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Abstract
Nonalcoholic fatty liver disease (NAFLD) or metabolic-associated fatty liver 
disease has been characterized by the lipid accumulation with injury of 
hepatocytes and has become one of the most common chronic liver diseases in the 
world. The complex mechanisms of NAFLD formation are still under identi-
fication. Carnitine palmitoyltransferase-II (CPT-II) on inner mitochondrial 
membrane (IMM) regulates long chain fatty acid β-oxidation, and its abnormality 
has had more and more attention paid to it by basic and clinical research in 
NAFLD. The sequences of its peptide chain and DNA nucleotides have been 
identified, and the catalytic activity of CPT-II is affected on its gene mutations, 
deficiency, enzymatic thermal instability, circulating carnitine level and so on. 
Recently, the CPT-II dysfunction has been discovered in models of liver lipid 
accumulation. Meanwhile, the malignant transformation of hepatocyte-related 
CD44+ stem T cell activation, high levels of tumor-related biomarkers (AFP, GPC3) 
and abnormal activation of Wnt3a expression as a key signal molecule of the 
Wnt/β-catenin pathway run parallel to the alterations of hepatocyte pathology. 
This review focuses on some of the progress of CPT-II inactivity on IMM with 
liver fatty accumulation as a possible novel pathogenesis for NAFLD in hepato-
carcinogenesis.
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Core Tip: The complex mechanisms of nonalcoholic fatty liver disease formation are still under identi-
fication. Hepatic carnitine palmitoyl transferase-II (CPT-II) on inner mitochondrial membrane regulates 
long chain fatty acid β-oxidation and this abnormality has had more attention paid to it by basic and 
clinical research. The sequences of its peptide chain and DNA nucleotides have been identified and the 
catalytic activity of CPT-II is affected on its gene mutations, deficiency, enzymatic thermal instability, 
circulating carnitine level and so on. CPT-II dysfunction has been discovered in models of lipid accumu-
lation. Meanwhile, the malignant transformation of hepatocyte-related CD44+ stem T cell activation, high 
levels of tumor-related biomarkers and abnormal Wnt3a expression as a key signal molecule of the Wnt/β-
catenin pathway run parallel to the alterations of hepatocyte pathology.

Citation: Yao M, Zhou P, Qin YY, Wang L, Yao DF. Mitochondrial carnitine palmitoyltransferase-II dysfunction: 
A possible novel mechanism for nonalcoholic fatty liver disease in hepatocarcinogenesis. World J Gastroenterol 
2023; 29(12): 1765-1778
URL: https://www.wjgnet.com/1007-9327/full/v29/i12/1765.htm
DOI: https://dx.doi.org/10.3748/wjg.v29.i12.1765

INTRODUCTION
Non-alcoholic fatty liver disease (NAFLD) or metabolic-associated fatty liver disease (MAFLD) is a 
general term of liver diseases characterized by inflammation, fatty accumulation and hepatocyte 
dysfunction, except of alcohol or other clear liver injury factors[1-3]. Up until now, NAFLD has become 
a potentially serious liver disease that affects approximately 25% of the adult population in the world
[4], and is divided into non-alcoholic fatty liver (NAFL) and non-alcoholic steatohepatitis (NASH) with 
or without liver fibrosis[4,5]. It has been shown that balloon like hepatocyte injury is based on NAFL. 
Most patients have no obvious symptoms and may not be diagnosed until they develop into liver 
cirrhosis or progress to hepatocellular carcinoma (HCC), and the effect of early clinical screening is poor
[6]. Once NAFLD progresses to liver cirrhosis, it is difficult to reverse and there is a risk that HCC can’t 
be ignored. Not only that, it also involves the occurrence of multiple systemic diseases in the body 
which are closely related to cardiovascular disease, chronic kidney disease and colorectal tumor which 
all threaten human health[7,8]. Therefore, finding the monitoring target in the malignant transformation 
of NAFLD has practical clinical significance for the prevention of NAFLD-related liver malignant 
diseases[9].

