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Abstract
Repurposing of the widely available and relatively cheap generic cardiac gly-
coside digoxin for non-cardiac indications could have a wide-ranging impact on 
the global burden of several diseases. Over the past several years, there have been 
significant advances in the study of digoxin pharmacology and its potential non-
cardiac clinical applications, including anti-inflammatory, antineoplastic, 
metabolic, and antimicrobial use. Digoxin holds promise in the treatment of 
gastrointestinal disease, including nonalcoholic steatohepatitis and alcohol-
associated steatohepatitis as well as in obesity, cancer, and treatment of viral 
infections, among other conditions. In this review, we provide a summary of the 
clinical uses of digoxin to date and discuss recent research on its emerging applic-
ations.

Key Words: Digoxin; Cardiac glycosides; Oxidative stress; Nonalcoholic steatohepatitis; 
Alcohol-associated steatohepatitis; Sterile inflammation
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Core Tip: Digoxin has been used primarily as a cardiac drug for treatment of arrhythmias and heart failure. 
Preclinical work supports the repurposing of digoxin as therapy for non-cardiac conditions, including 
alcohol-associated steatohepatitis, nonalcoholic steatohepatitis, obesity and metabolic disorders, 
autoimmune and inflammatory conditions, malignancy, and viral infections, among others. Here, we 
provide an overview of findings to date on the potential clinical applications of digoxin and mechanisms 
of action in steatohepatitis and other non-cardiac disorders. We discuss evidence on the differential action 
of digoxin at high vs low concentrations and identify areas of further research necessary to harness its 
promising multifunctional use.

Citation: Jamshed F, Dashti F, Ouyang X, Mehal WZ, Banini BA. New uses for an old remedy: Digoxin as a 
potential treatment for steatohepatitis and other disorders. World J Gastroenterol 2023; 29(12): 1824-1837
URL: https://www.wjgnet.com/1007-9327/full/v29/i12/1824.htm
DOI: https://dx.doi.org/10.3748/wjg.v29.i12.1824

INTRODUCTION
Digoxin in a nutshell: An overview of 200 years
Digoxin (also known by the broader term digitalis) is derived from the purple foxglove, a medicinal 
plant that can be traced to Irish monks and Germans and was cultivated during the time of Charles the 
Great (700s–800s). Its Latin scientific name Digitalis purpurea was coined by Leonard Fuchs in 1542 based 
on the translation of the German word describing the shape of the flower as a fingerhut or thimble. 
Digitalis was mentioned in herbal remedies in England in the 1500s and 1600s for several purposes, 
including epilepsy, vertigo, swelling/fluid accumulation, tuberculosis, and skin diseases[1]. Sub-
sequently, digitalis fell out of favor due to reports of its toxicity. Animal experiments involving the 
administration of digoxin leaves to turkeys and roosters resulted in fits and death[1].

In the late 1700s, Withering[2], an English botanist and physician, heard about a family recipe 
containing over twenty different herbs used in the cure of fluid overload, referred to as dropsy[2]. After 
realizing that the active ingredient in the herbal remedy was likely from the foxglove plant, Withering
[2] administered foxglove tea as a cure to a patient with dropsy. That patient did well, and over the 
ensuing decade he performed a comprehensive case series of digitalis by administering a decoction 
prepared from dried foxglove leaves to 163 patients with fluid retention, of whom 101 experienced 
relief. He noted that digitalis was especially helpful for patients with dropsy after having scarlet fever or 
bad sore throats. Withering’s work inspired other physicians to try digitalis as a therapy in dropsy[2]. 
For further information on the evolution of digoxin as a medical therapy, the reader is referred to an 
excellent review by Wray et al[1].

