World Journal of *Gastroenterology*

World J Gastroenterol 2023 January 7; 29(1): 1-222

Published by Baishideng Publishing Group Inc

JG

World Journal of Gastroenterology

Contents

Weekly Volume 29 Number 1 January 7, 2023

REVIEW

- 1 Emerging roles of non-coding RNAs in colorectal cancer oxaliplatin resistance and liquid biopsy potential Luo ZD, Wang YF, Zhao YX, Yu LC, Li T, Fan YJ, Zeng SJ, Zhang YL, Zhang Y, Zhang X
- 19 Microbiota of the gastrointestinal tract: Friend or foe? Senchukova MA
- 43 Current status and future perspectives of radiomics in hepatocellular carcinoma Miranda J, Horvat N, Fonseca GM, Araujo-Filho JAB, Fernandes MC, Charbel C, Chakraborty J, Coelho FF, Nomura CH, Herman P
- Evolution of care in cirrhosis: Preventing hepatic decompensation through pharmacotherapy 61 Lee S, Saffo S
- 75 Emerging novel targets for nonalcoholic fatty liver disease treatment: Evidence from recent basic studies Wang GY, Zhang XY, Wang CJ, Guan YF

MINIREVIEWS

- 96 Vibrational spectroscopy - are we close to finding a solution for early pancreatic cancer diagnosis? Szymoński K, Chmura Ł, Lipiec E, Adamek D
- 110 Unveiling the biological role of sphingosine-1-phosphate receptor modulators in inflammatory bowel diseases

Tourkochristou E, Mouzaki A, Triantos C

- 126 Management of metabolic-associated fatty liver disease: The diabetology perspective Jeeyavudeen MS, Khan SKA, Fouda S, Pappachan JM
- Role of gut microbiota in the pathogenesis and therapeutics of minimal hepatic encephalopathy via the 144 gut-liver-brain axis

Luo M, Xin RJ, Hu FR, Yao L, Hu SJ, Bai FH

157 Endoscopic ultrasound guided radiofrequency ablation for pancreatic tumors: A critical review focusing on safety, efficacy and controversies

Khoury T, Sbeit W, Napoléon B

ORIGINAL ARTICLE

Basic Study

In vivo recognition of bioactive substances of Polygonum multiflorum for regulating mitochondria against 171 metabolic dysfunction-associated fatty liver disease

Yu LP, Li YJ, Wang T, Tao YX, Zhang M, Gu W, Yu J, Yang XX

Contents

Weekly Volume 29 Number 1 January 7, 2023

Observational Study

190 Impact of Helicobacter pylori virulence markers on clinical outcomes in adult populations Roshrosh H, Rohana H, Azrad M, Leshem T, Masaphy S, Peretz A

SYSTEMATIC REVIEWS

200 Liver pathology in COVID-19 related death and leading role of autopsy in the pandemic Zanon M, Neri M, Pizzolitto S, Radaelli D, Concato M, Peruch M, D'Errico S

RETRACTION NOTE

Retraction note to: Beneficial effect of probiotics supplements in reflux esophagitis treated with 221 esomeprazole: A randomized controlled trial

Sun QH, Wang HY, Sun SD, Zhang X, Zhang H

Contents

Weekly Volume 29 Number 1 January 7, 2023

ABOUT COVER

Editorial Board of World Journal of Gastroenterology, Sushovan Guha, MD, MA, PhD, FASGE, AGAF, Professor of Internal Medicine, Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine Co-Director, Center for Interventional Gastroenterology at UTHealth (iGUT), McGovern Medical School at Houston and UT Health Science Center at Houston at UTHealth, Houston, TX 77030, United States. sushovan.guha@uth.tmc.edu

AIMS AND SCOPE

The primary aim of World Journal of Gastroenterology (WJG, World J Gastroenterol) is to provide scholars and readers from various fields of gastroenterology and hepatology with a platform to publish high-quality basic and clinical research articles and communicate their research findings online. WJG mainly publishes articles reporting research results and findings obtained in the field of gastroenterology and hepatology and covering a wide range of topics including gastroenterology, hepatology, gastrointestinal endoscopy, gastrointestinal surgery, gastrointestinal oncology, and pediatric gastroenterology.

INDEXING/ABSTRACTING

The WJG is now abstracted and indexed in Science Citation Index Expanded (SCIE, also known as SciSearch®), Current Contents/Clinical Medicine, Journal Citation Reports, Index Medicus, MEDLINE, PubMed, PubMed Central, Scopus, Reference Citation Analysis, China National Knowledge Infrastructure, China Science and Technology Journal Database, and Superstar Journals Database. The 2022 edition of Journal Citation Reports® cites the 2021 impact factor (IF) for WJG as 5.374; IF without journal self cites: 5.187; 5-year IF: 5.715; Journal Citation Indicator: 0.84; Ranking: 31 among 93 journals in gastroenterology and hepatology; and Quartile category: Q2. The WJG's CiteScore for 2021 is 8.1 and Scopus CiteScore rank 2021: Gastroenterology is 18/149.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Ying-Yi Ynan; Production Department Director: Xiang Li; Editorial Office Director: Jia-Ru Fan.

NAME OF JOURNAL	INSTRUCTIONS TO AUTHORS
World Journal of Gastroenterology	https://www.wjgnet.com/bpg/gerinfo/204
ISSN	GUIDELINES FOR ETHICS DOCUMENTS
ISSN 1007-9327 (print) ISSN 2219-2840 (online)	https://www.wjgnet.com/bpg/GerInfo/287
LAUNCH DATE	GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
October 1, 1995	https://www.wignet.com/bpg/gcrinfo/240
FREQUENCY	PUBLICATION ETHICS
Weekly	https://www.wjgnet.com/bpg/GerInfo/288
EDITORS-IN-CHIEF	PUBLICATION MISCONDUCT
Andrzej S Tarnawski	https://www.wignet.com/bpg/gerinfo/208
EDITORIAL BOARD MEMBERS	ARTICLE PROCESSING CHARGE
http://www.wignet.com/1007-9327/editorialboard.htm	https://www.wignet.com/bpg/gcrinfo/242
PUBLICATION DATE	STEPS FOR SUBMITTING MANUSCRIPTS
January 7, 2023	https://www.wignet.com/bpg/GerInfo/239
COPYRIGHT	ONLINE SUBMISSION
© 2023 Baishideng Publishing Group Inc	https://www.f6publishing.com

© 2023 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA E-mail: bpgoffice@wjgnet.com https://www.wjgnet.com

WÜ

World Journal of Gastroenterology

Submit a Manuscript: https://www.f6publishing.com

World J Gastroenterol 2023 January 7; 29(1): 43-60

DOI: 10.3748/wjg.v29.i1.43

ISSN 1007-9327 (print) ISSN 2219-2840 (online)

REVIEW

Current status and future perspectives of radiomics in hepatocellular carcinoma

Joao Miranda, Natally Horvat, Gilton Margues Fonseca, Jose de Arimateia Batista Araujo-Filho, Maria Clara Fernandes, Charlotte Charbel, Jayasree Chakraborty, Fabricio Ferreira Coelho, Cesar Higa Nomura, Paulo Herman

Specialty type: Gastroenterology and hepatology

Provenance and peer review: Invited article; Externally peer reviewed.

Peer-review model: Single blind

Peer-review report's scientific quality classification

Grade A (Excellent): A Grade B (Very good): B Grade C (Good): 0 Grade D (Fair): 0 Grade E (Poor): 0

P-Reviewer: D'Alterio C, Italy; Wang Y, China

Received: September 21, 2022 Peer-review started: September 21, 2022 First decision: October 18, 2022

Revised: October 27, 2022 Accepted: December 13, 2022 Article in press: December 13, 2022 Published online: January 7, 2023

Joao Miranda, Department of Radiology, University of Sao Paulo, Sao Paulo 05403-010, Brazil

Natally Horvat, Maria Clara Fernandes, Charlotte Charbel, Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, United States

Gilton Marques Fonseca, Fabricio Ferreira Coelho, Paulo Herman, Department of Gastroenterology, University of Sao Paulo, Sao Paulo 05403-000, Brazil

Jose de Arimateia Batista Araujo-Filho, Department of Radiology, Hospital Sirio-Libanes, Sao Paulo 01308-050, Brazil

Jayasree Chakraborty, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, United States

Cesar Higa Nomura, Department of Radiology, University of Sao Paulo, Sao Paulo 05403-000, Brazil

Corresponding author: Paulo Herman, MD, PhD, Professor, Department of Gastroenterology, University of Sao Paulo, 255 Av. Dr. Eneas de Carvalho Aguiar, Sao Paulo 05403-000, Brazil. pherman@uol.com.br

Abstract

Given the frequent co-existence of an aggressive tumor and underlying chronic liver disease, the management of hepatocellular carcinoma (HCC) patients requires experienced multidisciplinary team discussion. Moreover, imaging plays a key role in the diagnosis, staging, restaging, and surveillance of HCC. Currently, imaging assessment of HCC entails the assessment of qualitative characteristics which are prone to inter-reader variability. Radiomics is an emerging field that extracts high-dimensional mineable quantitative features that cannot be assessed visually with the naked eye from medical imaging. The main potential applications of radiomic models in HCC are to predict histology, response to treatment, genetic signature, recurrence, and survival. Despite the encouraging results to date, there are challenges and limitations that need to be overcome before radiomics implementation in clinical practice. The purpose of this article is to review the main concepts and challenges pertaining to radiomics, and to review recent studies and potential applications of radiomics in HCC.

WJG | https://www.wjgnet.com

Key Words: Radiomics; Hepatocellular carcinoma; Texture analysis; Radiology

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Radiomics is an emerging field that extracts high-dimensional mineable quantitative features that cannot be assessed visually with the naked eye from medical imaging. The main potential applications of radiomic models in hepatocellular carcinoma (HCC) are to predict histology, predict response to treatment, predict genetic signature, predict recurrence, and predict survival. The purpose of this article is to review the main concepts and challenges pertaining to radiomics, and to review recent studies and potential applications of radiomics in HCC.

Citation: Miranda J, Horvat N, Fonseca GM, Araujo-Filho JAB, Fernandes MC, Charbel C, Chakraborty J, Coelho FF, Nomura CH, Herman P. Current status and future perspectives of radiomics in hepatocellular carcinoma. World J Gastroenterol 2023; 29(1): 43-60

URL: https://www.wjgnet.com/1007-9327/full/v29/i1/43.htm DOI: https://dx.doi.org/10.3748/wjg.v29.i1.43

INTRODUCTION

Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related deaths worldwide [1]. Liver cancer is especially common in Asia, where 72.5% of all new liver cancer cases worldwide are diagnosed[2]. HCC accounts for over 90% of all primary liver cancer cases[3]. The main risk factors for HCC in the West is viral hepatitis (hepatitis C virus in the West and hepatitis B virus in Asia and in developing countries) and alcohol intake. In addition, non-alcoholic steatohepatitis is becoming a common risk factor, particularly in the West[3,4]. HCC patient prognosis depends on the stage of HCC at the time of diagnosis[5]; and advanced-staged patients at the time of diagnosis have a poor prognosis [5-7].

The treatment of HCC is based on tumor burden, clinical performance of the patient, and liver function[8]. Given the frequent co-existence of an aggressive tumor and underlying chronic liver disease, the management of HCC requires experienced multidisciplinary team discussion[9]. Moreover, radiology plays a key role in the screening, diagnosis, staging, restaging, and surveillance of HCC. Currently, imaging assessment is based on qualitative characteristics, such as size and enhancement pattern, which are prone to inter-reader variability. Reliable tools that can potentially address this variability as well as deal with the vast amount of imaging data are warranted[10]. Over the last decade, radiomics has become a popular quantitative tool that can potentially address these challenges and provide information not previously available for precision decision-making[11].