Lipid metabolism rearrangements in NAFLD contribute to disease progress that has emerged as one 
of the most risks for HCC, where metabolic reprogramming is a hallmark[10]. Hepatic carnitine 
palmitoyl transferases (CPTs) are critical for long-chain fatty acids (LCFAs) -oxidation, as they are 
capable of transport through the mitochondrial membrane[11]. CPT is made up of two separate proteins 
(CPT-I and CPT-II). CPT-I is located in the outer mitochondrial membrane (OMM) with three isoforms 
(liver CPT1a, muscle CPT1b and brain CPT1c) and CPT-II is in the inner mitochondrial membrane 
(IMM)[12,13]. The amino acid and cDNA nucleotide sequences of the ubiquitous CPT-II have been 
elucidated. The mutations or dysregulation of the CPTs, which are associated with many serious and 
even fatal diseases, are promising targets for developing drugs to treat type 2 diabetes (T2D) and 
obesity[14,15]. Dysregulated lipid metabolism is involved in human diseases, including chronic inflam-
matory diseases and inflammatory-related tumors[16]. CPTs play an important role in lipid metabolism 
and fatty acid oxidation (FAO) in mitochondria. CPT-II has been confirmed as a rate-limiting enzyme 
and in regulation of host immune responses[17,18]. However, the pathological role of CPT-II alteration 
with NAFLD remains to be identified[19]. This review summarizes the latest research findings of CPT-
II, which are important for accurate or early monitoring of NAFLD malignant transformation.

CPT2 STRUCTURE
The most important function of the CPT family is to ensure that fatty acids enter the mitochondria for -
oxidation. Transmembrane protein CPT-I is located in OMM and CPT-II is in IMM. Human CPT-II gene 
(CPT2) as an autosomal recessive trait encoded gene localizes on chromosomes 1 (1p32) and the gene 

https://www.wjgnet.com/1007-9327/full/v29/i12/1765.htm
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full length contains 3090 nucleotides and 5 exons, which can encode the enzyme protein peptide chain 
composed of 658 amino acids[20]. Summaries of CPT2, CPT-II and total numbers of its reported mutated 
sites are shown in Table 1. Human CPT-II (NM_000098) is a mitochondrial protein in IMM. CPT-II 
together with CPT-I oxidize LCFA in the mitochondria and play pivotal roles in the LCFA transport 
across the mitochondrial membrane for β-oxidation[21]. In molecular genetic aspects, CPT2 is identified 
in about 70% of mutant alleles. There are variations in the CPT2 genome, most of which are single-base 
substitutions, small insertions or discrete deletions[22,23]. Among the enzymatic system, CPT-II plays a 
rate-limiting role in the entry of fatty acids into mitochondrial FAO and is considered to be a key 
component of cellular metabolic homeostasis[24]. Anti-cancer drug oxaliplatin can activate CPT-II in 
gastrointestinal cancer cells and promote the catabolism of fatty acids[18]. Knocking down of CPT2 by 
patient-derived xenograft models confirmed the regulating role of mitochondrial FAO in Src activation 
and metastasis of breast cancer[25]. However, a subset of substitutions, insertion or deletion, tend to 
cluster in all exons, especially in exon 4 and exon 5, suggesting that CPT2 clustering is due to a 
combination of factors such as the rate of heterogeneous mutations in the genome, biophysical charac-
teristics of exogenous carcinogens, endogenous dysregulation and large mutation events related to 
genome instability[26].

The enzymatic system that facilitates the transfer is known as CPT mainly in OMM or IMM and plays 
an important role in maintaining its structural and functional integrity. Liver cells must keep related 
metabolic homeostasis in a wide range of conditions and meet their ATP needs depending on FAO[27,
28]. CPT-II catalyzes transesterified acylcarnitine’s transferred from cytosol into the intermembrane 
space (IMS) and the remaining acyl of acylcarnitine is changed back to CoA on IMM, which is next 
available for FAO. Meanwhile, the released carnitine is returned to the IMS of the mitochondrion via 
CACT and is available for fatty acid re-transport[29]. However, the deficiency or gene mutation of CPT-
II can significantly affect mitochondrial FAO. Bezafibrate, as a well-known hypolipidemic drug, was 
tested to stimulate CPT2 mutation, but it should be a challenge to restore normal LCFA oxidation from a 
series of other fatty acid mitochondrial diseases[30,31], indicated that CPT-II not only provides ATP for 
liver cells via FAO, but also its down-regulated expression affects the growth and malignant 
transformation of hepatocytes via cell damage, related signal molecules, stem cells, immunology and so 
on[32]. Therefore, the study of CPT-II will help to understand the pathogenesis and to develop a 
promising treatment of NAFLD.