The molecular formula of digoxin is C41H64O14, and its molecular weight is 780.9 g/mol. Similar to 
other cardiac glycosides (CG), digoxin increases the force of contraction of the heart by reversibly 
inhibiting the activity of the myocardial Na-K ATPase pump, an enzyme that controls the movement of 
potassium ions into the heart[3-5]. The most common cardiac uses of digoxin include heart failure and 
supraventricular arrhythmia. Its role in heart failure is due to its inotropic properties, inhibiting the Na-
K ATPase pump thus increasing the intercellular calcium concentration[6]. This lengthens the cardiac 
action potential, lowering the heart rate and increasing myocardial contractility. The American College 
of Cardiology/American Heart Association guidelines recommend that digoxin be added to the heart 
failure medication regimen in patients with left ventricular systolic dysfunction when symptoms persist 
despite optimization of treatment with an angiotensin-converting enzyme inhibitor, a β-blocker, and/or 
a diuretic[7-9]. The digoxin effect in treatment of supraventricular arrhythmia occurs through its 
parasympathomimetic stimulation via the vagus nerve, reducing automaticity of the sinoatrial node and 
slowing atrioventricular conduction[10].

Current clinical use of digoxin is limited to the cardiac arena. Oral digoxin is available as a solution 
(0.05 mg/mL) or as tablets (0.0625 mg, 0.125 mg, 0.1875 mg, and 0.25 mg). Dosing is typically 
maintained between 0.125 to 0.25 mg daily, with lower doses considered in patients 70 years of age or 
older[11]. The steady-state volume of distribution of digoxin is decreased in chronic renal failure; 
therefore, both loading and maintenance dosing should be decreased in such patients[12]. Digoxin has a 
narrow therapeutic window, with the rate of toxicity increasing as serum concentration reaches over 2.0 
ng/mL. However, toxicity can also occur at levels below 2.0 ng/mL in the setting of risk factors such as 
age, decreased renal function, hypokalemia or other electrolyte abnormalities, or interacting 
medications[13]. The narrow therapeutic window of digoxin necessitates monitoring of serum digoxin 
levels, particularly in patients with chronic renal dysfunction or varying renal function.

With the discovery of many effective cardiac drugs for heart failure and supraventricular arrhythmias 
over the past few decades and difficulty maintaining the narrow digoxin therapeutic index, the use of 
digoxin in cardiac disease has been waning. During this period, however, there have been several 
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advances in basic and preclinical work toward the potential repurposing of digoxin and other CGs for 
non-cardiac conditions. These studies indicate that the biological effects of CG are not limited to the 
inhibition of Na, K-ATPase but include various signal transduction pathways including nuclear 
receptors (NRs) involved in hormonal signaling, immune response, and carcinogenesis, among others
[14-19].

DIGOXIN IN STEATOHEPATITIS
Overnutrition and obesity impair metabolic homeostasis and trigger sterile-type inflammation[20-23], 
contributing to the development of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steato-
hepatitis (NASH). The amplitude of sterile inflammation triggered by metabolic stress in the liver has 
major clinical consequences. Sterile inflammation is responsible for increasing amounts of liver damage 
and cell death in NASH[24]. NASH, as well as other diseases associated with sterile inflammation of the 
liver, lacks effective treatments. This is due to the relatively poor understanding of the initiating steps in 
sterile inflammation and the dysregulation of a wide range of pathways, making it difficult to know 
which ones to target.

Identification of hypoxia-inducible factor 1-alpha (HIF-1α) pathway activation in macrophages for 
sustained inflammatory responses provided HIF-1α with a key role in the core regulatory machinery for 
the transition from acute self-limiting to sustained chronic inflammation[25]. These mechanistic insights 
into the role of the HIF-1α pathway in sterile inflammation may have great clinical relevance due to the 
ability of digoxin to inhibit HIF-1α activation[26]. Digoxin (1.0-0.05 mg/kg) effectively prevents acute 
and chronic hepatic damage, steatosis, and inflammation in both lipopolysaccharide- and high-fat diet-
driven animal models[27].

