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Abstract
Minimal hepatic encephalopathy (MHE) is a frequent neurological and psychiatric 
complication of liver cirrhosis. The precise pathogenesis of MHE is complicated 
and has yet to be fully elucidated. Studies in cirrhotic patients and experimental 
animals with MHE have indicated that gut microbiota dysbiosis induces systemic 
inflammation, hyperammonemia, and endotoxemia, subsequently leading to 
neuroinammation in the brain via the gut-liver-brain axis. Related mechanisms 
initiated by gut microbiota dysbiosis have significant roles in MHE pathogenesis. 
The currently available therapeutic strategies for MHE in clinical practice, 
including lactulose, rifaximin, probiotics, synbiotics, and fecal microbiota 
transplantation, exert their effects mainly by modulating gut microbiota dysbiosis. 
Microbiome therapies for MHE have shown promised efficacy and safety; how-
ever, several controversies and challenges regarding their clinical use deserve to 
be intensively discussed. We have summarized the latest research ndings 
concerning the roles of gut microbiota dysbiosis in the pathogenesis of MHE via 
the gut-liver-brain axis as well as the potential mechanisms by which microbiome 
therapies regulate gut microbiota dysbiosis in MHE patients.

Key Words: Gut microbiota; Minimal hepatic encephalopathy; Gut-liver-brain axis; 
Pathogenesis; Therapeutics
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Core Tip: Minimal hepatic encephalopathy (MHE) is a common neuropsychiatric complication of liver 
cirrhosis. Gut microbiota dysbiosis has an essential role in the pathogenesis of MHE via the gut-liver-brain 
axis. Current therapeutic strategies for MHE are based on the modulation of gut microbiota dysbiosis. This 
review presents the recent evidence on the roles of gut microbiota dysbiosis in the pathogenesis and 
treatment of MHE via the gut-liver-brain axis.

Citation: Luo M, Xin RJ, Hu FR, Yao L, Hu SJ, Bai FH. Role of gut microbiota in the pathogenesis and 
therapeutics of minimal hepatic encephalopathy via the gut-liver-brain axis. World J Gastroenterol 2023; 29(1): 
144-156
URL: https://www.wjgnet.com/1007-9327/full/v29/i1/144.htm
DOI: https://dx.doi.org/10.3748/wjg.v29.i1.144

INTRODUCTION
Hepatic encephalopathy (HE) is a central nervous system complication of chronic liver disease or portal 
systemic shunting that is characterized by a broad range of neuropsychiatric symptoms[1]. Depending 
on the severity of clinical manifestations, HE can be classified as overt or covert, such as minimal HE 
(MHE) and West Haven grade I HE[1]. Overt HE (OHE) exhibits obvious neurological and psychiatric 
manifestations, such as flapping tremors, drowsiness, and sometimes coma[2]. In contrast, MHE 
presents with slight cognitive deficits in the executive function, including psychomotor speed, response 
inhibition, and working memory, with no clinical evidence of OHE[3]. MHE is diagnosed using 
neurophysiological and psychometric tests, and its prevalence range from approximately 30% to 70% in 
different populations with liver cirrhosis[1,3,4]. MHE compromises daily functions, affects the health-
related quality of life, and increases the risk of progression to OHE[5,6].

The exact pathogenesis of MHE is complex and not completely understood. Furthermore, the 
pathophysiological basis of MHE is multifactorial, with ammonia, inammation, and endotoxins 
considered causative factors[7]. Recently, gut microbiota dysbiosis has been demonstrated to be 
associated with hyperammonemia, systemic inflammation, neuroinammation, and endotoxemia in 
cirrhotic patients and experimental animals with MHE[8-11]. With decompensated liver cirrhosis and 
hepatic dysfunction, dysbiotic gut microbiota and its metabolites cross the impaired intestinal barrier 
and induce hyperammonemia, systemic inflammation, and endotoxemia, which influence the 
permeability of the blood-brain barrier (BBB), resulting in neuroinammation and low-grade edema in 
the cerebrum and contributing to central nervous system dysfunction[7]. It has been increasingly 
recognized that gut microbiota dysbiosis is the predominant factor accounting for MHE pathogenesis 
via the gut-liver-brain axis[12,13]. Furthermore, an increasing number of clinical studies have shown 
that currently available therapies for MHE patients, including lactulose, probiotics, synbiotics, rifaximin, 
and fecal microbiota transplantation (FMT), improve cognitive dysfunction through the modulation of 
gut microbiota dysbiosis[14-17].