Previous studies of CPT2 mutations have identified the presence of single-base substitutions, and 
many other events such as double-base and multiple-base substitutions, insertions or deletions. The 
reported mutations among all five exons of CPT2 and 89 mutated sites are shown in Table 2[33,34]. Most 
of CPT2 or CPT-II mutations are located in exon 4 or exon 5. Biochemical consequences of these 
mutations are still controversial. The c.338 C>T (P.S113L) variant can be detected in most cases of 
Caucasians; in Japanese, c.1148 T>A (P.F383Y) is the most frequent variant allele and can obviously 
cause severe infant forms of symptoms. Among them, it may include deficiency of enzyme protein, 
enzyme inactivity or abnormality of enzymatic regulation. The protein encoded by this gene is a nuclear 
protein which is transported to the IMM. Due to the low activity, thermal instability, and short half-life 
of CPT-II, the CPT II variant exerts a dominant negative effect on homologous tetrameric proteins 
associated with mitochondrial LCFA oxidation impairment[35]. Recently, based on animal models or 
clinical studies, the crystal structures of CPT-II were determined in uninhibited forms and in complexes 
with inhibiting substrate analogs with anti-diabetic features. The crystal structures have a deep 
understanding of the enzymatic structure-function relationship which is conducive to the discovery of 
new inhibitors through structure-based drug design[36].

MITOCHONDRIAL CARNITINE SHUTTLE SYSTEM 
Using fatty acids as ATP requires more than 20 enzymes and transporters, which are involved in the 
activation and transport of fatty acids into the mitochondria. The membrane transport system of fatty 
acid β-oxidation in mitochondria is shown in Figure 1. Mitochondrial FAO is one of the major pathways 
for fatty acid degradation and is critical for maintaining ATP balance in the human body[37,38]. When 
the glucose supply is limited, fatty acids are an important source of energy after absorption and during 
fasting. But even when glucose is sufficient, FAO still is the main source of energy for human tissues. A 
series of enzymes, transporters and other facilitating proteins with biochemistry and physiological 
functions are involved in FAO (Figure 1). The role of CPT in the LCFA oxidation, and this system 
includes CPT-I, carnitine-acylcarnitine translocase (CACT) and CPT-II. The acyl-CoA synthetase located 
in OMM catalyzes fatty acids to form acyl-CoA with ATP and CoA participation, and then, transports 
long-chain acyl-CoA by the delivery system into mitochondria, that is a carnitine shuttle system to enter 
the process for β-oxidation. Most genes encoding CPT-II are known to be recessive genetic defects and 
the clinical manifestations of the related diseases may include hypoglycemia, cardiomyopathy, 
arrhythmias and rhabdomyolysis; It also illustrates the importance of FAO during fasting and in liver 
and (heart) muscle function[39,40].
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Table 1 Summary of CPT2 gene and reported mutation sites

Mutation sites
Exon Size in bp Nucleotides Amino acids Mut. no.

Amino acids Others

1 668 1-668 1-51 5 2 3

2 81 669-749 52-78 4 2 2

3 107 750-856 79-113 5 3 2

4 1305 857-2161 114-548 59 49 10

5 929 2162-3090 549-658 16 12 4

Mut no.: Total numbers of nucleotide mutation including insertion, delete or peptide variation from codon substitution; Others: Mutations from double or 
more nucleotide insertion, deletes and so on.

Table 2 List of known human carnitine palmitoyltransferase-II mutated sites[33,34]

Exon Amino acid substitution Others

1 Pro41Leu; Pro50His 36-38 insGC; 6_43dupGGGCCC; 
113_114dupGC 

2 Pro55Arg; Ala67Gly 182_203del 22; 153-1G>A (Intron 2)1

3 Cys84Arg; Ala101Val; Ser113Leu 256_257delAG; 232+1G>A (Intron 3)1

4 Tyr120Cys; Leu121Gln; Arg124Gln; Arg124Ter; Asn146Thr; Arg151Gln; Arg151Trp; Arg161Trp; 
Lys164Ter; Arg167Gln; Pro173Ser; Glu174Lys; Tyr210Asp; Asp213Gly; Met214Thr; Gln216Arg; 
Pro227Leu; Arg231Trp; Arg247Trp; Lys274Met; Arg296Gln; Arg296Leu; Arg296Ter; Gly310Gly; 
Cys326Tyr; Asp328Gly; Met342Thr; Phe352Cys; Val368Ile; His369Gln; Arg382Lys; Phe383Tyr; 
Gln413Gln; Phe448Leu; Arg450Ter; Gly451Glu; Glu454Ter; Lys457Ter; Tyr479Phe; Tyr479Cys; 
Gly480Arg; Glu487Lys; Gly497Ser; Ile502Thr; Arg503Cys; Pro504Leu; Phe516Ser; Glu545Ala