Digoxin reduces oxidative stress during liver injury by maintaining cellular redox homeostasis and 
protects the liver from a wide variety of insults[27,28]. Digoxin reduces HIF-1α transcriptional activity, 
thus disrupting HIF-1α-mediated antioxidant pathways. Digoxin induced significant changes in gene 
transcripts related to HIF-1α in metabolic processes and nucleic acid binding[27]. To understand the 
direct molecular mechanisms responsible for the digoxin effect on HIF-1α transcription, pyruvate kinase 
M2 (PKM2) was identified as the major digoxin binding protein using a novel approach of digoxin-
immunized agarose beads coupled with liquid chromatography with tandem mass spectrometry 
analysis[27]. The ability of digoxin to bind to PKM2 was an unexpected finding and provided novel 
insights into PKM2 biology and the role of PKM2 in sterile inflammatory liver diseases. PKM2 is best 
known as the rate-limiting glycolytic enzyme that catalyzes the conversion of phosphoenol pyruvate 
and adenosine diphosphate to pyruvate and ATP[29].

In addition to its pyruvate kinase function, PKM2 interacts with HIF-1α in the nucleus and functions 
as a transcriptional coactivator for HIF-1α, resulting in the stimulation of HIF-1α responsive genes[30]. 
Interestingly, the interaction of digoxin with PKM2 did not alter its pyruvate kinase ability or reduce its 
nuclear translocation. Digoxin, however, reduced the ability of PKM2 to upregulate the transcription of 
HIF-1α and its downstream genes, such as inflammatory genes and genes involved in oxidative stress 
(Figure 1). Further, digoxin reduced the binding of PKM2 to histones, suggesting that digoxin 
suppressed PKM2-mediated transactivation of HIF-1α through chromatin modifications[27].

Oral digoxin significantly reduced high-fat diet-induced hepatic damage, steatosis, and liver inflam-
mation across a wide dosage range[27]. The lowest dose of digoxin (0.125 mg/kg) showed significant 
protective effects against liver injury and sterile inflammation. Interestingly, digoxin had direct effects 
on the inhibition of inflammasome activation. Digoxin had a small effect on typical inflammasome 
activity while strongly inhibiting the HIF-1α pathway-sustained inflammasome activity in macrophages. 
Despite the importance of PKM2-HIF1α pathway activation in immune cells during NASH development
[27], its direct effect on hepatocytes was unclear. PKM2 levels in healthy human liver cells were very 
low, but they were significantly elevated in NAFLD and NASH. Pyruvate kinase L/R, the major isoform 
of pyruvate kinase in the liver, was unchanged. Digoxin treatment directly inhibited PKM2 
transactivation leading to the improvement of hepatocyte mitochondrial dysfunction, steatosis, and 
hepatocellular injury in the obese mouse model (Table 1).

NRs are ligand-activated transcription factors that are involved in a wide array of physiological 
processes. These transcription factors typically have different domains responsible for ligand-
independent interactions with corepressors and coactivators, recognition and binding of response 
elements within target genes, interaction with other proteins or facilitation of protein translocation, as 
well as ligand-dependent functions[31-37]. The involvement of NRs in the regulation of a variety of 
metabolic and physiological processes makes them interesting pharmacological targets.

The NR gene retinoic acid-related orphan receptor C gene encodes two protein products, the retinoid-
related orphan receptor-gamma (RORγ) and RORγT isoforms, which differ by 21 amino acids in their 
N-terminal A/B domains. The RORγ isoform is broadly expressed[38] and is involved in the regulation 
of genes in the circadian cycle and metabolism[37,39,40]. The RORγT isoform is expressed exclusively in 
T helper 17 (Th17) cells and regulates expression of interleukins (IL)-17A and IL-17F[41,42] involved in 
autoimmune disease[43-45]. Pivotal evidence for digoxin involvement in the regulation of RORγT 
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Table 1 Summary of the main findings from key original articles investigating non-cardiac applications of digoxin and other cardiac 
glycosides

Manuscript title Publication 
year Main biomedical/molecular findings Main histological findings Ref.