Although several published reviews have elucidated the involvement of gut microbiota dysbiosis in 
the pathogenesis and treatment of HE, no specific review has focused on this involvement in MHE[13,
18-20]. Therefore, this review aimed to comprehensively elucidate the roles of gut microbiota in MHE 
pathogenesis via the gut-liver-brain axis and systematically analyze the underlying mechanisms linked 
with microbiome therapies to modulate gut microbiota dysbiosis in cirrhotic patients with MHE.

GUT MICROBIOTA DYSBIOSIS IN MHE
Small intestinal bacterial overgrowth (SIBO) is a pathological dysregulation of gut microbiota, charac-
terized by excessive bacteria and/or abnormal bacterial composition in the small intestine. Approx-
imately 48% to 73% of cirrhotic patients have SIBO[21]. Intestinal immune dysfunction, intestinal 
dysmotility, and decreased bile acid synthesis are implicated in the pathogenesis of SIBO[22]. SIBO is 
closely associated with the severity of advanced liver cirrhosis, and it has been validated as a signicant 
risk factor for MHE[23,24]. In MHE patients, the gut microbiota dysbiosis resulting from the SIBO has 
been characterized by lower bacterial diversity, decreased autochthonous beneficial bacteria, and 
increased pathogenic Gram-negative bacteria[8,14,25]. The gut microbiota dysbiosis in cirrhotic patients 
with MHE is summarized in Table 1. Notably, Bajaj et al[26] found that MHE patients have higher 
abundances of Enterococcus and Veillonella and a lower abundance of Roseburia in the gut mucosal 
microbiota; these signatures are significantly different from those of the fecal microbiota. It is 
hypothesized that the adherence and overgrowth of pathogenic bacteria in the gut mucosal microbiota, 
rather than the fecal microbiota, might be implicated in the pathogenesis of bacterial translocation.

https://www.wjgnet.com/1007-9327/full/v29/i1/144.htm
https://dx.doi.org/10.3748/wjg.v29.i1.144
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Table 1 Clinical studies of gut microbiota dysbiosis in cirrhotic patients with minimal hepatic encephalopathy

Ref. Nationality Number of 
patients

Etiology of 
cirrhosis

MHE 
diagnosis Sample Method Microbiota alteration

Zhang et 
al[8]

China 51 AIH, HBV, 
PBC, alcohol

NCT-A DST Stool 16S rRNA 
pyrosequencing

Enriched Streptococcus salivarius

Wang et 
al[14]

China 98 HBV, HCV, 
others

NCT-A DST Stool 16S rRNA 
sequencing

Enriched Proteobacteria, especially Pasteurel-
laceae Haemophilus and Alcaligenaceae 
Parasutterella

Luo et al
[29]

China 143 HBV PHES Stool 16S rRNA 
sequencing

Enriched Streptococcus salivarius and 
Veillonella

Liu et al
[76]

China 55 HBV, HCV, 
alcohol, others

NCT-A 
BAEP

Stool Stool bacterial 
culture

Overgrowth of E. coli and Staphylococcus 
spp.

Bajaj et al
[27]

United States 97 HCV, alcohol, 
NASH, others

ICT PHES Stool Shotgun 
metagenomic 
sequencing

Alistipes ihumii, Prevotella copri, and 
Eubacterium spp. were higher, while Entero-
coccus spp. were uniquely lower in MHE 
diagnosed by ICT

Bajaj et al
[28]

United States 247 HCV, alcohol, 
NASH, others

PHES ICT 
Stroop

Stool Multi-tagged 
sequencing

Enriched Lactobacillaceae

AIH: Autoimmune hepatitis; HBV: Hepatitis B virus; HCV: Hepatitis C virus; PBC: Primary biliary cirrhosis; NASH: Non-alcoholic steatohepatitis; NCT-A: 
Number connection test-A; DST: Digit symbol test; ICT: Inhibitory control test; PHES: Psychometric hepatic encephalopathy score; MHE: Minimal hepatic 
encephalopathy.

Because of the lack of uniform criteria for diagnosing MHE, the results of the currently available 
diagnostic methods for MHE are inconsistent in clinical practice. Specific signatures of fecal microbiota 
correspond to unique cognitive impairments determined by different diagnostic methods for MHE, 
including the psychometric hepatic encephalopathy score, inhibitory control test, and EncephalApp 
Stroop test (Table 1). For example, the abundances of Enterococcus and Streptococcus were higher in 
cirrhotic patients with MHE diagnosed by the psychometric hepatic encephalopathy score only; 
however, the abundances of Prevotella copri, Eggerthela, and Alistipes spp. were higher in those with MHE 
diagnosed by the inhibitory control test only[27]. Of note, the Lactobacillaceae abundance was also higher 
in fecal samples of MHE patients, regardless of MHE testing; therefore, this might be able to be used as 
a substitution for MHE testing[28].