Radiomics is an emerging field that extracts high-dimensional mineable quantitative features that cannot be assessed visually with the naked eye from medical imaging[12]. The main potential applications of radiomic models in HCC are to predict histology, response to treatment, genetic signature, recurrence, and survival[13]. Despite the encouraging results to date, there are several challenges and limitations that need to be overcome before the implementation of radiomics in clinical practice. The purpose of this study is to review the main concepts, challenges pertaining to radiomics and recent studies and potential applications of radiomics in HCC.

RADIOMICS

Main concepts

In the new era of precision medicine, artificial intelligence (AI) and in its various branches, such as machine learning (ML) and deep learning (DL), have provided new imaging biomarkers that can potentially provide new data that are useful for clinical decision-making. ML is related to a set of computational systems that improve with experience. DL is a subset of ML based on series of layers (trainable nonlinear operations), each of which transforms input data into a representation that facilitates pattern recognition[14].

Radiomics has recently emerged as a translational research field that proposes to discover new associations between clinical data and quantitative data extracted from medical images using conventional biostatistics or AI methods[12] and become popular, particularly in oncologic imaging. Radiomics involves mineable high-dimensional data extraction, characterizing intensity, shape, size, and/or texture from images to create big-data datasets that are then used to identify distinct sub-visual imaging

patterns[15]. Radiomics models usually use magnetic resonance imaging (MRI), computed tomography (CT) and positron emission tomography (PET) images data. Fundamentally, radiomics is motivated by the observation that these imaging characteristics reflect phenotype and genotype of underlying tissue and thus can help in clinical decision making^[16].

Radiomic can be subdivided into texture, size and shape, and transformed based features. The most common radiomic features is texture. It can be subdivided into first-order, second-order and higherorder statistical features. First-order features reflect the distribution of values of individual voxels without concern for spatial relationships; they are generally histogram-based, such as mean (average intensity), entropy (quantify randomness of intensity), kurtosis (flatness) and skewness (asymmetry). Second-order features reflect the statistical interrelationships between voxels with similar (or dissimilar) contrast values^[12] and some of the commonly used 2nd order features are: Grey level co-occurrence matrix, grey level run length matrix, and grey level size zone matrix features. Taking into account the repetitive patterns in radiological images, higher-order statistical methods use sophisticated filter grids on the images - such as Minkowski functionals (to evaluate voxels whose intensity is above a determined threshold), Wavelet and Laplacian transforms (to identify coarse texture patterns) and fractal analysis (to assess the irregularity of a surface)[12]. In practice, standard libraries with predefined feature configurations and validated reference values (such as PyRadiomics) are frequently used to increase the reproducibility of radiomic models.

Workflow

Radiomic analysis is a multistep process involving the processing of medical images to generate different features from segmented images. The typical radiomics workflow can be summarized in the following steps (Figure 1):

Image acquisition and preprocessing: Standardized imaging protocols should be used to avoid reproducibility issues related to noise and confounding. However, standardized imaging protocols also decrease the generalizability of the results. Once a patient dataset has been identified, images should be anonymized as well as exported as Digital Imaging and Communication in Medicine files[17]. Denoising and motion correction steps may be needed.

Segmentation: Segmentation involves the delineation of region of interests (ROIs) on the tumor or peritumoral zones. ROIs can be delineated manually, semiautomatically, or automatically (using ML tools) in either two-dimensional (2D) or three-dimensional (3D) views (Figure 2). Whenever possible, segmentations should be checked by a radiologist to ensure accuracy.

Feature extraction, feature selection and model building: A wide range of statistical models are commonly used to choose a subset of optimal features that correlate with the predenid outcome^[15]. Many of the extracted features are in fact redundant and supervised or unsupervised approaches can be applied to achieve dimension reduction. ML and DL techniques are emerging as useful tools to achieve more accurate feature selection [18,19]. The features should be selected only based on the training data to avoid bias.

Of note, the number of extracted features is commonly larger than the study sample, which can contribute to overfitting of the model and to overoptimistic results. Some strategies can be done, for example, select the features in such a way to maintain the ratio or regularization methods are used to minimize the complexity of the respective models[20]. Once the optimal features are identified, a statistical model can be proposed to predict a specific clinical question using different classifiers such as generalized linear models, random forests, support vector machines, or neural networks[20,21].

Validation: Validation is essential to estimate model performance and can be done using subsets of the original training dataset (i.e., cross-validation) or using a separate hold-out dataset containing either internal or external data[17].

Main challenges

To date, radiomic models reproducibility is often poor, due to insufficient reporting or limited opensource code and data, which undermines external validation and increases the subsequent risk of falsepositive results^[22]. Further, researchers often face great difficulty in acquiring unbiased and homogeneous datasets across multiple institutions, thus hampering multi-institutional collaborations involving large multi-institutional datasets for the training and validation of radiomic models[14]. For successful multi-institutional cooperation for building large multi-institutional datasets for radiomic models training and validation, radiomics workflow standardization, clear reporting of study methodology, and data sharing across different institutions are needed [17]. Additionally, an effective means to interpret the vast and varied data derived from radiomics analysis is another key obstacle to the clinical implementation of radiomic models. Therefore, a balanced interpretation of results and an increased focus on interpretable models are essential to their successful integration into clinical practice [23]. Finally, manual segmentation is a time-consuming process and one of the most common limitations that should be managed with automatic or semiautomatic strategies before widespread use of radiomics tools.

WJG | https://www.wjgnet.com

Miranda J et al. Radiomics in HCC

Figure 1 Illustration summarizing radiomics workflow.

DOI: 10.3748/wjg.v29.i1.43 Copyright ©The Author(s) 2023.

Figure 2 Illustration of hepatocellular carcinoma segmentation. 72-year-old man with cirrhosis had a new liver lesion on computed tomography, indeterminate. Gadoxetic acid-enhanced T1-weighted images show a 1.3 cm (arrows) lesion. A: With arterial phase hyperenhancement; B: Questionable washout appearance on portal venous; C: Delayed phases; D: Hypointensity on during hepatobiliary phase (20 min); E and F: A tumor bed segmentation was exemplified, the portal venous phase (E) was used to manually segment the volume of interest (F); G and H: Note the gross findings after surgery. Histology confirmed hepatocellular carcinoma

APPLICATIONS OF RADIOMICS IN HCC

Prediction of HCC histology

Table 1 summarizes the studies in the literature to date that have evaluated the use of radiomics to preoperatively predict HCC histology.

Distinguishing between HCC and other malignant or benign lesions: The distinction between HCC and other primary hepatobiliary malignancies can be challenging on imaging, because of the overlap of some features, especially for combined tumors[24]. In light of this, many studies have investigated radiomics performance in differentiating HCC from other malignant and benign hepatic lesions. For instance, Liu et al[24] studied the use of MRI- and CT-based radiomics to differentiate between HCC,

Raishidena® WJG | https://www.wjgnet.com

Table 1 Summary of the studies that evaluated radiomics to preoperatively predict hepatocellular cholangiocarcinoma histology

Ref.	Country	n	Imaging modality	Endpoint	Segmentation	ROI/VOI	No. of readers	Main results	Validation
Wang <i>et al</i> [92], 2022	China	196	MRI	cHCC-CC vs HCC	Manual, intrat- umoral	ROI	1	AUC (delayed phase MRI): 0.91	None
Liu <i>et al</i> [<mark>24</mark>], 2021	Canada	85	MRI and CT	cHCC-CC vs HCC vs CC	Manual, intrat- umoral	ROI	2	AUC (MRI): 0.77-0.81. AUC (CT): 0.71-0.81	Cross- validation
Lewis <i>et al</i> [25], 2019	United States	63	MRI	cHCC-CC vs HCC vs CC	Manual, intrat- umoral	VOI	2	AUC (LI-RADS and male gender): 0.90	None
Nie <i>et al</i> [27], 2020	China	156	CT	HCC vs FNH	Manual, intrat- umoral	ROI	2	AUC (radiomics): 0.96 training, 0.87 validation. AUC (radiomics + clinical factors): 0.98 training, 0.92 validation	None
Wu et al [<mark>28</mark>], 2019	China	369	MRI	HCC vs hemangioma	Manual, intrat- umoral	ROI	2	AUC: 0.86 training, 0.89 testing	None
Mokrane <i>et al</i> [29], 2020	United States	178	СТ	HCC diagnosis	Manual, intrat- umoral	VOI	2	AUC: 0.70 training, 0.66 validation	External
Brancato <i>et al</i> [<mark>34</mark>], 2022	Italy	38	MRI	Tumor grade	Manual, intrat- umoral	VOI	1	AUC: 0.89	None
Gao et al [93], 2018	China	Training: 125. Validation: 45	MRI	Tumor grade	Manual, intrat- umoral	N/A	N/A	AUC: 0.83 training, 0.74 validation	None
Wu et al [<mark>30]</mark> , 2019	China	Training: 125. Validation: 45	MRI	Tumor grade	Manual, intrat- umoral	ROI	1	AUC: 0.83 training, 0.74 validation	Internal
Zhou <i>et al</i> [<mark>94], 2017</mark>	China	46	MRI	Tumor grade	Manual, intrat- umoral	ROI	1	AUC: 0.83-0.92	None
Mao <i>et al</i> [31], 2022	China	Training: 85. Validation: 37	MRI	Tumor grade	Manual, intrat- umoral	ROI	2	AUC: 0.97 training, 0.94 validation	Internal
Chen <i>et al</i> [33], 2021	China	Training: 112. Validation: 49	СТ	Tumor grade	Manual, intrat- umoral	VOI	2	AUC: 0.90 training, 0.94 validation	Internal
Yang et al [95], 2019	China	Training: 146. Validation: 62	Gadoxetic acid- enhanced MRI	MVI	Manual, intrat- umoral	ROI	2 (consensus)	AUC: 0.94 training, 0.86 validation	Internal
Xu et al [<mark>39</mark>], 2019	China	495	СТ	MVI	Semi-automatic, intratumoral and peritumoral	VOI	3	AUC: 0.91 training, 0.89 validation	Internal
Feng <i>et al</i> [40], 2019	China	160	Gadoxetic acid- enhanced MRI	MVI	Manual, intrat- umoral and peritumoral	VOI	3	AUC: 0.85 training, 0.83 validation	Internal
Zheng <i>et</i> al[41], 2017	United States	120	СТ	MVI	Semi-automatic	ROI	1	AUC: 0.80	None
Bakr <i>et al</i> [<mark>96</mark>], 2017	United States	28	CT	MVI	Manual, intrat- umoral	ROI	4	AUC: 0.76	None
Ma et al [97], 2019	China	157	СТ	MVI	Manual, intrat- umoral	VOI	1	AUC (portal venous phase CT): 0.79	Cross- validation

AUC: Area under the curve; cHCC-CC: Combined hepatocellular cholangiocarcinoma; CT: Computed tomography; FNH: Focal nodular hyperplasia; HCC: Hepatocellular carcinoma; MRI: Magnetic resonance imaging; MVI: Microvascular invasion; ROI: Region of interest; VOI: Volume of interest.

Baisbideng® WJG | https://www.wjgnet.com

cholangiocarcinoma, and combined HCC-cholangiocarcinoma. Using MRI, radiomic features derived from contrast-enhanced phases demonstrated excellent performance to differentiate HCC from non-HCC [area under the curve (AUC) \ge 0.79], with the highest AUC obtained from the arterial phase (AUC) of 0.81); meanwhile, using CT, radiomic features derived from the pre-contrast and portal venous phase yielded AUC values of 0.81 and 0.71, respectively. In another study, Lewis et al[25] found that the combination of the apparent diffusion coefficient 5th percentile radiomic feature with Liver Imaging Reporting and Data System classification and male gender achieved an accuracy of 80%-81.5% in distinguishing HCC from intrahepatic cholangiocarcinoma (ICC) and combined HCC-ICC, and outperformed either measure alone. Other studies showed that radiomics is helpful to distinguish between HCC and benign tumors in non-cirrhotic livers, e.g., from hepatocellular adenoma (AUC of 0.96 in the training set and 0.94 in the test set)[26], from focal nodular hyperplasia (AUC of 0.979 in the training set and 0.917 in the test set)[27], and from hemangioma (AUC: 0.86 in the training set and 0.89 in the test set)[28]. Mokrane et al^[29] validated a radiomics signature to diagnose HCC in patients with cirrhosis and increased radiologists' confidence.