Cardiac glycosides inhibit p53 
synthesis by a mechanism 
relieved by Src or MAPK 
inhibition

2009 Activation of Src/MAPK signaling pathways, resulting in 
reduction of p53 protein synthesis

NA [72]

Human cytomegalovirus 
inhibition by cardiac 
glycosides: Evidence for 
involvement of the HERG gene

2012 CG reduced expression of the potassium channel gene, 
hERG, and reduced NF-κB levels 

NA [85]

Digoxin Suppresses HIV-1 
Replication by Altering Viral 
RNA Processing

2013 Reduction in HIV-1 viral mRNAs encoding structural 
proteins, with reduced synthesis of HIV-1 structural protein; 
altered viral RNA splice site use leading to loss of essential 
viral factor Rev; changed activity of CLK family of SR 
protein kinases and modification of SR proteins 

NA [91]

A novel cell-based high-
throughput screen for 
inhibitors of HIV-1 gene 
expression and budding 
identifies the cardiac 
glycosides

2014 Na-K ATPase- dependent but intracellular Ca2+-
independent inhibition of HIV-1 gene expression at the post-
integration stage of the viral life cycle

NA [90]

Digoxin Suppresses Tumor 
Malignancy through Inhibiting 
Multiple Src-Related Signaling 
Pathways in Non-Small Cell 
Lung Cancer

2015 Inhibition of proliferation, invasion, migration, and colony 
formation of A549 lung cancer cells; suppression of Src and 
related protein activity; reduced EGFR and STAT3 activity

NA [75]

Synergistic effects of ion 
transporter and MAP kinase 
pathway inhibitors in 
melanoma

2016 Inhibition of the ATP1A1 Na+/K+ pump, which is highly 
expressed in melanoma, resulting in selective toxicity to 
melanoma cells. Digoxin was also additive or synergistic 
with MEK inhibitor and/or BRAF inhibitor to induce cell 
death in melanoma cells; increased intracellular 
acidification, mitochondrial calcium dysregulation, and ATP 
depletion in melanoma cells

NA [79]

Small-molecule TFEB pathway 
agonists that ameliorate 
metabolic syndrome in mice 
and extend C. elegans lifespan

2017 Activated TFEB, conferred hepatoprotection against diet-
induced steatosis in mice, and extended lifespan of 
Caenorhabditis elegans

Amelioration of high-fat 
diet-induced steatosis, 
reversal of hepatocyte 
p62/SQSTM1 accumulation, 
suggesting enhanced 
autophagic flux

[62]

Targeting Intracellular Ion 
Homeostasis for the Control of 
Respiratory Syncytial Virus

2018 Findings suggested digoxin-mediated inhibition of RSV 
transcription and/or replication, likely dependent on 
changes in intracellular Na+ and K+ 

NA [82]

Digoxin Suppresses PKM2 
Promoted HIF-1α 
Transactivation in Steatohep-
atitis

2018 Binding of PKM2 by digoxin downregulated HIF-1α 
transactivation to decrease sterile inflammation in the liver. 
Digoxin suppressed ROS production both in vivo and in vitro 
from hepatocytes and immune cells

Reduction in hepatic 
damage, steatosis, and 
inflammation induced by 
endotoxin, high fat diet, or 
alcohol

[27]

Digoxin improves steatohep-
atitis with differential 
involvement of liver cell 
subsets in mice through 
inhibition of PKM2 
transactivation

2019 Digoxin downregulated PKM2-PKM2-HIF-1α axis and 
attenuated inflammasome activity in macrophages and 
hepatic oxidative stress response

Reduction of high fat diet-
induced hepatic damage, 
steatosis, and liver inflam-
mation 

[28]

Antiviral activity of digoxin 
and ouabain against SARS-
CoV-2 infection and its 
implication for COVID-19