Gut microbiota signatures of MHE patients vary depending on the etiology of liver cirrhosis. In a 
Chinese cohort with cirrhosis, the abundances of Streptococcaceae and Veillonellaceae were overrep-
resented in cirrhotic patients, and MHE patients had a higher abundance of Streptococcus salivarius[8]. 
Moreover, Streptococcus salivarius was also enriched in the gut microbiome of patients with MHE due to 
hepatitis B-associated liver cirrhosis, especially in those with sleep disturbances[29]. In contrast, in a 
cohort with cirrhosis in the United States, the fecal Lactobacillaceae abundance was higher in MHE 
patients; however, the abundance of fecal Lachnospiraceae genera, such as Clostridium XIVb and Rumino-
coccus, was correlated with better cognitive function independent of clinical variables[28]. Additionally, 
another study in the United States revealed that a higher Veillonellaceae abundance was found in the 
fecal microbiota of MHE patients, and that Porphyromonadaceae and Alcaligeneceae were positively 
associated with cognitive dysfunction in MHE[30]. The altered gut microbiota in Chinese MHE patients 
differs from that of MHE patients in the United States because the primary etiology of liver cirrhosis in 
the Chinese population is hepatitis B; however, in the United States, hepatitis C and excessive alcohol 
consumption are the predominant etiologies[31,32].

GUT-LIVER-BRAIN AXIS IN MHE
Bacterial translocation
In healthy individuals, the characteristic structure and immune system of the intestinal mucosa can 
prevent bacteria and their byproducts from entering the systemic circulation. In patients with liver 
cirrhosis, the SIBO decreases the synthesis of secondary bile acids by inhibiting the activation of 
Farnesoid X receptor and Takeda G protein-coupled receptor, which reduces intestinal immunoglobulin 
A levels and further compromises the immune function of the intestinal mucosa[33,34]. Moreover, the 
SIBO induces decreased synthesis of antimicrobial peptide and activates mucosal immune responses, 
resulting in intestinal inflammation and impaired intestinal epithelium integrity[35]. Furthermore, the 
SIBO increases the permeability of epithelial intercellular junctions via the down-regulation of tight 
junction protein expressions[36]. These potential mechanisms induce a “leaky gut” which facilitates the 
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transfer of pathogenic bacteria and their metabolites from the intestinal tract to the circulatory system, 
resulting in systemic inammation (Figure 1).

Systemic inflammation
Translocated bacteria and their products, such as pathogen-associated molecular patterns, are 
transported to the liver through the portal vein. At the molecular level, pathogen-associated molecular 
patterns are recognized by Toll-like receptors and cytoplasmic nucleotide-binding oligomerization 
domain-like receptors, and primarily stimulate hepatic Kupffer cells through the activation of MyD88-
dependent and NF-κB signaling pathways[37,38]. Innate immune responses in the liver are triggered, 
resulting in liver damage, with the release of damage-associated molecular patterns and the production 
of proinflammatory cytokines and chemokines (Figure 1)[37,38]. MHE patients present the systemic 
proinflammatory environment reflected by increased circulatory levels of proinflammatory cytokines 
such as tumor necrosis factor-alpha (TNF-α), interleukins (ILs), and interferon, and chemokines such as 
CCL20, CXCL13 and CX3CL1[39].

In experimental mice with MHE, higher abundances of Staphylococcaceae, Enterobacteriaceae, and 
Lactobacillaceae in the large intestine and of Staphylococcaceae, Streptococcaceae, and Enterobacteriaceae in the 
small intestine were associated with systemic inflammation along with higher circulating concentrations 
of TNF-α and IL-1β[10]. Similarly, the abundances of Enterobacteriaceae, Fusobacteriaceae, and Veillonel-
laceae were positively associated with higher serum concentrations of IL-2, IL-13, and IL-23 in cirrhotic 
patients with MHE, and these increased cytokines were signicantly correlated with MHE severity[30]. 
Furthermore, the association between MHE severity and increased proinflammatory cytokines has been 
demonstrated to be independent of the severity of liver cirrhosis and ammonia levels, suggesting that 
systemic inflammation with its proinflammatory cytokines is potentially implicated in the development 
of MHE[40].