Prediction of histologic grade: Histologic grade is an important prognostic factor in patients with HCC and is only available preoperatively in patients who undergo biopsy. Therefore, studies have aimed to identify non-invasive imaging features such as radiomic features that could potentially predict the tumor grade. Wu et al[30] found that MRI-based radiomics can successfully categorize low-grade and high-grade HCC, with the radiomic model outperforming the clinical model (AUC 0.742 for the combined T1-weighted and T2-weighted MRI-based radiomic model vs AUC 0.6 for the clinical one) and the combined radiomic and clinical model (AUC 0.8) outperforming both models alone. Mao et al [31] also investigated MRI-based radiomic features, with Gd-EOB-DTPA contrast administered for the MRI exams, finding that the artificial neural network combining radiomic features from the contrastenhanced arterial phase and hepatobiliary phase yielded the highest AUC of 0.944. Moreover, they found that the artificial neural network models were superior to the logistic regression models. In other studies, CT-based radiomics has been found to have high performance in distinguishing between lowand high-grade tumors[32-34]; for instance, Chen et al[33] found an AUC of 0.937 for a ML-based radiomics model based on the CT portal phase.

Prediction of microvascular invasion: Microvascular invasion (MVI) is found in about 15%-57% of patients with HCC who undergo surgery [35,36] and is associated with higher rates of recurrence and shorter survival after surgery[37]. Although imaging can be used to diagnose macrovascular invasion (or tumor in vein), preoperative imaging identification of MVI is difficult. Studies have evaluated the performance of radiomics as a tool to predict MVI, with most predictive models combining radiomics and clinical biomarkers[38]. For instance, Xu et al[39] proposed a model combining CT-based radiomic features with radiologic and clinical parameters; the model was not only an independent predictor of histologic MVI (AUC of 0.909 in the training/validation set and 0.889 in the test set) but was also an independent predictor of worse prognosis (disease-specific recurrence and disease-specific mortality). Of note, the radiomics-only model did not add significant value to radiologist scores alone. Since MVI occurs primarily at the tumor periphery (approximately 85% of MVI is located within one centimeter from the tumor margin), studies have investigated radiomic features derived from the peritumoral tissue. For instance, Feng et al[40] demonstrated that a model combining intratumoral and peritumoral radiomic features was superior in predicting MVI using Gd-EOB-DTPA-enhanced MRI compared to the model containing only intratumoral radiomics features. Additionally, Zheng et al[41] demonstrated that peritumoral textural features had an AUC of 0.80 and a multivariate model combining alfa-fetoprotein, tumor size, hepatitis status and quantitative features achieved an AUC of 0.88.

Prediction of HCC genetic expression

Compared to the prediction of histology, fewer researches in the literature have evaluated the use of radiomics to predict genetic expression in patients with HCC (Table 2). Overall, studies on the use of radiomics to predict genetic expression have focused on using radiomics to predict Ki67 expression as well as cytokeratin 19 (CK19), P53, and phosphatidylinositol-3 kinase (PI3K) status. Of note, in 2007, Segal et al[42] investigated for the first time the correlation between HCC genetic expression and CT imaging traits, finding 32 CT imaging traits that were correlated with the expression levels of 116 genetic markers.

Ki67 expression: High Ki-67 expression in HCC patients is associated with fast progression and poor prognosis[43]. To determine if radiomics can be useful to predict Ki67 expression, Wu et al[44] developed and validated a radiomic nomogram based on the combination of CT-based radiomic features and clinical factors. Using Gd-EOB-DTPA-enhanced MRI, Li et al [45] found that texture analysis of the hepatobiliary phase, arterial phase, and portal vein phase were helpful for predicting Ki67 expression. In their study, a single slice with the largest proportion of the lesion was delineated, and the predictive performance of models were compared by misclassification rate. In another study by Fan et al [46] using Gd-EOB-DTPA-enhanced MRI, the authors delineated the whole lesion, and the predictive performance of different models were compared using the receiver operating curve, calibration curve,

WJG | https://www.wjgnet.com

Table 2 Summary of the studies that evaluated radiomics models to predict genetic profile in patients with hepatocellular cholangiocarcinoma

Ref.	Country	n	lmaging modality	Endpoint	Segmentation	ROI/VOI	No. of readers	Main results	Validation
Xia <i>et al</i> [98], 2018	China	38	СТ	Association with gene expression profile	Manual, intrat- umoral	ROI	1	Individual textural features predicted gene modules	No
Wu et al[44], 2022	China	Training: 120. Validation: 52	CT	Ki-67 expression	Manual, intrat- umoral	VOI	2	AUC: 0.85 (training), 0.74 (validation)	Internal
Li et al [<mark>45</mark>], 2019	China	83	MRI	Ki-67 expression	Manual, intrat- umoral	ROI	2	Some features were associated, no model	No
Ye <i>et al</i> [<mark>47</mark>], 2019	China	89	MRI	Ki-67 expression	Manual, intrat- umoral	VOI	2	C-index: 0.878	No
Fan <i>et</i> al[<mark>46</mark>], 2021	China	Training: 103. Validation: 48	MRI	Ki-67 expression	Manual, intrat- umoral	VOI	2	AUC: 0.88 (training), 0.80 (validation)	Internal
Hu et al [<mark>48</mark>], 2022	China	Training: 87. Validation: 21	MRI	Ki-67 expression	Manual, intrat- umoral	ROI	1	AUC: 0.90 (training), 0.83 (validation)	Internal
Wang <i>et al</i> [50], 2019	China	78	MRI	CK19 positivity	Manual, intra- and peritumoral	ROI	1	AUC: 0.76	No
Chen <i>et</i> <i>al</i> [51], 2021	China	Training: 102. Validation: 19	MRI	CK19 positivity	Manual, intrat- umoral	ROI	2	AUC: 0.82 (training), 0.78 (external validation)	Internal and external
Yang et al[52], 2021	China (multi- center)	Training: 143. Validation: 75	MRI	CK19 positivity	Manual, intrat- umoral	ROI	2	AUC: 0.85 (training), 0.79 (external validation)	Internal and external
Wu et al <mark>[55</mark>], 2019	China	63	СТ	P53 mutation status	Manual, intrat- umoral	ROI	2	AUC: 0.62-0.79	No
Li et al [99], 2022	China	92	MRI	Gene signatures associated with disease recurrence	Manual, intrat- umoral	ROI	2	MRI radiomics features could help quantify GOLM1, SETD7, and RND1 expression levels	Internal
Liao et al <mark>[56]</mark> , 2022	China	Training: 86. Validation: 46	СТ	Somatic mutations of the PI3K signaling pathway	Manual, intrat- umoral and peritumoral	VOI	2	AUC: 0.74 (training), 0.73 (external validation)	Internal and external
Che <i>et</i> <i>al</i> [60], 2022	China	Training: 69. Validation: 30	СТ	β-arrestin1 phosphorylation	Manual, intrat- umoral	ROI	1	AUC: 0.89 (training), 0.74 (validation)	Internal

AUC: Area under the curve; CT: Computed tomography; MRI: Magnetic resonance imaging; ROI: Region of interest; VOI: Volume of interest; CK19: Cytokeratin 19; PI3K: P53, and phosphatidylinositol-3 kinase.

> and decision cure analysis. The optimal model combining the arterial phase radiomic score and serum alpha-fetoprotein (AFP) levels showed high AUCs (AUC of 0.922 and 0.863 in the training and validation cohorts, respectively) for the preoperative Ki-67 expression prediction. In yet another study using Gd-EOB-DTPA-enhanced MRI, Ye et al[47] showed that the nomogram combining the texture signature (using the segmentation of the whole lesion) and clinical factors demonstrated a high discrimination ability (C-index of 0.936) for predicting Ki-67 group (high vs low). Finally, Hu et al[48] explored the added value of viscoelasticity measured by magnetic resonance elastography to predict Ki-67 expression, showing that shear wave speed and phase angle significantly improved the performance of the radiomic model.

Baishidena® WJG https://www.wjgnet.com

CK19 expression: CK19 expression is associated with aggressive tumor behavior, resistance to therapy, and poor outcomes including worse overall survival and recurrence^[49]. To date, three studies have focused on developing radiomic models to predict CK19 expression[50-52], all using MRI. Wang et al[50] showed that their texture model independently predicted CK19-positive HCC cases and improved the diagnostic performance of AFP level ≥ 400 ng/mL and arterial rim enhancement. The two remaining studies developed a radiomics model based on Gd-EOB-DTPA-enhanced MRI, with external validation AUC varying from 0.78-0.79; of note, one of the studies was a multicenter study with over 250 patients [51,52].

P53, PI3K, and other genetic expression: P53 can be used as a tumor biomarker, since it plays an important role in the pathogenesis of HCC[53]. P53 mutation has also been suggested as a feasible target for antitumor therapy[54]. Wu et al[55] demonstrated a direct relationship between P53 mutations in patients with HCC and the gray-level co-occurrence matrix on CT. PI3K signaling is a key pathway regulating HCC aggressiveness and is associated with response to sorafenib. Liao et al[56] developed a CT-based radiomics model that yielded an AUC of 0.73 in the external validation set for prediction of PI3K status.

The phosphorylation status of β -arrestin1 is associated with sorafenib resistance[57-59]. Che *et al*[60] developed a model combining a CT-based radiomics score with clinico-radiological risk factors which yielded an AUC of 0.898 in predicting β -arrestin1 phosphorylation, and the predicted β -arrestin1 phosphorylation was in turn significantly associated with overall survival in both the training and validation cohorts (P < 0.05).

Prediction of recurrence, treatment response, and liver failure

Tumor recurrence, liver failure and treatment response rates are major concerns during HCC treatment. Radiomics has emerged as a promising tool to predict recurrence and treatment response beyond the current predictive criteria[61,62]. Table 3 summarizes the studies to date that have evaluated the use of radiomic models to predict recurrence and treatment response. Most of these studies were single-center studies performed in China, with only a few studies incorporating external validation[63,64]. Segmentation strategies were predominantly manual strategies, including manual segmentation of the tumor region or area of interest, with only a few studies involving the segmentation of the peritumoral liver parenchyma[63,65-67]. Overall, the radiomic models yielded an AUC between 0.59 and 0.94 (see Table 3).

Of the studies evaluating the use of radiomics to predict recurrence, most involved the prediction of recurrence after surgical resection on CT or MRI, demonstrating a validation AUC between 0.59 and 0.84 (Table 3). Zhou et al [68] demonstrated that combining the radiomic signature with conventional preoperative variables significantly improved clinical model accuracy in early recurrence prediction (AUC of 0.84). Ji et al[64] developed and externally validated a radiomic model with better prognostic ability (C index \ge 0.77, AUC of 0.78), lower prediction error (Brier score \le 0.14), and better clinical use compared with other staging systems and models. A few other studies evaluating the use of radiomics to predict recurrence involved the prediction of recurrence after liver transplant[69], transarterial chemoembolization (TACE)[67,70], and radiofrequency ablation (RFA)[71], demonstrating a validation AUC between 0.71 and 0.82.

Of the studies evaluating the use of radiomics to predict treatment response, a few involved the prediction of treatment response post-TACE[63,72,73]. In Canada, Ivanics et al[73] developed a CTbased radiomic model and achieved an AUC of 0.87 on the internal validation set. A large multi-center Chinese study by Chen et al [63] evaluating treatment response after TACE performed semi-automatic segmentation of the tumor and of the peritumoral region on contrast-enhanced CT in 585 patients, and the validation AUC was 0.90. One small study by Horvat et al [74] assessed treatment response after RFA using tumor 3D volumes of interest on MRI, yielding an AUC of 0.76 for the radiomics model, although the model lacked validation. Finally, two studies from China evaluated the use of radiomics to predict liver failure after surgical resection[75,76].