2020 Inhibition of viral mRNA expression, copy number, and 
viral protein expression at the post entry stage of the viral 
life cycle

NA [81]

Classical Drug Digitoxin 
Inhibits Influenza Cytokine 
Storm, With Implications for 
COVID-19 therapy

2020 Suppression of levels of the cytokines TNF-α, GRO/KC, 
MIP2, MCP1, and IFN-γ during cytokine storm 

No difference in density of 
immune cells in rat lung 
sections, comparing 
digitoxin-treated and control 
lungs 

[84]

Inhibition of the IL-17A axis in 
adipocytes suppresses diet-
induced obesity and metabolic 

Prevention of high fat diet-
induced hepatic lipid 
accumulation, reduced 

2021 Digoxin inhibition of RORγT activity suppressed the IL-17A 
axis, thus preventing diet-induced obesity, metabolic 
alterations, and liver injury

[59]
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disorders in mice fibrosis, increased browning 
of adipose tissue

TFEB: Transcription factor EB; PKM2: Pyruvate kinase M2; IL-17A: Interleukin-17A; MAPK: Mitogen-activated protein kinase; CG: Cardiac glycoside; NF-
κB: Nuclear factor-kappaB; CLK: Cdc2-like kinases; SR: Serine-arginine; EGFR: Epidermal growth factor receptor; MEK: MAP kinase kinase; RSV: 
Respiratory syncytial virus; HIF-1α: Hypoxia-inducible factor 1-alpha; SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2; COVID-19: 
Coronavirus disease 2019; TNF-α: Tumor necrosis factor-alpha; GRO/KC: Growth-regulated oncogene/keratinocyte chemoattractant; MIP2: Macrophage 
inflammatory protein 2; MCP1: Monocyte chemoattractant protein-1; IFNγ: Interferon-gamma; RORγT: Retinoid-related orphan receptor-gamma; NA: No 
application; ROS: Reactive oxygen species; STAT3: Signal transducer and activator of transcription 3.

Figure 1 Digoxin reduces steatohepatitis by suppressing pyruvate kinase M2 dependent hypoxia-inducible factor 1-alpha activity and 
inhibiting reactive oxygen species production[27,28]. Digoxin structure derived from MolView. HIF-1α: Hypoxia-inducible factor 1-alpha; PKM2: Pyruvate 
kinase M2; ROS: Reactive oxygen species.

activity was provided by Huh et al[46] in 2011 when they showed that digoxin inhibits the transcrip-
tional activity of RORγT[46]. Inhibition of RORγT by digoxin or its non-toxic derivatives selectively 
inhibits Th17 differentiation, delaying the onset and severity of autoimmune reactions in murine models
[46]. More recently, Karaś et al[47,48] reported opposing findings with CGs activating RORγ in HepG2 
cells and RORγT in Th17 lymphocytes[47,48] when these compounds were used at much lower doses 
than originally used by Huh et al[46]. Thus, it appears that digoxin-mediated inhibition vs activation of 
RORγT may be dependent of the dose utilized[49].

RORγ directly regulates glucose-6 phosphatase (G6Pase) and a number of genes involved in glucose 
regulation and insulin sensitivity. G6Pase facilitates glucose-6 phosphate hydrolysis into inorganic 
phosphate and free glucose[50-52], with suppression of hepatic G6Pase resulting in accumulation of 
glucose-6 phosphate and metabolic reprogramming involving increased carbohydrate response element 
binding protein activity and gene expression that lead to hepatic steatosis[53-56]. Digoxin-mediated 
activation of RORγ upregulates G6Pase, resulting in improved glucose homeostasis and decreased 
NAFLD phenotype.