Blood-brain barrier permeability
The blood-brain barrier is composed of capillary endothelial cells surrounded by capillary basement 
membrane and astrocytic perivascular endfeet. The BBB separates the systemic circulation and brain, 
prevents the entry of potentially harmful substances into the brain, and maintains the homeostasis of 
the brain microenvironment. Circulating proinammatory cytokines cannot directly cross the BBB and 
exert their effects on the brain. However, these cytokines, including TNF-α, ILs, and interferon, down-
regulate the expression of endothelial tight junction proteins, compromise cerebrovascular endothelial 
cells, activate astrocytes to an inflammatory reactive state, and alter BBB receptor expression and 
transport pathways, which consequently impair BBB integrity and further increase BBB permeability 
(Figure 2)[41,42]. Through the aforementioned mechanisms, the proinammatory signaling, which is 
initiated by systemic inflammation, crosses the damaged BBB and underlies the neuroinflammatory 
response that develops in the cerebrum.

Neuroinflammation
Neuroinflammation refers to a series of inflammatory response processes characterized by microglial 
activation and proinflammatory cytokine production in the cerebrum[43]. The proinammatory 
signaling, originating from systemic inflammation and crossing the BBB, induces microglial activation, 
stimulates Toll-like receptors, and activates NF-κB and myeloid protein-dependent pathways to 
produce proinflammatory mediators in the cerebrum[41]. Neuroinflammation interferes with 
neurotransmission, affects neuronal function, and induces low-grade cerebral edema in concert with 
hyperammonemia (Figure 2)[43]. Balzano et al[44] found that MHE rats experienced not only increased 
serum levels of prostaglandin E2, IL-6, and IL-17 but also microglial activation with increased mRNA 
expression of TNF-α and IL-1β in the hippocampus, which indicated the existence of both systemic 
inflammation and neuroinammation in MHE. Additionally, Enterobacteriaceae in the cecum and 
Staphylococcaceae in the small intestine are linked to serum proinammatory cytokines and neuroinflam-
mation in cirrhotic mice[10]. Moreover, germ-free mice colonized with feces from MHE patients 
containing high abundances of Enterobacteriaceae, Staphylococcaceae, and Streptococcaceae had remarkable 
microglial activation and neuroinflammation[9]. Therefore, neuroinflammation is closely associated 
with gut microbiota dysbiosis in experimental animal models of MHE.

In contrast, the neuroinflammation in MHE patients has not been extensively studied. Postmortem 
examination of cerebral specimens from MHE patients showed that mRNA expressions of TNF-α, IL-1β, 
and IL-6 remained unchanged in the cerebral cortex, although genes related to microglial activation 
were upregulated[45,46]. Current evidence of the involvement of gut microbiota dysbiosis in the 
pathogenesis of neuroinammation has been derived from experimental animal models of MHE; 
however, related studies of MHE patients are lacking. Magnetic resonance imaging (MRI) has been 
successfully used to quantify the manganese deposition in the brain and noradrenaline in MHE rats[47,
48]. It is presumed that cerebral MRI examinations of MHE patients could facilitate further research 
concerning the involvement of gut microbiota dysbiosis in the pathogenesis of neuroinammation.
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Figure 1 On the background of liver cirrhosis with hepatic dysfunction, dysbiotic gut microbiota and its byproducts including ammonia 
and endotoxin cross the impaired intestinal barrier, stimulate innate immune responses in the liver, and lead to systemic inflammation, 
hyperammonemia, and endotoxemia. TNF-α: Tumor necrosis factor-alpha; ILs: Interleukins; IFN: Interferon.

Hyperammonemia 
Ammonia, an important causative agent of MHE, is predominantly derived from the degradation of 
amino acids and urea by the gut bacteria. Urea hydrolysis is catalyzed by urease, an enzyme mainly 
produced by Gram-negative Enterobacteriaceae[49]. In MHE patients, an increased abundance of Strepto-
coccus salivarius is associated with hyperammonemia because Streptococcus salivarius has a considerable 
number of urea catabolite genes that activate urease activity, facilitating ammonia production and 
accumulation, leading to further hyperammonemia[8,29,50]. Streptococcus salivarius might be a potential 
therapeutic target for ammonia-lowering strategies in MHE patients.