Prediction of survival

Table 4 summarizes the studies to date that have evaluated the use of radiomics to predict survival in patients with HCC. Four studies evaluated the use of CT-based radiomics to predict survival after hepatic resection, demonstrating an AUC between 0.71 and 0.81, with two of the four studies performing internal validation[39,77-79]. A few other studies evaluated the use of radiomics to predict survival after TACE[80], TARE[81], and RFA[82], all without validation.

Of the studies that involved the prediction of survival after hepatic resection, Xu et al[39] had the largest sample size. In their study, a risk model integrating clinico-radiological factors and a high CTbased radiomic score was independently associated with long-term mortality and disease-specific recurrence. Kim et al[80] evaluated the use of CT-based radiomics in survival prediction in patients after TACE. They demonstrated a combined model integrating radiomic features and clinical data (HCC size, Child-Pugh score and AFP) outperformed the clinical sore model or the radiomic score model. Petukhova-Greenstein et al[82] found that a higher MRI-based radiomic signature based on nodular and

WJG | https://www.wjgnet.com

Table 3 Summary of the studies that assessed radiomics to predict recurrence and treatment response in patient with hepatocellular cholangiocarcinoma who underwent surgery, liver transplantation or locoregional treatment

Ref.	Country	n	lmaging modality	Endpoint	Treatment type	Segmentation	ROI/VOI	No. of readers	Main results	Validation
Hui <i>et al</i> [<mark>100</mark>], 2018	Singapore	50	MRI	Recurrence	Hepatic resection	Manual, intrat- umoral	ROI	3	AUC: 0.78- 0.84	None
Kim et al [<mark>65</mark>], 2019	South Korea	Training: 128. Validation: 39	MRI	Recurrence	Hepatic resection	Semiautomatic, intra- and peritumoral	VOI	2	C-index: 0.716	Internal
Zhao et al[<mark>101</mark>], 2021	China	Training: 78. Validation: 35	MRI	Recurrence	Hepatic resection	Manual, intrat- umoral	VOI	2	AUC: 0.83 (training), 0.77 (validation)	Internal
Zhou et al[<mark>68</mark>], 2017	China	215	СТ	Recurrence	Hepatic resection	Manual, intrat- umoral	ROI	2	AUC: 0.84 (combined model)	None
Ji <i>et al</i> [<mark>64</mark>], 2020	China	Internal: 177. External: 118	СТ	Recurrence	Hepatic resection	Manual, intrat- umoral	VOI	1	AUC: 0.77 (internal), 0.78 (external)	External
Guo et al [<mark>69</mark>], 2019	China	Training: 93. Validation: 40	СТ	Recurrence	Liver transplant	Semiautomatic, intratumoral	ROI	1	AUC: 0.79 (training), 0.79 (validation)	Internal
Shan et al[<mark>66</mark>], 2019	China	Training: 109. Validation: 47	СТ	Recurrence	Hepatic resection or ablation	Manual, intra- and peritumoral	ROI	2	AUC: 0.80 (training), 0.79 (validation)	Internal
Zheng et al[<mark>79</mark>], 2018	China	Training: 212. Validation: 107	СТ	Recurrence and survival	Hepatic resection	Manual, intrat- umoral	ROI	2	AUC: 0.64 (training), 0.59 (validation)	Internal
Song et al[67], 2020	China	Training: 110. Validation: 74	MRI	Recurrence	TACE	Semiautomatic, intra- and peritumoral	VOI	2	C-index: 0.82	Internal
Lv et al [<mark>71</mark>], 2021	China	Training: 40. Validation: 18	MRI	Recurrence	RFA	Semiautomatic, intratumoral	VOI	2	AUC: 0.94 (training), 0.82 (validation)	Internal
Sun <i>et al</i> [70], 2020	China	Training: 67. Validation: 17	MRI	Recurrence	TACE	Manual (intrat- umoral)	VOI	2	AUC: 0.71- 0.79	Internal
Cai <i>et al</i> [<mark>75</mark>], 2019	China	Training: 80. Validation: 32	СТ	Liver failure	Hepatic resection	Semiautomatic, intratumoral	ROI	2	AUC: 0.82 (training), 0.76 (validation)	Internal
Zhu et al [<mark>76</mark>], 2020	China	101	MRI	Liver failure	Hepatic resection	Manual, entire liver	ROI	2	AUC: 0.81- 0.89	None
Ivanics <i>et al</i> [73], 2021	Canada	88	СТ	Treatment response	TACE	Manual, intrat- umoral	VOI	1	AUC: 0.70- 0.87	None
Kong et al[<mark>72</mark>], 2021	China	Training: 69. Validation: 30	MRI	Treatment response	TACE	Manual, intrat- umoral	VOI	2	AUC: 0.81 (training), 0.87 (validation)	Internal
Chen <i>et</i> al[<mark>63</mark>], 2021	China	Training: 355. Internal: 118. External: 122	СТ	Treatment response	TACE	Semiautomatic, intra- and peritumoral	ROI	2	AUC: 0.94 (internal), 0.90 (external)	Internal and external
Horvat <i>et al</i> [74], 2021	Brazil	34	MRI	Treatment response	RFA	Manual, intrat- umoral	VOI	1	AUC: 0.76	None

AUC: Area under the curve; CT: Computed tomography; MRI: Magnetic resonance imaging; RFA: Radiofrequency ablation; ROI: Region of interest; TACE: Transarterial chemoembolization; VOI: Volume of interest.

> perinodular radiomic features predicted poorer survival after RFA. A study evaluated the survival prediction after TARE, using 18-fuoro-deoxyglucose PET-based radiomics[81]. They observed that whole-liver radiomics textural features were an independent negative predictor of survival.

Boishideng® WJG | https://www.wjgnet.com

Table 4 Sum	imary of the	studies that e	evaluated ra	adiomics to	predict surv	ival in patients w	ith hepato	cellular ch	iolangiocarcinoi	na
Ref.	Country	n	Imaging modality	Endpoint	Treatment type	Segmentation	ROI/VOI	No. of readers	Main results	Validation
Kiryu et al [77], 2017	Japan	122	СТ	Survival	Hepatic resection	Manual, intra- and peritumoral	ROI	1	OS and DFS were significantly different between 2 rad score groups	None
Xu et al <mark>[39]</mark> , 2019	China	Training: 350. Validation: 145	СТ	Survival	Hepatic resection	Semiautomatic, intratumoral	VOI	3	AUC: 0.91 (training), 0.81 (validation)	Internal
Akai et al [78], 2018	Japan	127	СТ	Survival	Hepatic resection	Manual, intrat- umoral	ROI	1	OS and DFS were significantly different between 2 rad score groups	None
Kim et al [80], 2018	South Korea	88	СТ	Survival	TACE	Manual, intrat- umoral	ROI	1	Combined clinical and radiomics score was a better predictor of survival	None
Blanc- Durand <i>et al</i> [81], 2018	Switzerland	47	¹⁸ F-FDG PET-CT	Survival	TARE	Semiautomatic, whole liver	VOI	N/A	PFS-Rad Score and OS-Rad Score were independent negative predictors	None
Petukhova- Greenstein <i>et</i> <i>al</i> [82], 2022	United States	65	MRI	Survival	RFA	Semiautomatic, intra- and peritumoral	VOI	2	OS was significantly different between 2 rad score groups	None
Zheng <i>et al</i> [79], 2018	China	Training: 212. Validation: 107	СТ	Survival	Hepatic resection	Manual, intrat- umoral	ROI	2	AUC: 0.71 (training and validation)	Internal

AUC: Area under the curve; CT: Computed tomography; DFS: Disease-fee survival; MRI: Magnetic resonance imaging; OS: Overall survival; PFS: Progression-free survival; RFA: Radiofrequency ablation; ROI: Region of interest; TACE: Transarterial chemoembolization; TARE: Transarterial radioembolization; VOI: Volume of interest; PET: Positron emission tomography.

Furthermore, radiomic scoring system did not differ after stratification by tumor size and Barcelona Clinic Liver Cancer staging.

Other applications of radiomics in HCC

Immunotherapy represents a paradigm shift in the management of patients with advanced HCC. Preoperatively assessing the immune status can assist the multidisciplinary team to identify which patients are suitable for immunotherapy, potentially improving treatment efficiency and overall survival rate. A few studies have evaluated the use of radiomics to predict programmed cell death ligand 1 (PD-L1) expression[83], CD8+ T cell infiltration[84], immunoscore[85,86], and anti-PD-1 treatment efficacy[87] in patients with HCC, with none of them performing external validation. Tian *et al*[83] were the first group to explore the efficacy of MRI-based radiomics to predict PD-L1 status. They proposed a model integrating radiomic and DL features for the quick and accurate assessment of PD-L1 expression levels in HCC patients before immune checkpoint inhibitor therapy which yielded an AUC of 0.897. Chen *et al*[85] demonstrated in 207 patients that radiomic features including those from the peritumoural region were associated with a validated "immunoscore". This score characterizes the tumor infiltrating lymphocyte population and theoretically reflects the immune phenotype of the tumor microenvironment.

Raishideng® WJG | https://www.wjgnet.com

RADIOMICS REPRODUCIBILITY IN HCC

Reproducibility refers to variations of the same patient across different imaging scenarios (e.g., scanner or imaging parameters), while repeatability refers to variations of the same patient using the same imaging protocol. Table 5 summarizes the 13 studies to date that have studied the reproducibility of radiomics in HCC patients. Most of these studies were conducted in China (8/13; 62%). Seven were performed using CT (54%), 5 using MRI (38%), and 1 using both CT scan and MRI (8%). Different software programs were used for segmentation and feature extraction. Most studies adopted manual segmentation (11/13; 85%), and most evaluated first- and second-order features, with a few including shape and higher-order features. In addition to intra and inter-reader reproducibility, some also assessed the repeatability of radiomic features obtained through two separate exams from the same scanner, different scanners from different vendors and centers, 3D vs 2D segmentation, different contrast imaging phases, injection rates and pixel resolutions on contrast-enhanced CT, and different bvalues on diffusion-weighted imaging on MRI.

Of note, one study showed that intra-reader tumoral and peritumoral reproducibility were greatest in MRI[88]. Another study showed that for test-retest (same MRI system, 2 different MRI exams), the intraclass correlation coefficient varied from 0.53-0.99 and the inter-platform reproducibility (MRI systems from 2 different vendors) varied from 0.58-0.99[89]. Regarding different contrast phases, Ibrahim *et al*[90] showed that 25% of extracted features had a concordance correlation coefficient (CCC) > 0.9 across arterial and portal venous phases. Perrin *et al*[91] demonstrated that the number of reproducible features decreased with variations in contrast injection rate, pixel resolution, and scanner model.

FUTURE DIRECTIONS OF RADIOMICS IN HCC

Despite the increasing and encouraging results in the literature concerning radiomics in patients with HCC, there are challenges and limitations to be overcome before its clinical implementation, particularly related to reproducibility and repeatability, lesion segmentation, model overfitting, multidisciplinary acceptance, and multi-modal data integration^[23].

Patient selection, imaging data, segmentation strategy, image processing, feature selection, and computational processing are some factors that may affect the reproducibility and repeatability. Transparent patient accrual, data normalization, standard image manipulation, and feature extraction data are some strategies that may improve these challenges. Additionally, multi-center studies are recommended to increase reproducibility of the results.

Overfitting occurs when the model performs better in the training set with limited generalization of the results. The main factors contributing to overfitting are the number of included features being higher than the number of events and overoptimistic feature selection. Multiple strategies can be implemented to decrease overfitting, such as increasing the number of patients and events, using regularization methods, and including external validation cohorts. Multidisciplinary acceptance may improve with clear methods and a close relationship between radiologists, surgeons, oncologists, statistician, and data scientists to improve the interpretability of the results and to make way for clinical translation.