In many respects, the pathophysiological changes seen in alcohol-associated steatohepatitis (ASH) are 
similar to those seen in NASH, including increased oxidative stress and sterile inflammation manifested 
as steatohepatitis[57]. The ability of digoxin to improve ASH was tested in a well-accepted Lieber-
Decarli ethanol liquid diet (5% ethanol) plus a single ethanol binge mouse model during chronic feeding
[58]. Digoxin (0.2-1.0 mg/kg) dose-dependently improved hepatic steatosis, neutrophil infiltration, and 
hepatocellular damage in ASH. The effect of digoxin was confirmed in human liver tissues, which 
showed a greater degree of upregulation of HIF-1α and HIF-1α-dependent genes in severe ASH 
compared to mild disease. It was concluded that long-term treatment with digoxin reduced chronic liver 
damage, inflammation, and steatosis in experimental models of NASH and ASH without affecting 
cardiac chronotropic and inotropy.

Digoxin is notable for producing cardiotoxicity at concentrations that are close to its effective concen-
tration. Remarkably, however, digoxin did not have any cardiac or other toxicity at lower doses. These 
studies identified an entirely novel application of this old drug at doses significantly below the dose 
required for the cardiac effect. Digoxin showed the potential to therapeutically inhibit liver injury in 
both ASH and NASH through the regulation of PKM2-HIF-1α pathway activation with the involvement 
of multiple cell types. Because of the large clinical experience with oral digoxin, this may have 
significant clinical applicability in human ASH and NASH. Digoxin is currently being investigated in a 
phase II pilot study in patients with ASH (NCT05014087) (Table 2).

DIGOXIN IN OBESITY AND METABOLIC DISORDERS
Overnutrition, inadequate physical activity, genetic and epigenetic factors, and other risk factors can 
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Table 2 Ongoing clinical trials of digoxin in non-cardiac diseases

Study title Medication doses Current 
status

Estimated 
study 
completion 
date

Clinical 
Trials.gov 
number

Number of 
participants

Country of 
trial

Phase 1

Inhibition of Sterile Inflam-
mation by Digoxin

Digoxin 3.00 mcg/Kg/day vs Digoxin 0.15 
mcg/Kg/day vs placebo

Recruiting July 2023 NCT03559868 45 United 
States

Phase IB Trial of Metformin, 
Digoxin, Simvastatin in 
Subjects With Advanced 
Pancreatic Cancer and 
Other Advanced Solid 
Tumors

Metformin 850 mg po/day, Simvastatin 5 
mg po/day, Digoxin 0.0625 mg po/day vs 
Metformin 850 mg po/day then 1700 mg 
po/day, Simvastatin 20 mg po/day, Digoxin 
0.25 mg po/day vs Metformin 850 mg 
po/day then 1700 mg po/day Simvastatin 
40 mg po/day, Digoxin 0.25 mg po/day 
then 0.375 mg po/day 

Recruiting December 2023 NCT03889795 15 United 
States

Effect of Digoxin on 
Clusters of Circulating 
Tumor Cells in Breast 
Cancer Patients

Digoxin 0.125 mg or 0.250 mg digoxin based 
on renal function and target serum digoxin 
concentration

Recruiting June 2022 NCT03928210 9 Switzerland

Phase 2

Digoxin In Treatment of 
Alcohol Associated 
Hepatitis

Digoxin titration to goal 0.5 and 1.1 ng/mL 
vs no digoxin

Recruiting August 2024 NCT05014087 60 United 
States

Evaluating the Effect of 
Digoxin and Ursodeoxy-
cholic Acid in Patients With 
Rheumatoid Arthritis

Digoxin 0.25 mg + DMARDS vs UCDA 500 
mg + DMARDS vs placebo + DMARDS 

Recruiting July 2022 NCT04834557 90 Egypt

FOLFIRINOX With Digoxin 
in Patients With Resectable 
Pancreatic Cancer

FOLFIRINOX + digoxin 0.125 or 0.250 mg 
for target digoxin level 0.8 to 1.2 ng/mL 