Hyperammonemia induces a leaky BBB, promotes glutamine accumulation in astrocytes, and leads to 
astrocyte swelling and subsequent low-grade cerebral edema that influences neurotransmission 
(Figure 2)[51,52]. Similar to systemic inflammation, chronic hyperammonemia induces microglial 
activation with the increased production of TNF-α, IL-1β, and IL-6 and impaired glutamatergic and 
GABAergic neurotransmission, resulting in cognitive deficits in MHE rats[53,54]. Moreover, treating 
MHE rats with anti-TNF-α, which does not cross the BBB, attenuated systemic inflammation, alleviated 
hyperammonemia-induced neuroinflammation, and ameliorated neurotransmission and cognitive 
function[44]. Experimental animal evidence indicated that hyperammonemia might be exerted in 
concert with systemic inflammation to drive the development of neuroinflammation.

Endotoxemia
Endotoxins, also known as lipopolysaccharides, are components of the outer membrane of Gram-
negative bacteria. In patients with liver cirrhosis, serum endotoxin levels are increased and correlated 
with MHE severity, and functional modules associated with endotoxin production are abundant in the 
gut microbiome of MHE patients[11,29]. Several studies reported that increased endotoxin production 
was related to a higher Veillonella abundance in MHE patients[55,56]. Due to the impaired intestinal 
barrier and portal-systemic shunting, endotoxins enter the systemic circulation and cause endotoxemia 
with increased production of pro-inflammatory cytokines (Figure 1)[57]. Similar to pro-inflammatory 
cytokines, endotoxin is also unable to cross the BBB. Nevertheless, endotoxin stimulates microglia to 
release TNF-α, IL-1β, and reactive oxygen species, which increases the permeability of BBB tight 
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Figure 2 Systemic inflammation, hyperammonemia, and endotoxemia influence the permeability of the blood-brain barrier, resulting in 
neuroinflammation and low-grade cerebral edema, contributing to the pathogenesis of minimal hepatic encephalopathy. TNF-α: Tumor 
necrosis factor-alpha.

junctions[58]. Peripheral lipopolysaccharide injection induces microglial hyperactivation, increases 
mRNA expressions of TNF-α, IL-1β, and IL-10 in the cerebral cortex, and impairs glutamate 
transmission, resulting in memory and learning deficits in mice[59,60]. Based on the synergistic effect of 
hyperammonemia, peripheral lipopolysaccharide injection induced cytotoxic brain swelling and a 
subsequent pre-coma status in cirrhotic rats[61]. However, the exact mechanism of the interaction 
between hyperammonemia and endotoxemia in the pathogenesis of MHE remains unclear and requires 
further research.

MICROBIOME THERAPEUTICS FOR MHE
The majority of current therapeutic strategies for MHE in clinical practice exert their effects through 
modulation of gut microbiota dysbiosis. These microbiome therapies, including lactulose, rifaximin, 
probiotics, synbiotics, and FMT, alter the composition and function of the gut microbiota, inhibit 
pathogenic bacterial overgrowth, increase the abundance of beneficial bacteria, and reduce the 
production and absorption of ammonia (Table 2).

Lactulose
Lactulose, the standard therapy for MHE, is considered a prebiotic. A multicenter, randomized, 
controlled trial in China suggested that lactulose reduces ammonia production and absorption by 
inhibiting the growth of ammonia-producing bacteria, such as Streptococcus salivarius, and facilitates the 
growth of beneficial saccharolytic bacteria, such as Bidobacterium and Lactobacillus[14]. Moreover, 
several studies have revealed that lactulose reduces the serum concentrations of TNF-α, ILs, and 
endotoxins by inhibiting SIBO and bacterial translocation, thus improving cognitive dysfunction of 
MHE patients[11,62,63].

Despite lactulose treatment for MHE patients, there was still an increased gut microbiota dysbiosis 
with a lower cirrhosis dysbiosis ratio and enriched Gram-negative bacteria such as Enterobacteriaceae and 
Bacteroidaceae[64]. Similarly, Sarangi et al[65] indicated that lactulose did not significantly influence 
bacterial diversity, species richness, or taxa abundance in the gut microbiome of cirrhotic patients with 
MHE. Moreover, lactulose withdrawal only decreased the Faecalibacterium abundance and did not 
remarkably alter the gut microbiota composition[24]. These studies suggest that alterations in the gut 
microbiota function, rather than changes in the gut microbiota composition, may be associated with the 
therapeutic effects of lactulose in MHE patients.
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Table 2 Clinical Studies of gut microbiota modulation in cirrhotic patients with minimal hepatic encephalopathy