1569_1570delCA; 1444_1447delACAG; 
1634_1636delAAG; 1646_49del; 
1273_1274delAC; 1238_1239delAG; 
1543_1546delGCCT; 907_918ins11; 533insT; 
534-558del25; 1645+5G>A (Intron 5)1

5 Arg560Gln; Leu575Pro; Asp576Gly; Ser588Cys; Ser590Asn; Gly600Arg; Pro604Ser; Val605Leu; 
Asp608His; Tyr628Ser; Arg631Cys; Leu644Ser

1816_1817delGT; 1923_1935del; 340+1G>A 
(Intron 4)1; 340+5G>A (Intron 4)1

1Intron.
Mutations are listed on Human Gene Mutation Database from Stenson et al[33] and Yao et al[30].

The carnitine shuttle system controls fatty acid translocation across the mitochondrial membrane. Key 
enzymes determine the competition of glycolysis vs mitochondrial FAO defined by the Randle cycle. 
This transport system with CACT is an important part of fatty acid esterification through OMM and 
IMM of mitochondria (Figure 1). First, CPT-I at OMM catalyzes long-chain acyl-CoA along with 
carnitine conversion to long-chain acylcarnitine and CoA is transported to the mitochondrial interior 
with help of translocase on the mitochondrial intima[41,42]. After that, the transesterified acylcarnitine’s 
are transported from the cytosol into the IMM space as CACT acylcarnitine releases carnitine by CPT-II 
catalysis, and converts it to an acyl group from carnitine to acyl-CoA, available for β-oxidation. Released 
carnitine returns to the IMM space of the mitochondria for fatty acid re-transport[43]. CPT-II plays an 
important regulatory role in FAO and its function affects fatty acid metabolism. More importantly, CPTs 
in the carnitine shuttle system can be used as a drug target to reduce gluconeogenesis or restore 
liposome balance. Therefore, it has the potential value of gene therapy or immunotherapy, and the 
further study of the mechanism of CPTs could provide useful ideas for clinical treatment of related 
diseases[44,45].

EFFECT FACTORS OF CPT-II ACTIVITY
Lipid metabolism involves a variety of biological processes, including the most important lipid 
metabolic pathway (FAO with carnitine shuttle system). The mutations or dysregulation of hepatic CPT-
II have been linked to many serious or even fatal human diseases, and it should be a promising target 
for developing drugs to treat T2D or obesity[46]. However, the deficiency, over-expression or 
inactivation of liver CPT-II might ultimately lead to disruption of immune homeostasis, thereby 
increasing the risk of various inflammatory diseases and even tumors. There is some evidence that CPT-
II or the associated mitochondrial LCFA are involved in the development and progression of these 
related diseases. Thus, the agonists or inhibitors targeting the CPTs or carnitine shuttle system have 
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Figure 1 Transport system of fatty acid oxidation in outer mitochondrial membrane and inner mitochondrial membrane[11,65]. Fatty acid β-
oxidation is catalyzed by enzymes located in outer and inner mitochondrial membrane to form acyl-coenzyme A (CoA) in the participation with ATP and CoA. 
Carnitine palmitoyltransferase (CPT)-I promotes the conversion of acyl-CoA to acyl-carnitine that is transported to mitochondrial interior with the help of translocase 
on the intima of mitochondria. Under the catalysis of CPT-II, acylcarnitine releases carnitine, and then converted to acyl-CoA to enter β-oxidation. The CPT system 
with carnitine acyl-carnitine translocase play a vital part in the transport system for esterification of fatty acids through the mitochondrial membrane and CPT-II as a 
key rate-limiting enzyme for fatty acid β-oxidation. OMM: Outer mitochondrial membrane; IMM: Inner mitochondrial membrane; CACT: Carnitine acyl-carnitine 
translocase; CPT: Carnitine palmitoyltransferase; CoA: Coenzyme A.

emerged as novel therapies for these diseases[47]. Normal function of FAO in IMM is closely dependent 
on the catalytic activity of CPT-II that could be affected by CPT2 variation, the amino acid substitution 
of enzyme, inhibition of enzyme activity, circulating carnitine level and so on.