Multi-omics data integration is an additional step to improve the clinical acceptance of radiomics. Radiomics requires a multistep workflow process using different software and expertise; technological investments to create integrated and user-friendly tools are necessary to facilitate its widespread use in clinical practice. Finally, segmentation is a time-consuming process, susceptible to intra and interobserver variability. Automatic and semi-automatic segmentations are required, particularly using DL strategies to facilitate this crucial step.

Additionally, some heterogeneity related to patients with HCC should be take into consideration. Since pathological confirmation is not always performed, the definition of clear and reproducible endpoints, like the LI-RADS criteria, are relevant strategies. Combined data integrating imaging and clinical variables are important to address the issue that patients with HCC are also dealing with systemic consequences related to cirrhosis.

CONCLUSION

Radiomics is an evolving computer-assisted tool with the potential to improve the multidisciplinary management of patients with HCC and to provide personalized treatment optimizing the available resources. Multiple studies have evaluated the use of radiomics in HCC with promising applications, including the prediction of pre-surgical histology, genetic signature, recurrence, and treatment response, as well as survival rates. Although promising, several challenges need to be overcome before radiomics can achieve clinical translation, including workflow optimization, model validation in multicenter studies, and the development of integrated models to facilitate clinical use and acceptance.

Table 5 Summary of the studies that assessed reproducibility of hepatocellular cholangiocarcinoma textural features

Ref.	Country	n	Imaging modality	Segmentation	Segmentation software	ROI/VOI	No. of readers	Intra-reader reproducibility	Inter-reader reproducibility	Other reproducibility
Duan et al [88], 2022	China	19	CT, MRI	Manual, intra- and peritumoral	3D-Slicer	ROI	2 (1 radiologist and 1 radiation oncologist)	Features with ICC ≥ 0.75 in both tumoral and peritumoral tissue greatest in MR	Features with ICC ≥ 0.75 in both tumoral and peritumoral tissue greatest in MR	N/A
Zhang <i>et al</i> [102], 2022	China	90 (31 HCC)	MRI	Manual, intrat- umoral	ITK-SNAP	ROI and VOI	2 radiologists	N/A	ICC > 0.8 used	N/A
Carbonell et al[89], 2022	United States	55 (16 HCC)	MRI	Manual, intrat- umoral and liver parenchyma	Olea sphere 3.0, Olea Medical	ROI for normal liver, VOI for HCC	2 radiologists	N/A	CCC: 0.80-0.99	For test-retest (same MRI system, 2 different MRI exams): ICC: 0.53-0.99; and in liver parenchyma: ICC: 0.53- 0.73. For inter-platform reproducibility (MRI systems from 2 different vendors): CCC: 0.58-0.99
Park <i>et al</i> [<mark>103</mark>], 2022	South Korea	249	CT	Manual followed by automatic segmentation, intratumoral	MEDIP PRO	ROI and VOI	1 radiologist	For VOI: Manual: ICC 0.594-0.998 for FO, 0.764-0.997 for shape, and 0.190- 0.926 for SO; DL-AS: ICC > 0.75 for all. For ROI: Manual: 0.698-0.997 for FO, 0.556-0.997 for shape, and 0.341-0.935 for SO; DL-AS ICC > 0.75 for all	N/A	
Haniff <i>et al</i> [104], 2021	Malaysia	30	MRI	Manual and semi- automatic, intrat- umoral	3D-Slicer	VOI	Manual: 4 readers. Semi-automatic: 2 readers	N/A	Manual segmentation: ICC 0.897. Semi-automatic segmentation: ICC 0.952	NA
Ibrahim <i>et</i> al[90], 2021	Germany	61 patients, 104 lesions	СТ	Manual, intrat- umoral	MIM software	ROI	1 nonradiologist revised by radiologist	N/A	N/A	Across different contrast imaging phases: 25% of extracted features had CCC > 0.9 across arterial and portal venous phases
Hu <i>et al</i> [105], 2021	China	30	СТ	Manual, intrat- umoral	MaZda software	ROI	2 radiologists	ICC > 0.7	ICC > 0.7	N/A
Mao et al [<mark>32</mark>], 2020	China	30	СТ	Manual, intrat- umoral	ITK-SNAP	ROI	2 radiologists	N/A	ICC ≥ 0.8	N/A
Hu <i>et al</i> [<mark>106</mark>], 2020	China	50	CT	Semi-automatic, peritumoral	Not mentioned	ROI	2 radiologists	N/A	ICC > 0.6	N/A
Qiu <i>et al</i> [107], 2019	China	26	СТ	Manual and semi- automatic, intrat- umoral	GrowCut and GraphCut	ROI	Manual: 5 radiation oncologists. Semi- automatic: 2 radiation oncologists	N/A	ICC \geq 0.75 in 69% of features extracted from manual segmentation, 73% from GraphCut, and 79% from GrowCut	Across different centers: Poor reprodu- cibility of CT-based peritumoral- radiomics model
Zhang <i>et al</i> [108], 2019	China	46 (34 HCC)	MRI	Manual, intrat- umoral	MIM software	VOI	1 radiologist	N/A	N/A	Across different <i>b</i> -values: radiomic features extracted from $b = 0, 20, 50$,

										100, 200 s/mm ² and $b = 1000$ s/mm ² and nearby <i>b</i> -values DWIs showed a high reproducibility (ICC \ge 0.8)
Feng <i>et al</i> [<mark>40</mark>], 2019	China	160 (110)	MRI	Manual, intra- and peritumoral	ITK-SNAP	VOI	3 radiologists	85% ICC ≥ 0.8	82% ICC ≥ 0.8	N/A
Perrin <i>et al</i> [91], 2018	United States	38 (6 HCC)	CT	Semi-automatic, intratumoral and liver parenchyma	Scout Liver	VOI	1 research fellow under supervision of radiologist	N/A	N/A	Across different contrast injection rates, pixel resolutions, and scanner models: Number of reproducible radiomic features ($CCC > 0.9$) decreased with variations in contrast injection rate, pixel resolution, and scanner model

CT: Computed tomography; MRI: Magnetic resonance imaging; ROI: Region of interest; VOI: Volume of interest; TACE: Transarterial chemoembolization; ICC: Intraclass correlation coefficient; DWI: Diffusion-weighted imaging; CCC: Concordance correlation coefficient; HCC: Hepatocellular carcinoma; N/A: Not applicable; FO: First order; SO: Second order; DL-AS: Deep learning-based auto-segmentation.

ACKNOWLEDGEMENTS

The authors would like to express their deepest gratitude to Joanne Chin, MFA, ELS, for her editorial support on this manuscript.

FOOTNOTES

Author contributions: Miranda J, Horvat N, and Herman P contributed to the data curation, investigation, project administration; Horvat N and Herman P involved in the conceptualization and methodology of this manuscript; and all authors participated the original draft writing, the review and editing of the manuscript.

Supported by the NIH/NCI Cancer Center Support Grant, P30 CA008748.

Conflict-of-interest statement: All the authors report no relevant conflicts of interest for this article.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: Brazil

ORCID number: Joao Miranda 0000-0003-1273-3108; Gilton Marques Fonseca 0000-0002-7260-0799; Paulo Herman 0000-0003-2859-5846.

S-Editor: Wang JJ L-Editor: A P-Editor: Wang JJ

REFERENCES

- Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates 1 of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68: 394-424 [PMID: 30207593 DOI: 10.3322/caac.21492
- 2 World Health Organization. Cancer fact sheets. [cited 10 August 2022]. Available from: https://gco.iarc.fr/today/factsheets-cancers
- 3 Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, Lencioni R, Koike K, Zucman-Rossi J, Finn RS. Hepatocellular carcinoma. Nat Rev Dis Primers 2021; 7: 6 [PMID: 33479224 DOI: 10.1038/s41572-020-00240-3]
- Lopes Fde L, Coelho FF, Kruger JA, Fonseca GM, Araujo RL, Jeismann VB, Herman P. Influence of hepatocellular 4 carcinoma etiology in the survival after resection. Arg Bras Cir Dig 2016; 29: 105-108 [PMID: 27438037 DOI: 10.1590/0102-6720201600020010]
- 5 Llovet JM, Bustamante J, Castells A, Vilana R, Ayuso Mdel C, Sala M, Brú C, Rodés J, Bruix J. Natural history of untreated nonsurgical hepatocellular carcinoma: rationale for the design and evaluation of therapeutic trials. Hepatology 1999; 29: 62-67 [PMID: 9862851 DOI: 10.1002/hep.510290145]
- Mittal S, El-Serag HB. Epidemiology of hepatocellular carcinoma: consider the population. J Clin Gastroenterol 2013; 47 6 Suppl: S2-S6 [PMID: 23632345 DOI: 10.1097/MCG.0b013e3182872f29]
- Venook AP, Papandreou C, Furuse J, de Guevara LL. The incidence and epidemiology of hepatocellular carcinoma: a 7 global and regional perspective. Oncologist 2010; 15 Suppl 4: 5-13 [PMID: 21115576 DOI: 10.1634/theoncologist.2010-S4-05]
- 8 Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet 2012; 379: 1245-1255 [PMID: 22353262 DOI: 10.1016/S0140-6736(11)61347-0]
- Herman P, Fonseca GM, Coelho FF, Kruger JAP, Makdissi FF, Jeismann VB, Carrilho FJ, D'Albuquerque LAC, Nahas 9 SC. Two decades of liver resection with a multidisciplinary approach in a single institution: What has changed? Clinics (Sao Paulo) 2022; 77: 100088 [PMID: 35901605 DOI: 10.1016/j.clinsp.2022.100088]
- 10 Jiménez Pérez M, Grande RG. Application of artificial intelligence in the diagnosis and treatment of hepatocellular carcinoma: A review. World J Gastroenterol 2020; 26: 5617-5628 [PMID: 33088156 DOI: 10.3748/wjg.v26.i37.5617]
- 11 Liu X, Elbanan MG, Luna A, Haider MA, Smith AD, Sabottke CF, Spieler BM, Turkbey B, Fuentes D, Moawad A, Kamel S, Horvat N, Elsayes KM. Radiomics in Abdominopelvic Solid-Organ Oncologic Imaging: Current Status. AJR Am J Roentgenol 2022; 219: 985-995 [PMID: 35766531 DOI: 10.2214/AJR.22.27695]
- 12 Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016; 278: 563-577 [PMID: 26579733 DOI: 10.1148/radiol.2015151169]
- 13 Miranda Magalhaes Santos JM, Clemente Oliveira B, Araujo-Filho JAB, Assuncao-Jr AN, de M Machado FA, Carlos Tavares Rocha C, Horvat JV, Menezes MR, Horvat N. State-of-the-art in radiomics of hepatocellular carcinoma: a review of basic principles, applications, and limitations. Abdom Radiol (NY) 2020; 45: 342-353 [PMID: 31707435 DOI: 10.1007/s00261-019-02299-3]
- Bera K, Braman N, Gupta A, Velcheti V, Madabhushi A. Predicting cancer outcomes with radiomics and artificial 14 intelligence in radiology. Nat Rev Clin Oncol 2022; 19: 132-146 [PMID: 34663898 DOI: 10.1038/s41571-021-00560-7]
- Rizzo S, Botta F, Raimondi S, Origgi D, Fanciullo C, Morganti AG, Bellomi M. Radiomics: the facts and the challenges 15 of image analysis. Eur Radiol Exp 2018; 2: 36 [PMID: 30426318 DOI: 10.1186/s41747-018-0068-z]
- Wagner MW, Namdar K, Biswas A, Monah S, Khalvati F, Ertl-Wagner BB. Radiomics, machine learning, and artificial 16 intelligence-what the neuroradiologist needs to know. Neuroradiology 2021; 63: 1957-1967 [PMID: 34537858 DOI: 10.1007/s00234-021-02813-9]
- 17 Shur JD, Doran SJ, Kumar S, Ap Dafydd D, Downey K, O'Connor JPB, Papanikolaou N, Messiou C, Koh DM, Orton MR. Radiomics in Oncology: A Practical Guide. Radiographics 2021; 41: 1717-1732 [PMID: 34597235 DOI: 10.1148/rg.2021210037]
- Giger ML. Machine Learning in Medical Imaging. J Am Coll Radiol 2018; 15: 512-520 [PMID: 29398494 DOI: 18 10.1016/j.jacr.2017.12.028
- 19 Suzuki K. Overview of deep learning in medical imaging. Radiol Phys Technol 2017; 10: 257-273 [PMID: 28689314 DOI: 10.1007/s12194-017-0406-5]
- 20 Larue RT, Defraene G, De Ruysscher D, Lambin P, van Elmpt W. Quantitative radiomics studies for tissue characterization: a review of technology and methodological procedures. Br J Radiol 2017; 90: 20160665 [PMID: 27936886 DOI: 10.1259/bjr.20160665]
- Thawani R, McLane M, Beig N, Ghose S, Prasanna P, Velcheti V, Madabhushi A. Radiomics and radiogenomics in lung 21 cancer: A review for the clinician. Lung Cancer 2018; 115: 34-41 [PMID: 29290259 DOI: 10.1016/j.lungcan.2017.10.015]
- 22 van Timmeren JE, Cester D, Tanadini-Lang S, Alkadhi H, Baessler B. Radiomics in medical imaging-"how-to" guide and critical reflection. Insights Imaging 2020; 11: 91 [PMID: 32785796 DOI: 10.1186/s13244-020-00887-2]
- Horvat N, Miranda J, El Homsi M, Peoples JJ, Long NM, Simpson AL, Do RKG. A primer on texture analysis in 23 abdominal radiology. Abdom Radiol (NY) 2022; 47: 2972-2985 [PMID: 34825946 DOI: 10.1007/s00261-021-03359-3]
- Liu X, Khalvati F, Namdar K, Fischer S, Lewis S, Taouli B, Haider MA, Jhaveri KS. Can machine learning radiomics 24 provide pre-operative differentiation of combined hepatocellular cholangiocarcinoma from hepatocellular carcinoma and