Ref. Design Patients Duration Sample Method Microbiota alteration Therapeutic effect

Lactulose

Wang et al
[14]

Multi-centre, 
open-label, 
randomized 
controlled trial

lactulose (n = 67), 
control (n = 31)

60 d Stool 16S rRNA 
sequencing

Higher abundances of Bacteroidetes, 
Firmicutes, Actinobacteria, and Proteo-
bacteria were in non-responders for 
lactulose

Significantly 
ameliorated MHE

Rifaximin

Bajaj et al
[56]

Controlled 
clinical trial

MHE patients 
before/after 
rifaximin (n = 20)

8 wk Stool Multi-tagged 
pyrosequencing, 
GC/LC-MS

Modest decrease in Veillonellaceae 
and increase in Eubacteriaceae, with 
significant changes in metabolite 
correlations

Significant 
improvement in 
endotoxemia and 
cognition

Probiotics

Lactobacillus GG

Bajaj et al
[74]

Randomized 
phase I, placebo-
controlled trial

Probiotic (n = 
14), placebo (n = 
16)

8 wk Stool Multi-tagged 
pyrosequencing, 
GC/LC-MS

Decreased Enterobacteriaceae and 
increased Lachnospiraceae and 
Clostridiales Incertae Sedis XIV, with 
significant alterations in metabolite 
correlations with amino acid and 
secondary bile acid metabolism

Attenuated 
endotoxemia and 
decreased TNF-α 
without change in 
cognition

Probiotics

Clostridium butyricum combined with Bidobacterium infantis

Xia et al
[73]

Randomized 
controlled trial

Probiotic (n = 
30), placebo (n = 
37)

3 mo Stool 16S rRNA 
sequencing

Increased Clostridium cluster I and 
Bidobacterium, decreased Enterobac-
teriaceae and Enterococcus

Reduced ammonia 
and improved 
cognition

Escherichia coli Nissle 1917 strain

Manzhalii 
et al[75]

Single-centre, 
open-label, 
randomized trial

Probiotic (n = 
15), lactulose (n = 
15), rifaximin (n 
= 15)

1 mo Stool 16S rRNA 
sequencing

Normalized Bifidobacterium and 
Lactobacilli abundance

Reduced ammonia 
and pro-inflam-
matory cytokines 
and improved 
cognition

Rifaximin plus probiotic

Zuo et al
[84]

Controlled 
clinical trial

Rifaximin (n = 7), 
rifaximin plus 
probiotic (n = 7)

4 wk Stool 16S rRNA 
sequencing

Both treatments alone reduced the 
overall microbiome diversity, with 
decreased Streptococcus and 
Faecalibacterium, Clostridium and 
increased Lactobacillus

Rifaximin plus 
probiotics showed a 
more apparent 
effect

Rifaximin plus lactulose

Schulz et 
al[72]

Randomized 
controlled trial

Rifaximin (n = 1), 
rifaximin plus 
lactulose (n = 4)

3 mo Stool 16S rRNA 
sequencing

Rifaximin with or without lactulose 
did not affect microbiota 
composition

MHE improvement 
with rifaximin 
lasted after the end 
of treatment

Synbiotics

Probiotics plus fermentable fiber

Liu et al
[76]

Controlled 
clinical trial

Synbiotic (n = 
20), fermentable 
fiber (n = 20), 
placebo (n = 15)

30 d Stool Stool quantitative 
bacteriological 
culture

Significant increase in non-urease-
producing Lactobacillus species

Reduced ammonia 
and endotoxemia 
levels, reversal in 
50% of MHE 
patients

GC/LC-MS: Gas chromatography/liquid chromatography-mass spectrometry; TNF-α: Tumor necrosis factor-alpha; MHE: Minimal hepatic 
encephalopathy.