CPT-II deficiency
Hepatic CPT-II deficiency is one of the most common forms of mitochondrial FAO disorders (FAODs) 
and have several clinical presentations that have been known for a long time. However, its phenotypic 
variability remains fascinating[48]. The clinical phenotypes of CPT-II deficiency are classified into 
muscular, severe infantile and fatal neonatal types. In addition, neonatal-onset CPT-II deficiency is often 
accompanied by brain and kidney organ dysfunction features, such as in the 1st mo of life, and is almost 
always fatal. Three different phenotypes (neonatal, infant and adult onset) have been identified, all with 
autosomal recessive inheritance patterns[49]. The clinical phenotype of adult CPT-II deficiency is mostly 
benign, and only with additional external stimuli, such as high-intensity exercise, can lead to major 
myopathy symptoms. However, the perinatal and infantile CPT-II deficiency usually involves multiple 
organ systems, especially when occurring in the perinatal period as it is the most serious form and is 
often fatal[50]. The application of mass spectrometry technology to analyze acylcarnitine profiles in 
blood has revolutionized the FAOD diagnosis, including CPT-II deficiency. In most cases, the number of 
CPT2 mutations is increasing and there is a clear genotype-phenotype correlation. However, the clinical 
variants in some patients might contain other genetic or environmental factors[51].

In the clinical setting, the manifestations of patients with CPT-II deficiency include severe infant liver 
disorders, myocardial infarction, fatality in neonates and myopathy (usually mild, from infancy to 
adulthood). Some patients have serious multi-system disease that includes liver function failure, 
cardiomyopathy, epilepsy, hypoglycemia and premature death, while others are characterized by 
muscle pain and weakness which is sometimes accompanied by myoglobinuria[52]. The proband was 
diagnosed for CPT-II deficiency by finding a decrease in muscle CPT activity or by identifying a biallelic 
variant of CPT2 in a molecular genetics test. A total of six mutations have been identified, including four 
new ones. Among those mutations, the S113 L mutation is common in about 50% of the mutant alleles. 
Three of the six mutations (3/6) have been found in a few unrelated patients, while others have been 
found in only one family with genetic heterogeneity. To date, about 100 CPT2 mutations have been 
discovered. Prenatal diagnosis is provided when the risk of infant/severe CPT-II deficiency is 1/4. 
Infantile CPT-II presents as a severe hypoglycemic episode of ketoacidosis, occasionally associated with 
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heart damage and usually resulting in sudden death before age 1[50]. Treatment for CPT2 deficiency 
includes a low-fat diet in rich triglyceride or carnitine and avoiding fasting or hyperkinesis[53].

Thermal instability of CPT-II
CPT-II activation is associated with disorders of mitochondrial β-oxidation of LCFA in IMM. Based on 
the crystal structure of mouse CAT, the active site of CPT-II is located at the interface between two 
domains, extending in tunnels through the enzyme protein centers, alone or in complex with its 
substrate carnitine or CoA[54]. In this tunnel, carnitine combines with CoA and its opposite is catalytic 
His343 residue. The information of CPT-II structure provides a molecular basis to understand the 
catalytic activity of CAT or to design their inhibitors. In addition, the carnitine might contribute to the 
catalytic stabilization of oxygen ions in the reaction intermediates. Hepatic CPT-II is sensitive to 
inhibition by metabolites of fatty acids, Triton X-100, or malonyl-CoA[55].

Artificially recombinant His6-N-hCPT2 and His6-N-hCPT2/S113L showed the same enzymatic 
activity for wild-type or S113L variants of CPT-II[56]. However, the mutant CPT-II exhibited abnormal 
destabilization at 40 °C or 45 °C and was more sensitive to be inhibited by malonyl-CoA. The thermal 
solubility of mutant CPT-II, which may explain the symptoms of CPT-II deficiency may mainly occur 
during prolonged exercise, infection, and exposure to cold. In addition, CPT II abnormalities are likely 
to be largely suppressed when fatty acid metabolism is stressed[54]. The unstable CPT II variants with 
enzymatic inactivity might lower mitochondrial fuel utilization under the phenotypic threshold during 
patients with hyperthermia, thus suggesting that hepatic CPT-II should play a pathological role in 
NAFLD progression.

