that the therapeutic vaccine partially reversed 
immune tolerance and promoted HBV-specific CD8+ T cell terminal differentiation into KLRG1+ effector 
T cells, thereby playing a crucial role in HBV clearance[124].

Multiple therapeutic vaccines have been developed and administered for CHB treatment with 
different clinical outcomes. TG1050, a novel HBV-targeted immunotherapeutic vaccine based on a non-
replicative adenovirus vector encoding multiple HBV antigens (S, core, and polymerase), effectively 
induced polyfunctional and long-lasting HBV-specific T cell responses and reduced HBV DNA and 
HBsAg levels in vivo. The results of a phase Ib trial showed that TG1050 induced the production of IFN-
γ-producing HBV-specific T cells and safely achieved effective viral suppression[125]. Currently, 
TG1050 is being investigated in phase II clinical trials and may be a very promising therapeutic vaccine 
for HBV, especially in combination with TLR9 agonists. Additional therapeutic HBV vaccines under 
investigation in clinical trials worldwide including HBsAg-HBIG ("YIC", National Vaccine and Serum 
Institute, phase III)[126], Nasvac (CIGB, phase II/III)[127], GS-4774 (Gilead, phase II)[128], HepTcell 
(Altimmune, phase Ib), AIC 649 (AiCuris, phase I), INO-1800 (Inovio, phase I), HB-110 (Ichor, phase I), 
JNJ-64300535 (Janssen, phase I), TomegaVax HBV (TomegaVax, preclinical), and VR-CHB01 (Vical, 
preclinical).



Zhao HJ et al. Immune escape mechanisms of HBV

WJG https://www.wjgnet.com 890 March 7, 2022 Volume 28 Issue 9

CONCLUSION
PEG-IFN-α and NAs are the current major treatment strategies for CHB. Although these antiviral drugs 
can partly inhibit and eliminate HBV, viral breakthroughs may result from non-adherence due to 
limitations such as the high cost, the emergence of viral resistance, a long treatment cycle, and adverse 
side effects. Ideal anti-HBV strategies should meet the following criteria: the strong ability to inhibit 
virus replication with low drug resistance; stimulation of antiviral immune responses; Long-lasting 
effects without recurrence; and eventual removal of the virus. Therefore, the design of novel strategies 
to clear HBV and achieve long-lasting immune control remains a challenging task. Persistent CHB 
infection arises as a consequence of the complex interactions between HBV and the host innate and 
adaptive immune systems. Therefore, understanding the immunological mechanisms involved in CHB 
infection is important for designing potential therapeutic strategies for clinical CHB treatment. In this 
review, we detailed the immune biological characteristics and escape mechanisms of HBV and 
discussed novel immune-based therapies. Targeting a combination of viral and host factors provides the 
best possible chance for achieving a functional cure for CHB.
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