cholangiocarcinoma to inform optimal treatment planning? Eur Radiol 2021; 31: 244-255 [PMID: 32749585 DOI: 10.1007/s00330-020-07119-7]

- 25 Lewis S, Peti S, Hectors SJ, King M, Rosen A, Kamath A, Putra J, Thung S, Taouli B. Volumetric quantitative histogram analysis using diffusion-weighted magnetic resonance imaging to differentiate HCC from other primary liver cancers. Abdom Radiol (NY) 2019; 44: 912-922 [PMID: 30712136 DOI: 10.1007/s00261-019-01906-7]
- Nie P, Wang N, Pang J, Yang G, Duan S, Chen J, Xu W. CT-Based Radiomics Nomogram: A Potential Tool for 26 Differentiating Hepatocellular Adenoma From Hepatocellular Carcinoma in the Noncirrhotic Liver. Acad Radiol 2021; 28: 799-807 [PMID: 32386828 DOI: 10.1016/j.acra.2020.04.027]
- 27 Nie P, Yang G, Guo J, Chen J, Li X, Ji Q, Wu J, Cui J, Xu W. A CT-based radiomics nomogram for differentiation of focal nodular hyperplasia from hepatocellular carcinoma in the non-cirrhotic liver. Cancer Imaging 2020; 20: 20 [PMID: 32093786 DOI: 10.1186/s40644-020-00297-z]
- 28 Wu J, Liu A, Cui J, Chen A, Song Q, Xie L. Radiomics-based classification of hepatocellular carcinoma and hepatic haemangioma on precontrast magnetic resonance images. BMC Med Imaging 2019; 19: 23 [PMID: 30866850 DOI: 10.1186/s12880-019-0321-9
- Mokrane FZ, Lu L, Vavasseur A, Otal P, Peron JM, Luk L, Yang H, Ammari S, Saenger Y, Rousseau H, Zhao B, 29 Schwartz LH, Dercle L. Radiomics machine-learning signature for diagnosis of hepatocellular carcinoma in cirrhotic patients with indeterminate liver nodules. Eur Radiol 2020; 30: 558-570 [PMID: 31444598 DOI: 10.1007/s00330-019-06347-w
- 30 Wu M, Tan H, Gao F, Hai J, Ning P, Chen J, Zhu S, Wang M, Dou S, Shi D. Predicting the grade of hepatocellular carcinoma based on non-contrast-enhanced MRI radiomics signature. Eur Radiol 2019; 29: 2802-2811 [PMID: 30406313 DOI: 10.1007/s00330-018-5787-21
- 31 Mao Y, Wang J, Zhu Y, Chen J, Mao L, Kong W, Qiu Y, Wu X, Guan Y, He J. Gd-EOB-DTPA-enhanced MRI radiomic features for predicting histological grade of hepatocellular carcinoma. Hepatobiliary Surg Nutr 2022; 11: 13-24 [PMID: 35284527 DOI: 10.21037/hbsn-19-870]
- 32 Mao B, Zhang L, Ning P, Ding F, Wu F, Lu G, Geng Y, Ma J. Preoperative prediction for pathological grade of hepatocellular carcinoma via machine learning-based radiomics. Eur Radiol 2020; 30: 6924-6932 [PMID: 32696256 DOI: 10.1007/s00330-020-07056-5]
- 33 Chen W, Zhang T, Xu L, Zhao L, Liu H, Gu LR, Wang DZ, Zhang M. Radiomics Analysis of Contrast-Enhanced CT for Hepatocellular Carcinoma Grading. Front Oncol 2021; 11: 660509 [PMID: 34150628 DOI: 10.3389/fonc.2021.660509]
- 34 Brancato V, Garbino N, Salvatore M, Cavaliere C. MRI-Based Radiomic Features Help Identify Lesions and Predict Histopathological Grade of Hepatocellular Carcinoma. Diagnostics (Basel) 2022; 12 [PMID: 35626241 DOI: 10.3390/diagnostics12051085]
- 35 Du M, Chen L, Zhao J, Tian F, Zeng H, Tan Y, Sun H, Zhou J, Ji Y. Microvascular invasion (MVI) is a poorer prognostic predictor for small hepatocellular carcinoma. BMC Cancer 2014; 14: 38 [PMID: 24460749 DOI: 10.1186/1471-2407-14-38
- Ueda K, Tokugawa K. Rubella vaccination and congenital rubella syndrome in Japan. Acta Paediatr Jpn 1988; 30: 163-36 166 [PMID: 3149850 DOI: 10.1111/j.1442-200X.1988.tb02514.x]
- Lauwers GY, Terris B, Balis UJ, Batts KP, Regimbeau JM, Chang Y, Graeme-Cook F, Yamabe H, Ikai I, Cleary KR, 37 Fujita S, Flejou JF, Zukerberg LR, Nagorney DM, Belghiti J, Yamaoka Y, Vauthey JN; International Cooperative Study Group on Hepatocellular Carcinoma. Prognostic histologic indicators of curatively resected hepatocellular carcinomas: a multi-institutional analysis of 425 patients with definition of a histologic prognostic index. Am J Surg Pathol 2002; 26: 25-34 [PMID: 11756766 DOI: 10.1097/00000478-200201000-00003]
- Zhong X, Long H, Su L, Zheng R, Wang W, Duan Y, Hu H, Lin M, Xie X. Radiomics models for preoperative prediction 38 of microvascular invasion in hepatocellular carcinoma: a systematic review and meta-analysis. Abdom Radiol (NY) 2022; 47: 2071-2088 [PMID: 35364684 DOI: 10.1007/s00261-022-03496-3]
- 39 Xu X, Zhang HL, Liu QP, Sun SW, Zhang J, Zhu FP, Yang G, Yan X, Zhang YD, Liu XS. Radiomic analysis of contrastenhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma. J Hepatol 2019; 70: 1133-1144 [PMID: 30876945 DOI: 10.1016/j.jhep.2019.02.023]
- 40 Feng ST, Jia Y, Liao B, Huang B, Zhou Q, Li X, Wei K, Chen L, Li B, Wang W, Chen S, He X, Wang H, Peng S, Chen ZB, Tang M, Chen Z, Hou Y, Peng Z, Kuang M. Preoperative prediction of microvascular invasion in hepatocellular cancer: a radiomics model using Gd-EOB-DTPA-enhanced MRI. Eur Radiol 2019; 29: 4648-4659 [PMID: 30689032 DOI: 10.1007/s00330-018-5935-8]
- Zheng J, Chakraborty J, Chapman WC, Gerst S, Gonen M, Pak LM, Jarnagin WR, DeMatteo RP, Do RKG, Simpson AL; 41 Hepatopancreatobiliary Service in the Department of Surgery of the Memorial Sloan Kettering Cancer Center; Research Staff in the Department of Surgery at Washington University School of Medicine. Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma Using Quantitative Image Analysis. J Am Coll Surg 2017; 225: 778-788.e1 [PMID: 28941728 DOI: 10.1016/j.jamcollsurg.2017.09.003]
- Segal E, Sirlin CB, Ooi C, Adler AS, Gollub J, Chen X, Chan BK, Matcuk GR, Barry CT, Chang HY, Kuo MD. 42 Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol 2007; 25: 675-680 [PMID: 17515910 DOI: 10.1038/nbt1306]
- Luo Y, Ren F, Liu Y, Shi Z, Tan Z, Xiong H, Dang Y, Chen G. Clinicopathological and prognostic significance of high Ki-67 labeling index in hepatocellular carcinoma patients: a meta-analysis. Int J Clin Exp Med 2015; 8: 10235-10247 [PMID: 26379815]
- Wu C, Chen J, Fan Y, Zhao M, He X, Wei Y, Ge W, Liu Y. Nomogram Based on CT Radiomics Features Combined 44 With Clinical Factors to Predict Ki-67 Expression in Hepatocellular Carcinoma. Front Oncol 2022; 12: 943942 [PMID: 35875154 DOI: 10.3389/fonc.2022.943942]
- 45 Li Y, Yan C, Weng S, Shi Z, Sun H, Chen J, Xu X, Ye R, Hong J. Texture analysis of multi-phase MRI images to detect expression of Ki67 in hepatocellular carcinoma. Clin Radiol 2019; 74: 813.e19-813.e27 [PMID: 31362887 DOI: 10.1016/j.crad.2019.06.024]