High-risk patients have thermolabile genetic backgrounds of CPT-II in LCFA metabolism. However, 
until now, no related mutation of CPT-II was reported in NAFLD patients[57,58]. Almost fatal or 
handicapped virus-associated encephalopathy cases exhibited transiently higher serum LCAC levels 
during fever more than 40 °C. The specific activity of patients’ CPT-II (0.4 ± 0.06 nMol/min/mg) was 
36% of normal control (1.1 ± 0.3 nMol/min/mg protein) at 37 °C. The CPT-II specific activity in the 
patient group was down to 50% for 2 h at 41 °C, and CPT-II in the normal control group still was 91.4%, 
and the sequencing analysis of patients’ CPT2 gene revealed compound (1055T>G/F352C) + (1102G>A/
V368I) heterozygous variations[46,59]. F352C substitution was only reported in the Japanese study, and 
V368I polymorphic variation has relatively mild effects related to CPT-II deficiency[47,60]. The CPT-II 
mutation or dysregulation has been linked to more serious, even fatal diseases, and these data should be 
promising molecule targets to develop therapeutic agents for NAFLD in future.

Carnitine level 
Carnitine as a substance has a wide range of biological functions, including transport of LCAD from the 
cytoplasm to the mitochondrial matrix, regulation of acetyl-CoA/CoA, control of acyl transport 
between organelles and prevention of oxidative stress[58]. Maintaining normal fat metabolism depends 
on carnitine concentration that is synthesized in most eucaryotic organisms[61]. The methylation of 
lysine initiates the biosynthesis of carnitine. The formed trimethyllysine is then converted to 
butylbetaine in all tissues and finally hydroxylated to carnitine in the liver and released from the tissues, 
which are then actively absorbed by all other tissues[62,63]. This transfer requires the enzyme and 
transporter that accumulates carnitine within the cell (OCTN2 carnitine transporter), which is 
conjugated to LCFA (CPT-I), to transfer acylcarnitine’s through IMM (CACT), and to transfer carnitines 
through the IMM (CACT), fatty acids were conjugated back to CoA for subsequent -oxidation (CPT-II). 
The regulation of carnitine synthesis is still incompletely understood because the turnover of carnitine 
in the human body is slow[64].

Carnitine is essential for proper fat metabolism, producing ATP, and the transport of LFAC or 
medium fatty acid chains (MFAC). It attracts LFAC and MFAC, after it breaks them down, and then 
takes them to the cell's mitochondria for FAO. And as it turns out, the body burns more fat, providing 
the body with more natural energy in the process[65,66]. According to the previous study, using a 
carnitine antagonist 3-(2,2,2-trimethylpropionate hydrazine dihydrate, THP) resulted in lipid accumu-
lation with increased liver weight in wild-type mice. The competition between THP and carnitine 
inhibited CPT-II activity, resulting in carnitine deficiency, acyl CoA and fat accumulation[67]. Clinical 
data showed that the blood carnitine concentration in NAFLD patients was lower than those in healthy 
people, and the level in NAFLD cases with liver cirrhosis accounted for only 22% of normal people[68,
69]. The concentration of carnitine in patients with liver disease is low, the fat accumulation in rat liver 
tissue, the content of total fatty acids, free fatty acids, short chain fatty acids (SCFC) and LCFA in liver, 
and the content of chain, long chain, short chain and total fatty acids in circulating blood also change. 
During patients with hepatitis B or hepatitis C virus infection, or with mitochondrial FAODs present 
with NAFLD or severe liver diseases, enough carnitine should play an important role in the 
mitochondrial carnitine shuttle system, suggesting that circulating carnitine level affects FAO, 
ameliorates mitochondrial dysfunction, reduces insulin resistance and improves NAFLD progression
[70,71].
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CPT-II INACTIVITY IN NAFLD
NAFLD pathogenesis is much more complicated with multi-factorial events. Recently, the low activity 
of CPT-II on IMM during NAFLD progression has attracted much attention both in basic and clinical 
aspects[72,73]. Although many theories of NAFLD with abnormal lipid metabolism[8,74,75] such as 
insulin resistance (IR), lipid peroxidation, cytokine expression, iron overload, genetics, environment, 
immunity, drugs, living habits and so on. However, there are still many problems in the study of 
NAFLD pathogenesis. According to these theories, the IR stimulates liver fat accumulation and trigly-
cerides, resulting in the first strike to NAFLD formation; then oxidative stress and lipid peroxidation 
aggravate hepatocyte injury to develop into the second strike that starts with asymptomatic steatosis, 
and continues to cell inflammation, steatohepatitis, fibrosis or hepatocyte malignant transformation[76,
77]; hence a "multiple hit" hypothesis seems a more accurate proposal[78,79]. Up to now, the new 
discovery of loss of CPT-II activity has been confirmed in lipid accumulating models that should be one 
of the NAFLD mechanisms.