Rifaximin
Rifaximin is an oral semisynthetic and nonsystemic antibiotic that inhibits transcription and RNA 
synthesis by binding to the β-subunit of bacterial RNA polymerase, with lower gastrointestinal 
absorption and better antimicrobial activity[66]. As an antibiotic, rifaximin also reduced pro-inflam-
matory cytokines and attenuated systemic and intestinal inflammation in a mouse model of MHE[10]. 
Similarly, rifaximin-α inhibited serum neutrophil TLR-4 expression, decreased TNF-α and IL levels, and 
ameliorated MHE in cirrhotic patients[67].
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A systematic review and meta-analysis showed that rifaximin is an effective and safe therapy for 
SIBO with a higher overall eradication rate[68]. In a mouse model of MHE, rifaximin therapy decreased 
intestinal ammonia production and serum IL-1β and IL-6 Levels by altering the gut microbiota function 
with increased secondary bile acids and decreased deconjugation without altering the gut microbiota 
composition[69]. Similarly, several clinical studies revealed that rifaximin attenuated hyperammonemia 
and endotoxemia in patients with MHE and resulted in significant changes in gut metabolites with 
modest alterations in gut microbiota composition, such as decreased Streptococcus and Veillonella 
abundance[56,70,71]. Furthermore, long-term treatment with rifaximin with or without lactulose did not 
affect the gut microbiota composition over a period of 3 mo in cirrhotic patients with MHE[72]. The 
results of these studies further support the theory that rifaximin treats MHE by modulating the 
metabolic function of the gut microbiota rather than gut microbiota composition, similar to the 
mechanism of lactulose treatment for MHE.

Probiotics 
Probiotics, which are added to yogurt or consumed as food supplements, are live bacteria with various 
health benefits. Treatment with probiotics containing B. infantis and C. butyricum increased Bifidobac-
terium and Clostridium cluster I abundances and decreased Enterococcus and Enterobacteriaceae 
abundances, thereby significantly lowering serum ammonia levels of patients with hepatitis B-
associated liver cirrhosis[73]. Additionally, the probiotic Lactobacillus GG increased Clostridiales XIV and 
Lachnospiraceae abundances, decreased the Enterobacteriaceae abundance, and decreased serum 
endotoxemia and TNF-α levels, resulting in alterations in metabolites associated with amino acid and 
secondary bile acid metabolism[74]. Moreover, the probiotic Escherichia coli Nissle strain reduced the 
levels of ammonia and pro-inflammatory cytokines, normalized Lactobacilli and Bifidobacterium 
abundances, and improved the cognitive function of MHE patients[75]. A systematic review of 19 trials 
showed that probiotics increased beneficial bacteria such as Lactobacillus and Bidobacterium, decreased 
SIBO and endotoxemia, and reversed MHE without affecting systemic inflammation[15]. Compared 
with other modalities, including lactulose, rifaximin, and L-ornithine-aspartate, probiotics have similar 
therapeutic effects on MHE reversal and OHE prevention, and no signicant differences were observed 
in the gut microbiota composition when probiotics and lactulose were compared[15,73]. Probiotics are 
regarded as alternative therapies for MHE. In contrast to lactulose and rifaximin, probiotics have 
therapeutic effects on MHE by altering the gut microbiota composition. Because of the complicated 
interconnections within the gut microbiome, a single change in the gut microbiota composition may 
have an unexpected effect or no effect at all. The interactions among supplemental probiotics, autoch-
thonous beneficial bacteria, and pathogenic bacteria in the intestinal tract remain to be determined.

Synbiotics
Synbiotics are a combination of probiotics and prebiotics. It is hypothesized that synbiotics improve the 
effectiveness of probiotics in the human intestine. A synbiotic containing probiotics and fermentable 
fibers significantly increased the nonurease-producing Lactobacillus abundance, decreased serum 
ammonia levels, and reversed MHE in cirrhotic patients[76]. Moreover, a combination of Bifidobacterium 
longum and fructo-oligosaccharide, which is another symbiotic, decreased serum ammonia levels and 
improved the cognitive function of MHE patients[77]. A systematic review revealed that synbiotic 
supplementation decreased SIBO, increased beneficial commensal bacteria such as Lactobacillus and 
Bifidobacterium, reduced blood ammonia and endotoxin levels, and decreased the risk of MHE 
recurrence[15]. Both a synbiotic and a prebiotic alone reduced ammonia and endotoxin levels, decreased 
the fecal Escherichia coli abundance, and reversed MHE; however, the synbiotic did not show better 
efficacy than the prebiotic alone[76]. Compared with prebiotics and probiotics used alone, the clinical 
benets of synbiotics have yet to be demonstrated.