- Fan Y, Yu Y, Wang X, Hu M, Hu C. Radiomic analysis of Gd-EOB-DTPA-enhanced MRI predicts Ki-67 expression in 46 hepatocellular carcinoma. BMC Med Imaging 2021; 21: 100 [PMID: 34130644 DOI: 10.1186/s12880-021-00633-0]
- 47 Ye Z, Jiang H, Chen J, Liu X, Wei Y, Xia C, Duan T, Cao L, Zhang Z, Song B. Texture analysis on gadoxetic acid enhanced-MRI for predicting Ki-67 status in hepatocellular carcinoma: A prospective study. Chin J Cancer Res 2019; 31: 806-817 [PMID: 31814684 DOI: 10.21147/j.issn.1000-9604.2019.05.10]
- 48 Hu X, Zhou J, Li Y, Wang Y, Guo J, Sack I, Chen W, Yan F, Li R, Wang C. Added Value of Viscoelasticity for MRI-Based Prediction of Ki-67 Expression of Hepatocellular Carcinoma Using a Deep Learning Combined Radiomics (DLCR) Model. Cancers (Basel) 2022; 14 [PMID: 35681558 DOI: 10.3390/cancers14112575]
- Zhuo JY, Lu D, Tan WY, Zheng SS, Shen YQ, Xu X. CK19-positive Hepatocellular Carcinoma is a Characteristic 49 Subtype. J Cancer 2020; 11: 5069-5077 [PMID: 32742454 DOI: 10.7150/jca.44697]
- Wang HQ, Yang C, Zeng MS, Rao SX, Ji Y, Weng X, Wang JY, Sheng RF. Magnetic resonance texture analysis for the 50 identification of cytokeratin 19-positive hepatocellular carcinoma. Eur J Radiol 2019; 117: 164-170 [PMID: 31307643 DOI: 10.1016/j.ejrad.2019.06.016]
- 51 Chen Y, Chen J, Zhang Y, Lin Z, Wang M, Huang L, Huang M, Tang M, Zhou X, Peng Z, Huang B, Feng ST. Preoperative Prediction of Cytokeratin 19 Expression for Hepatocellular Carcinoma with Deep Learning Radiomics Based on Gadoxetic Acid-Enhanced Magnetic Resonance Imaging. J Hepatocell Carcinoma 2021; 8: 795-808 [PMID: 34327180 DOI: 10.2147/JHC.S313879]
- 52 Yang F, Wan Y, Xu L, Wu Y, Shen X, Wang J, Lu D, Shao C, Zheng S, Niu T, Xu X. MRI-Radiomics Prediction for Cytokeratin 19-Positive Hepatocellular Carcinoma: A Multicenter Study. Front Oncol 2021; 11: 672126 [PMID: 34476208 DOI: 10.3389/fonc.2021.672126]
- 53 He X, Liu F, Yan J, Zhang Y, Shang H, Dou Q, Zhao Q, Song Y. Trans-splicing repair of mutant p53 suppresses the growth of hepatocellular carcinoma cells in vitro and in vivo. Sci Rep 2015; 5: 8705 [PMID: 25732051 DOI: 10.1038/srep08705]
- Mantovani F, Walerych D, Sal GD. Targeting mutant p53 in cancer: a long road to precision therapy. FEBS J 2017; 284: 54 837-850 [PMID: 27808469 DOI: 10.1111/febs.13948]
- Wu H, Chen X, Chen J, Luo Y, Jiang X, Wei X, Tang W, Liu Y, Liang Y, Liu W, Guo Y. Correlations between P53 55 Mutation Status and Texture Features of CT Images for Hepatocellular Carcinoma. Methods Inf Med 2019; 58: 42-49 [PMID: 31163452 DOI: 10.1055/s-0039-1688758]
- 56 Liao H, Jiang H, Chen Y, Duan T, Yang T, Han M, Xue Z, Shi F, Yuan K, Bashir MR, Shen D, Song B, Zeng Y. Predicting Genomic Alterations of Phosphatidylinositol-3 Kinase Signaling in Hepatocellular Carcinoma: A Radiogenomics Study Based on Next-Generation Sequencing and Contrast-Enhanced CT. Ann Surg Oncol 2022 [PMID: 35286532 DOI: 10.1245/s10434-022-11505-4]
- Ezzoukhry Z, Louandre C, Trécherel E, Godin C, Chauffert B, Dupont S, Diouf M, Barbare JC, Mazière JC, Galmiche A. 57 EGFR activation is a potential determinant of primary resistance of hepatocellular carcinoma cells to sorafenib. Int J Cancer 2012; 131: 2961-2969 [PMID: 22514082 DOI: 10.1002/ijc.27604]
- 58 Ma Y, Xu R, Liu X, Zhang Y, Song L, Cai S, Zhou S, Xie Y, Li A, Cao W, Tang X. LY3214996 relieves acquired resistance to sorafenib in hepatocellular carcinoma cells. Int J Med Sci 2021; 18: 1456-1464 [PMID: 33628103 DOI: 10.7150/iims.51256]
- Negri FV, Dal Bello B, Porta C, Campanini N, Rossi S, Tinelli C, Poggi G, Missale G, Fanello S, Salvagni S, Ardizzoni 59 A, Maria SE. Expression of pERK and VEGFR-2 in advanced hepatocellular carcinoma and resistance to sorafenib treatment. Liver Int 2015; 35: 2001-2008 [PMID: 25559745 DOI: 10.1111/liv.12778]
- Che F, Xu Q, Li Q, Huang ZX, Yang CW, Wang LY, Wei Y, Shi YJ, Song B. Radiomics signature: A potential 60 biomarker for β-arrestin1 phosphorylation prediction in hepatocellular carcinoma. World J Gastroenterol 2022; 28: 1479-1493 [PMID: 35582676 DOI: 10.3748/wjg.v28.i14.1479]
- Villanueva A. Hepatocellular Carcinoma. N Engl J Med 2019; 380: 1450-1462 [PMID: 30970190 DOI: 61 10.1056/NEJMra1713263]
- Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet 2018; 391: 1301-1314 [PMID: 29307467 DOI: 62 10.1016/S0140-6736(18)30010-2]
- Chen M, Cao J, Hu J, Topatana W, Li S, Juengpanich S, Lin J, Tong C, Shen J, Zhang B, Wu J, Pocha C, Kudo M, 63 Amedei A, Trevisani F, Sung PS, Zaydfudim VM, Kanda T, Cai X. Clinical-Radiomic Analysis for Pretreatment Prediction of Objective Response to First Transarterial Chemoembolization in Hepatocellular Carcinoma. Liver Cancer 2021; 10: 38-51 [PMID: 33708638 DOI: 10.1159/000512028]
- 64 Ji GW, Zhu FP, Xu Q, Wang K, Wu MY, Tang WW, Li XC, Wang XH. Radiomic Features at Contrast-enhanced CT Predict Recurrence in Early Stage Hepatocellular Carcinoma: A Multi-Institutional Study. Radiology 2020; 294: 568-579 [PMID: 31934830 DOI: 10.1148/radiol.2020191470]
- Kim S, Shin J, Kim DY, Choi GH, Kim MJ, Choi JY. Radiomics on Gadoxetic Acid-Enhanced Magnetic Resonance 65 Imaging for Prediction of Postoperative Early and Late Recurrence of Single Hepatocellular Carcinoma. Clin Cancer Res 2019; 25: 3847-3855 [PMID: 30808773 DOI: 10.1158/1078-0432.CCR-18-2861]
- Shan QY, Hu HT, Feng ST, Peng ZP, Chen SL, Zhou Q, Li X, Xie XY, Lu MD, Wang W, Kuang M. CT-based 66 peritumoral radiomics signatures to predict early recurrence in hepatocellular carcinoma after curative tumor resection or ablation. Cancer Imaging 2019; 19: 11 [PMID: 30813956 DOI: 10.1186/s40644-019-0197-5]
- 67 Song W, Yu X, Guo D, Liu H, Tang Z, Liu X, Zhou J, Zhang H, Liu Y. MRI-Based Radiomics: Associations With the Recurrence-Free Survival of Patients With Hepatocellular Carcinoma Treated With Conventional Transcatheter Arterial Chemoembolization. J Magn Reson Imaging 2020; 52: 461-473 [PMID: 31675174 DOI: 10.1002/jmri.26977]
- Zhou Y, He L, Huang Y, Chen S, Wu P, Ye W, Liu Z, Liang C. CT-based radiomics signature: a potential biomarker for 68 preoperative prediction of early recurrence in hepatocellular carcinoma. Abdom Radiol (NY) 2017; 42: 1695-1704 [PMID: 28180924 DOI: 10.1007/s00261-017-1072-0]
- Guo D, Gu D, Wang H, Wei J, Wang Z, Hao X, Ji Q, Cao S, Song Z, Jiang J, Shen Z, Tian J, Zheng H. Radiomics analysis enables recurrence prediction for hepatocellular carcinoma after liver transplantation. Eur J Radiol 2019; 117: 33-

40 [PMID: 31307650 DOI: 10.1016/j.ejrad.2019.05.010]