Ideal NAFLD models should correctly reflect both histopathology and pathophysiology, and imitate 
certain aspects of NAFLD which are divided into genetic, dietary and combination models referring to 
advantages and disadvantages[80,81]. Also, the models based on biological knowledge are reliable and 
reproducible, having low mortality, and being compatible with simple and feasible methods, not only in 
elucidating pathogenesis for understanding NAFLD but also in examining therapeutic effects of various 
agents to develop tools and giving crucial information. Inhibiting CPT-II activity is related to a disorder 
of lipid metabolism, which may be related to NAFLD pathogenesis and down-regulating CPT-II in liver 
tissues. Gene defects are associated with mitochondrial LCFA oxidation disorders[82,83].

In order to determine the independent and interdependent roles of triglyceride (TG) hydrolysis and 
FAO, liver-specific defects in mice were generated in TG hydrolysis (AtglL-/-) , FAO (CPT2L-/-) , or both 
(double knockout)[73,84]. Loss of a single component of FAO [CPT2, adipose TG lipase (Atgl), and 
peroxisome proliferators-activated receptor-α (PPAR-α)] resulting in a major independent effect on the 
morphology of liver cells, gene expression, and intermediate metabolism in response to fasting[84]. 
However, the mice in the high-fat diet (HFD) model revealed an interdependent role for Atgl and CPT2, 
as deletion of only one gene lead to NAFLD; But loss of both components leads to significant hepatocyte 
inflammation and liver fibrosis[85].

CPT-II IN HEPATOCARCINOGENESIS
During NAFLD progression, the transcription factors E2f1 and E2f2 contributed to NAFLD-associated 
mice HCC and their involvement in metabolic recombination[72,85]. The expressions of E2f1 and E2f2 
were significantly increased in the NAFLD-associated HCC in mice induced with HFD plus diethyl-
nitrosamine (Den). However, the E2f1-/- and E2f2-/- mice were resistant to DEN-HFD-induced hepatocar-
cinogenesis and were associated with lipid accumulation. The administration of DEN-HFD in the E2f1-/- 
and E2f2-/- mice enhanced FAO and increased expression of CPT2 because of CPT2 as an essential 
enzyme for FAO, whose down-regulation was linked to the NAFLD-related hepatocarcinogenesis[86]. 
The mouse models of obesity-driven and NASH-driven HCC typically exhibit robust steatosis in HCC 
cells, as seem to be seen in the human NASH-HCC. The livers and HCC tissues from diethyl-
nitrosamine-injected mice fed either control or HFD were subjected to comprehensive metabolome 
analysis[80,87]. Extensive acylcarnitine’s accumulation was seen in liver cancer tissue and in the sera of 
HFD-fed mice. A similar increasing level was seen in sera from patients with NASH-associated liver 
cancer. The increase of acylcarnitine might be related to the CPT-II down-regulation, suggesting that 
acylcarnitine is a surrogate marker of the down-regulation of CPT-II and directly participates in the 
development of hepatocarcinogenesis.

The down-regulation of CPT-II caused FAO inhibition which might be the cause of steatosis in HCC. 
The knockdown of the CPT2 gene in HCC cells could inhibit the Src-mediated activation of JNK and 
produce anti-lipotoxicity. Furthermore, oleylcarnitine promotes spheroid formation in HCC cells 
through STAT3 activation[88,89]. HFD feeding and carnitine supplementation synergistically enhance 
hepatocarcinogenesis with acylcarnitine accumulation in vivo. The CPT-II level in HCC mice was 
significantly lower than those in control or NAFLD mice, and was negatively correlated with the degree 
of hepatocyte malignant transformation[90,91]. A series of experiments confirmed that CPT-II was 
inactivated, suggesting that low CPT-II expression in IMM might lead to liver lipid accumulation and 
participate in promoting NAFLD malignant transformation[92].

CPT-II INVERSE-CORRELATED WITH HCC MARKERS 
Based on clinical and basic evidences, abnormal lipid accumulation was associated with NAFLD 
malignant transformation. However, only a few studies have been reported on the relationship between 
CPT-II activation and HCC progression. The alteration of CPT-II expression might be an important link 
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in the obstruction of FAO and abnormal lipid accumulation[93]. Based on above findings, some scholars 
sequenced the whole gene of the mitochondrial CPT-II in NAFLD patients, and found that CPT2 
variation was significantly associated with CPT-II activity that might be the key factor of NAFLD or 
related cirrhosis/HCC because its inactivation is closely related to an energy production disorder in 
models of NAFLD[94,95]. The dynamic alterations of CPT-II expression located on IMM during 
malignant transformation of hepatocytes in SD rats induced by chemical carcinogens (2-flu-
orenylacetamide, 2-FAA) were investigated under lipid accumulation[19]. For the first time, the 
progressively decreasing expression of CPT-II at mRNA or protein level were reported, and the 
significantly increasing HCC related to molecular markers were confirmed during the rat hepatocarci-
nogenesis.