Fecal microbiota transplantation
FMT refers to the process of transferring fecal bacteria from healthy donors to patients with gut 
microbiota dysbiosis[78]. FMT is an effective therapy for Clostridioides difficile infection and inflam-
matory bowel diseases[78,79]. In germ-free mice colonized with feces from MHE patients, FMT 
modulated gut microbiota dysbiosis and ameliorated microglial activation and neuroinflammation 
independent of active liver inflammation[9]. In cirrhotic patients with MHE, oral FMT capsules 
increased Ruminococcaceae and Bidobacteriaceae abundances, decreased Streptococcaceae and Veillonel-
laceae abundances, and reduced serum IL-6 and lipopolysaccharide-binding protein[17]. Furthermore, 
long-term treatment with FMT increased Burkholderiaceae abundance and decreased Acidaminoccocaceae 
abundance, which prevented HE recurrence and improved cognitive function during the follow-up[80]. 
The role of FMT in preventing OHE recurrence by modulating gut microbiota dysbiosis has been 
demonstrated; however, no clinical trial regarding the FMT for MHE treatment has been reported so far. 
It could be presumed that FMT is a potential and effective microbiome therapy for MHE; this would 
require rigorous clinical trials for verification.

Clinical studies of FMT for MHE have used different routes, doses, and dosing times. Owing to these 
differences, uniform criteria for selecting ideal FMT donors are lacking, and the optimal FMT dosing 
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regimen remains unclear. Moreover, the identification of pathogens in FMT donors is difficult. FMT is 
associated with Shigatoxin-producing Escherichia coli, extended-spectrum-β-lactamase-producing 
Escherichia coli, and enteropathogenic Escherichia coli infections due to the lack of donor screening[81,82]. 
Patients with liver cirrhosis are vulnerable to infection because of their weakened immune systems; 
therefore, rigorous screening and selection of FMT donors would improve FMT safety for patients with 
MHE.

Challenges and controversies
One major challenge of microbiome therapies for MHE is that host factors, dietary habits, and long-term 
medications may influence the gut microbiome of MHE. Ruminococcus gnavus and Streptococcus salivarius 
were the predictors of response to rifaximin treatment, and a higher abundance of Bacteroidetes, 
Firmicutes, Actinobacteria, and Proteobacteria could predict poor response to lactulose treatment[14,83]. 
Moreover, patients with MHE caused by non-alcoholic cirrhosis responded better to the treatment with 
rifaximin plus probiotics because they presented a significant decrease in ammonia-producing bacteria 
genera, such as Clostridium and Streptococcus[84]. Before the microbiome therapies, the baseline 
signatures of gut microbiota are identified to match the appropriate microbiome therapies, and gut 
microbiota biomarkers are explored to predict the therapeutic effects. Based on the different baseline 
compositions of gut microbiota, targeted and personalized microbiome therapies might be potentially 
effective strategies for MHE treatment.

Furthermore, cirrhosis is a chronic liver disease, and gut microbiota dysbiosis caused by liver 
cirrhosis may persist for a long time and require maintenance treatment. However, most microbiome 
therapeutics are currently single and short-term therapies. After probiotic yogurt supplementation for 
more than 2 mo, patients with liver cirrhosis had significant MHE reversal rates and excellent 
compliance; moreover, the potential for long-term compliance existed[85]. Additionally, MHE 
amelioration with rifaximin treatment for more than 3 mo lasted after the end of treatment, thus 
indicating a long-term effect on the metabolic function of the gut microbiota[72]. The efficacy and safety 
of long-term microbiome therapies for MHE require multicenter studies with large populations.

Another related challenge is that rifaximin, a validated antibiotic for MHE, potentially increases 
antibiotic resistance in liver cirrhosis. A large European cohort study of patients with liver cirrhosis 
revealed a significant increase in the prevalence of multidrug-resistant bacteria from 29% to 38% during 
the past decade[86]. Moreover, Chang et al[87] reported that rifampin-resistant staphylococcal isolates 
appeared after rifaximin treatment and disappeared during the short term in cirrhotic patients. Prophy-
lactic use of rifaximin did not alter the diversity and composition of gut microbiota or the overall 
resistance over 12 wk[88]. Rifaximin has not induced significant bacterial resistance and has shown 
active antimicrobial activity against most bacteria. Multi-drug resistant bacteria should be monitored 
when using rifaximin in MHE patients, especially in cirrhotic patients previously treated with 
antibiotics.

CONCLUSION
Gut microbiota dysbiosis initiates the pathophysiological mechanisms of hyperammonemia, systemic 
inflammation, and endotoxemia, which contribute to neuroinammation via the gut-liver-brain axis in 
MHE. Currently available strategies for MHE treatment mainly involve the modulation of gut 
microbiota dysbiosis. In the future, based on the specific microbial signatures identified, personalized 
and targeted microbiome therapies with optimal regimens and doses may improve the efficacy and 
safety of MHE treatments.
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