- Sun Y, Bai H, Xia W, Wang D, Zhou B, Zhao X, Yang G, Xu L, Zhang W, Liu P, Xu J, Meng S, Liu R, Gao X. 70 Predicting the Outcome of Transcatheter Arterial Embolization Therapy for Unresectable Hepatocellular Carcinoma Based on Radiomics of Preoperative Multiparameter MRI. J Magn Reson Imaging 2020; 52: 1083-1090 [PMID: 32233054 DOI: 10.1002/jmri.27143]
- 71 Lv X, Chen M, Kong C, Shu G, Meng M, Ye W, Cheng S, Zheng L, Fang S, Chen C, Wu F, Weng Q, Tu J, Zhao Z, Ji J. Construction of a novel radiomics nomogram for the prediction of aggressive intrasegmental recurrence of HCC after radiofrequency ablation. Eur J Radiol 2021; 144: 109955 [PMID: 34600237 DOI: 10.1016/j.ejrad.2021.109955]
- 72 Kong C, Zhao Z, Chen W, Lv X, Shu G, Ye M, Song J, Ying X, Weng Q, Weng W, Fang S, Chen M, Tu J, Ji J. Prediction of tumor response via a pretreatment MRI radiomics-based nomogram in HCC treated with TACE. Eur Radiol 2021; 31: 7500-7511 [PMID: 33860832 DOI: 10.1007/s00330-021-07910-0]
- 73 Ivanics T, Salinas-Miranda E, Abreu P, Khalvati F, Namdar K, Dong X, Deniffel D, Gorgen A, Erdman L, Jhaveri K, Haider M, Veit-Haibach P, Sapisochin G. A Pre-TACE Radiomics Model to Predict HCC Progression and Recurrence in Liver Transplantation: A Pilot Study on a Novel Biomarker. Transplantation 2021; 105: 2435-2444 [PMID: 33982917 DOI: 10.1097/TP.0000000000036051
- 74 Horvat N, Araujo-Filho JAB, Assuncao-Jr AN, Machado FAM, Sims JA, Rocha CCT, Oliveira BC, Horvat JV, Maccali C, Puga ALBL, Chagas AL, Menezes MR, Cerri GG. Radiomic analysis of MRI to Predict Sustained Complete Response after Radiofrequency Ablation in Patients with Hepatocellular Carcinoma - A Pilot Study. Clinics (Sao Paulo) 2021; 76: e2888 [PMID: 34287480 DOI: 10.6061/clinics/2021/e2888]
- 75 Cai W, He B, Hu M, Zhang W, Xiao D, Yu H, Song Q, Xiang N, Yang J, He S, Huang Y, Huang W, Jia F, Fang C. A radiomics-based nomogram for the preoperative prediction of posthepatectomy liver failure in patients with hepatocellular carcinoma. Surg Oncol 2019; 28: 78-85 [PMID: 30851917 DOI: 10.1016/j.suronc.2018.11.013]
- Zhu WS, Shi SY, Yang ZH, Song C, Shen J. Radiomics model based on preoperative gadoxetic acid-enhanced MRI for 76 predicting liver failure. World J Gastroenterol 2020; 26: 1208-1220 [PMID: 32231424 DOI: 10.3748/wjg.v26.i11.1208]
- Kiryu S, Akai H, Nojima M, Hasegawa K, Shinkawa H, Kokudo N, Yasaka K, Ohtomo K. Impact of hepatocellular 77 carcinoma heterogeneity on computed tomography as a prognostic indicator. Sci Rep 2017; 7: 12689 [PMID: 28978930 DOI: 10.1038/s41598-017-12688-7]
- 78 Akai H, Yasaka K, Kunimatsu A, Nojima M, Kokudo T, Kokudo N, Hasegawa K, Abe O, Ohtomo K, Kiryu S. Predicting prognosis of resected hepatocellular carcinoma by radiomics analysis with random survival forest. Diagn Interv Imaging 2018; 99: 643-651 [PMID: 29910166 DOI: 10.1016/j.diii.2018.05.008]
- Zheng BH, Liu LZ, Zhang ZZ, Shi JY, Dong LQ, Tian LY, Ding ZB, Ji Y, Rao SX, Zhou J, Fan J, Wang XY, Gao Q. 79 Radiomics score: a potential prognostic imaging feature for postoperative survival of solitary HCC patients. BMC Cancer 2018; 18: 1148 [PMID: 30463529 DOI: 10.1186/s12885-018-5024-z]
- Kim J, Choi SJ, Lee SH, Lee HY, Park H. Predicting Survival Using Pretreatment CT for Patients With Hepatocellular 80 Carcinoma Treated With Transarterial Chemoembolization: Comparison of Models Using Radiomics. AJR Am J Roentgenol 2018; 211: 1026-1034 [PMID: 30240304 DOI: 10.2214/AJR.18.19507]
- 81 Blanc-Durand P, Van Der Gucht A, Jreige M, Nicod-Lalonde M, Silva-Monteiro M, Prior JO, Denys A, Depeursinge A, Schaefer N. Signature of survival: a (18)F-FDG PET based whole-liver radiomic analysis predicts survival after (90)Y-TARE for hepatocellular carcinoma. Oncotarget 2018; 9: 4549-4558 [PMID: 29435123 DOI: 10.18632/oncotarget.23423]
- Petukhova-Greenstein A, Zeevi T, Yang J, Chai N, DiDomenico P, Deng Y, Ciarleglio M, Haider SP, Onyiuke I, 82 Malpani R, Lin M, Kucukkaya AS, Gottwald LA, Gebauer B, Revzin M, Onofrey J, Staib L, Gunabushanam G, Taddei T, Chapiro J. MR Imaging Biomarkers for the Prediction of Outcome after Radiofrequency Ablation of Hepatocellular Carcinoma: Qualitative and Quantitative Assessments of the Liver Imaging Reporting and Data System and Radiomic Features. J Vasc Interv Radiol 2022; 33: 814-824.e3 [PMID: 35460887 DOI: 10.1016/j.jvir.2022.04.006]
- 83 Tian Y, Komolafe TE, Zheng J, Zhou G, Chen T, Zhou B, Yang X. Assessing PD-L1 Expression Level via Preoperative MRI in HCC Based on Integrating Deep Learning and Radiomics Features. Diagnostics (Basel) 2021; 11 [PMID: 34679573 DOI: 10.3390/diagnostics11101875]
- 84 Liao H, Zhang Z, Chen J, Liao M, Xu L, Wu Z, Yuan K, Song B, Zeng Y. Preoperative Radiomic Approach to Evaluate Tumor-Infiltrating CD8(+) T Cells in Hepatocellular Carcinoma Patients Using Contrast-Enhanced Computed Tomography. Ann Surg Oncol 2019; 26: 4537-4547 [PMID: 31520208 DOI: 10.1245/s10434-019-07815-9]
- Chen S, Feng S, Wei J, Liu F, Li B, Li X, Hou Y, Gu D, Tang M, Xiao H, Jia Y, Peng S, Tian J, Kuang M. Pretreatment 85 prediction of immunoscore in hepatocellular cancer: a radiomics-based clinical model based on Gd-EOB-DTPA-enhanced MRI imaging. Eur Radiol 2019; 29: 4177-4187 [PMID: 30666445 DOI: 10.1007/s00330-018-5986-x]
- Hectors SJ, Lewis S, Besa C, King MJ, Said D, Putra J, Ward S, Higashi T, Thung S, Yao S, Laface I, Schwartz M, 86 Gnjatic S, Merad M, Hoshida Y, Taouli B. MRI radiomics features predict immuno-oncological characteristics of hepatocellular carcinoma. Eur Radiol 2020; 30: 3759-3769 [PMID: 32086577 DOI: 10.1007/s00330-020-06675-2]
- Yuan G, Song Y, Li Q, Hu X, Zang M, Dai W, Cheng X, Huang W, Yu W, Chen M, Guo Y, Zhang Q, Chen J. 87 Development and Validation of a Contrast-Enhanced CT-Based Radiomics Nomogram for Prediction of Therapeutic Efficacy of Anti-PD-1 Antibodies in Advanced HCC Patients. Front Immunol 2020; 11: 613946 [PMID: 33488622 DOI: 10.3389/fimmu.2020.613946]
- Duan J, Qiu Q, Zhu J, Shang D, Dou X, Sun T, Yin Y, Meng X. Reproducibility for Hepatocellular Carcinoma CT 88 Radiomic Features: Influence of Delineation Variability Based on 3D-CT, 4D-CT and Multiple-Parameter MR Images. Front Oncol 2022; 12: 881931 [PMID: 35494061 DOI: 10.3389/fonc.2022.881931]
- Carbonell G, Kennedy P, Bane O, Kirmani A, El Homsi M, Stocker D, Said D, Mukherjee P, Gevaert O, Lewis S, Hectors S, Taouli B. Precision of MRI radiomics features in the liver and hepatocellular carcinoma. Eur Radiol 2022; 32: 2030-2040 [PMID: 34564745 DOI: 10.1007/s00330-021-08282-1]
- Ibrahim A, Widaatalla Y, Refaee T, Primakov S, Miclea RL, Öcal O, Fabritius MP, Ingrisch M, Ricke J, Hustinx R, 90 Mottaghy FM, Woodruff HC, Seidensticker M, Lambin P. Reproducibility of CT-Based Hepatocellular Carcinoma Radiomic Features across Different Contrast Imaging Phases: A Proof of Concept on SORAMIC Trial Data. Cancers

(Basel) 2021; 13 [PMID: 34572870 DOI: 10.3390/cancers13184638]

- Perrin T, Midya A, Yamashita R, Chakraborty J, Saidon T, Jarnagin WR, Gonen M, Simpson AL, Do RKG. Short-term 91 reproducibility of radiomic features in liver parenchyma and liver malignancies on contrast-enhanced CT imaging. Abdom Radiol (NY) 2018; 43: 3271-3278 [PMID: 29730738 DOI: 10.1007/s00261-018-1600-6]
- 92 Wang X, Wang S, Yin X, Zheng Y. MRI-based radiomics distinguish different pathological types of hepatocellular carcinoma. Comput Biol Med 2022; 141: 105058 [PMID: 34836622 DOI: 10.1016/j.compbiomed.2021.105058]
- 93 Gao F, Yan B, Chen J, Wu M, Shi D. Pathological grading of Hepatocellular Carcinomas in MRI using a LASSO algorithm. J Physic Confer Series 2018; 1053: 012095 [DOI: 10.1088/1742-6596/1053/1/012095]
- Zhou W, Zhang L, Wang K, Chen S, Wang G, Liu Z, Liang C. Malignancy characterization of hepatocellular carcinomas 94 based on texture analysis of contrast-enhanced MR images. J Magn Reson Imaging 2017; 45: 1476-1484 [PMID: 27626270 DOI: 10.1002/jmri.25454]
- 95 Yang L, Gu D, Wei J, Yang C, Rao S, Wang W, Chen C, Ding Y, Tian J, Zeng M. A Radiomics Nomogram for Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma. Liver Cancer 2019; 8: 373-386 [PMID: 31768346 DOI: 10.1159/000494099]
- 96 Bakr S, Echegaray S, Shah R, Kamaya A, Louie J, Napel S, Kothary N, Gevaert O. Noninvasive radiomics signature based on quantitative analysis of computed tomography images as a surrogate for microvascular invasion in hepatocellular carcinoma: a pilot study. J Med Imaging (Bellingham) 2017; 4: 041303 [PMID: 28840174 DOI: 10.1117/1.JMI.4.4.041303
- 97 Ma X, Wei J, Gu D, Zhu Y, Feng B, Liang M, Wang S, Zhao X, Tian J. Preoperative radiomics nomogram for microvascular invasion prediction in hepatocellular carcinoma using contrast-enhanced CT. Eur Radiol 2019; 29: 3595-3605 [PMID: 30770969 DOI: 10.1007/s00330-018-5985-y]
- Xia W, Chen Y, Zhang R, Yan Z, Zhou X, Zhang B, Gao X. Radiogenomics of hepatocellular carcinoma: multiregion 98 analysis-based identification of prognostic imaging biomarkers by integrating gene data-a preliminary study. Phys Med Biol 2018; 63: 035044 [PMID: 29311419 DOI: 10.1088/1361-6560/aaa609]
- 99 Li X, Cheng L, Li C, Hu X, Tan L, Li Q, Liu C, Wang J. Associating Preoperative MRI Features and Gene Expression Signatures of Early-stage Hepatocellular Carcinoma Patients using Machine Learning. J Clin Transl Hepatol 2022; 10: 63-71 [PMID: 35233374 DOI: 10.14218/JCTH.2021.00023]
- 100 Hui TCH, Chuah TK, Low HM, Tan CH. Predicting early recurrence of hepatocellular carcinoma with texture analysis of preoperative MRI: a radiomics study. Clin Radiol 2018; 73: 1056.e11-1056.e16 [PMID: 30213434 DOI: 10.1016/j.crad.2018.07.109]
- 101 Zhao Y, Wu J, Zhang Q, Hua Z, Qi W, Wang N, Lin T, Sheng L, Cui D, Liu J, Song Q, Li X, Wu T, Guo Y, Cui J, Liu A. Radiomics Analysis Based on Multiparametric MRI for Predicting Early Recurrence in Hepatocellular Carcinoma After Partial Hepatectomy. J Magn Reson Imaging 2021; 53: 1066-1079 [PMID: 33217114 DOI: 10.1002/jmri.27424]
- 102 Zhang H, Guo D, Liu H, He X, Qiao X, Liu X, Liu Y, Zhou J, Zhou Z, Fang Z. MRI-Based Radiomics Models to Discriminate Hepatocellular Carcinoma and Non-Hepatocellular Carcinoma in LR-M According to LI-RADS Version 2018. Diagnostics (Basel) 2022; 12 [PMID: 35626199 DOI: 10.3390/diagnostics12051043]
- 103 Park S, Kim JH, Kim J, Joseph W, Lee D, Park SJ. Development of a deep learning-based auto-segmentation algorithm for hepatocellular carcinoma (HCC) and application to predict microvascular invasion of HCC using CT texture analysis: preliminary results. Acta Radiol 2022; 2841851221100318 [PMID: 35570797 DOI: 10.1177/02841851221100318]
- 104 Haniff NSM, Abdul Karim MK, Osman NH, Saripan MI, Che Isa IN, Ibahim MJ. Stability and Reproducibility of Radiomic Features Based Various Segmentation Technique on MR Images of Hepatocellular Carcinoma (HCC). Diagnostics (Basel) 2021; 11 [PMID: 34573915 DOI: 10.3390/diagnostics11091573]
- 105 Hu MJ, Yu YX, Fan YF, Hu CH. CT-based radiomics model to distinguish necrotic hepatocellular carcinoma from pyogenic liver abscess. Clin Radiol 2021; 76: 161.e11-161.e17 [PMID: 33267948 DOI: 10.1016/j.crad.2020.11.002]
- 106 Hu HT, Shan QY, Chen SL, Li B, Feng ST, Xu EJ, Li X, Long JY, Xie XY, Lu MD, Kuang M, Shen JX, Wang W. CTbased radiomics for preoperative prediction of early recurrent hepatocellular carcinoma: technical reproducibility of acquisition and scanners. Radiol Med 2020; 125: 697-705 [PMID: 32200455 DOI: 10.1007/s11547-020-01174-2]
- Qiu Q, Duan J, Duan Z, Meng X, Ma C, Zhu J, Lu J, Liu T, Yin Y. Reproducibility and non-redundancy of radiomic 107 features extracted from arterial phase CT scans in hepatocellular carcinoma patients: impact of tumor segmentation variability. Quant Imaging Med Surg 2019; 9: 453-464 [PMID: 31032192 DOI: 10.21037/qims.2019.03.02]
- 108 Zhang J, Qiu Q, Duan J, Gong G, Jiang Q, Sun G, Yin Y. Variability of radiomic features extracted from multi-b-value diffusion-weighted images in hepatocellular carcinoma. Transl Cancer Res 2019; 8: 130-140 [PMID: 35116742 DOI: 10.21037/tcr.2019.01.14]

WJG https://www.wjgnet.com

Published by Baishideng Publishing Group Inc 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA Telephone: +1-925-3991568 E-mail: bpgoffice@wjgnet.com Help Desk: https://www.f6publishing.com/helpdesk https://www.wjgnet.com