There has been a rise in the prevalence of NAFLD, paralleling a worldwide increase in MAFLD and 
HCC[96]. According to the dynamic pathological alterations of the model, a continuum of morpho-
logical abnormalities on liver sections has a variable course, from normal hepatocytes, lipid accumu-
lation, cell denaturation, precancerous lesion and HCC formation. Compared with the control liver 
sections, there was a large amount of fat in the hepatocytes of the model rats by the oil red O staining; In 
the meantime, transmembrane glycoprotein CD44 activation promotes inflammatory cell recruitment 
and plays a key role of being linked to NAFLD progression to HCC[97-99]. CPT-II has been 
demonstrated to interact in forming supramolecular complexes that facilitate the passage of acylcar-
nitine and its expression was gradually decreased in malignant trans-formation of hepatocytes in 
NAFLD. However, the reported HCC biomarkers such as AFP, GPC3[100] and Wnt3a[101] were 
significantly increasing expressions in hepatocarcinogenesis except for CD44 as one of the most 
frequently reported cancer stem-like cell markers[102]. These data suggested that the alteration of CPT-
II expression should be associated with the malignant progression of NAFLD.

Metabolically related NAFLD is emerging as a major cause of HCC in Western countries[103-105]. 
This presents an additional challenge, as NAFLD-related HCC tend to be advanced in elderly patients 
with comorbidities and their prognosis is very poor[106]. The pathogenesis of NAFLD-associated HCC 
is multifactorial and remains to be identified, although the risk of hepatocarcinogenesis is undoubtedly 
increased as NAFLD progresses to NASH and cirrhosis[107]. The new findings of CPT-II are useful for 
understanding NAFLD and HCC and should hopefully lead to the development of clinically relevant 
biomarkers and strategies to help identify high-risk patients, early use of preventive measures or better 
treatment[108]. Energy metabolism is a prerequisite for maintaining normal life activities. NAFLD is 
caused by excessive lipid accumulation in hepatocytes and is regarded as one of the most common liver 
diseases[109,110]. The down-regulation of CPT2 in IMM was one of the main causes of acyl carnitine 
accumulation, which was also seen in malignant transformation of hepatocytes, suggesting that CPT-II 
inactivity or dysfunction might become a new mechanism of blocked lipid oxidation for HCC.

CONCLUSION
Owing to its high prevalence and potential risk, NAFLD has become a major health concern worldwide. 
Hepatocyte CPT-II variation or activity alteration undoubtedly has a significant impact on aggravating 
liver fatty accumulation, inducing activation of cancer-related stem cells, and malignant transformation 
of hepatocytes (Figure 2), especially in patients with HBV chronic infection. The phenomenon of CPT-II 
inactivation as warning signs of NAFLD malignant transformation needs attention. However, its 
specific regulatory mechanism is unknown, so this is a good research prospect. At present, the exact 
relationship between CPT-II and NAFLD remains to be explored. It is believed that with the vigorous 
development of molecular biological theory and technology, understanding the function of CPT-II 
physiology will continue to deepen, which has guided significant knowledge for CPT-II alteration 
during NAFLD progression. At the same time, it also brings hope and provides a theoretical basis for 
the assumption of early intervention of NAFLD or human related diseases and CPT-II can be used as a 
molecular target for monitoring or therapy.

Hepatocyte CPT-II variation or activity alteration undoubtedly has a significant impact on 
aggravating liver fatty accumulation, inducing activation of cancer-related stem cells, and malignant 
transformation of hepatocytes.



Yao M et al. CPT-II in NAFLD

WJG https://www.wjgnet.com 1773 March 28, 2023 Volume 29 Issue 12

Figure 2 Carnitine palmitoyltransferase-II inactivity in hepatocarcinogenesis. Disorder of lipid metabolism may be related to the pathogenesis of 
nonalcoholic fatty liver disease with malignant transformation of hepatocytes. AFP: Alpha-fetoprotein; CoA: Coenzyme A; CPT2: Carnitine palmitoyl transferase 2; 
FAO: Fatty acid oxidation; HCC: Hepatocellular carcinoma; VEGF: Vascular endothelial-derived growth factor.
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