Recruiting February 2025 NCT04141995 20 United 
States

Topical Ionic Contra-Viral 
Therapy in Actinic Keratosis

Digoxin topical gel 0.125% vs furosemide 
topical gel 0.125% vs digoxin and 
furosemide gel 0.125% vs vehicle gel

Unknown September 
2019

NCT03684772 32 Netherlands

Phase II Multicentric Study 
of Digoxin Per os in Classic 
or Endemic Kaposi’s 
Sarcoma (KADIG 01)

Digoxin goal 0.6 to 1.2 ng/mL for age < 75 
yr; Digoxin goal 0.5-0.8 ng/mL for age > 75 
yr

Unknown September 
2019

NCT02212639 17 France

DMARDS: Disease-modifying antirheumatic drug; FOLFIRINOX: FOLinic acid, 5-Fluorouracil, IRINotecan and Oxaliplatin; UCDA: Ursodeoxycholic acid.

predispose individuals to metabolic syndrome[59] with associated comorbidities[60]. Inhibition of 
RORγT-mediated IL-17A production by digoxin abolishes the IL-17A axis[46], suppressing diet-induced 
obesity and leading to increased brown adipose tissue[61]. Brown adipose tissue is an essential site for 
thermogenesis and critical for maintaining body temperature regulated by mitochondria uncoupling 
protein-1[61]. The metabolic effects observed with digoxin can also be achieved by the ubiquitous 
deletion of IL-17 receptor A. Modulation of IL-17A signaling may thus serve as a strategy to inhibit 
obesity and related complications[59].

Metabolic disorders, including obesity, liver steatosis, and aging, may be improved by caloric 
restriction or starvation, which activates the transcription factor EB (TFEB) that regulates lipid 
metabolism and the biogenesis of lysosomes. Agents that activate TFEB can confer metabolic changes 
resembling starvation and thus have utility in the treatment of these metabolic disorders. Recently 
through a nanotechnology-enabled high-throughput screening of various small molecules, digoxin was 
one of three small molecules identified that activate TFEB[62]. This activation occurs through distinct 
calcium-dependent mechanisms and by promoting autophagolysosomal activity, an adaptive catabolic 
process that generates nutrients and energy during starvation[62]. Calcium is stored in cells in three 
different compartments, including lysosomes, mitochondria, and the endoplasmic reticulum[63], and 
TFEB activators can differentially affect calcium stores in these compartments. Digoxin induces 
lysosomal calcium release through mucolipin 1, leading to activation of TFEB with resultant anti-obesity 
effects[59].

CGs also appear to hold promise for heritable metabolic disorders. Familial hypercholesterolemia, 
characterized by elevated serum low-density lipoprotein-cholesterol, is a genetic disorder caused 
primarily by mutations in the low-density lipoprotein receptor. Patients with compound heterozygous 
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or homozygous mutations in the low-density lipoprotein receptor have low-density lipoprotein-
cholesterol levels > 500 mg/dL, leading to the formation of xanthomas, severe cardiovascular disease, 
and early death[64]. Hepatocyte-like cells derived from induced pluripotent stem cells from patients 
with homozygous familial hypercholesterolemia have been used to screen for potential pharmacological 
therapies[65]. CGs reduced apoB, the crucial protein component of very-low-density lipoprotein and 
low-density lipoprotein particles, in human hepatocytes as well as in the serum of mice with humanized 
livers. The mechanism through which CG-mediated reduction of apoB and improvement of hypercho-
lesterolemia occurred did not appear to involve the expression of the APOB gene or the synthesis of 
apoB protein but rather the enhancement of proteolytic turnover of the apoB protein[65].

DIGOXIN IN AUTOIMMUNE AND INFLAMMATORY CONDITIONS
Th17 cells are an independent subset of T helper cells that produce IL-17 and are involved in the 
induction of inflammation and autoimmune disease. These cells have a unique transcription factor, 
RORγT[41], and are activated by IL-6 and transforming growth factor-beta 1. Because Th17 cells are 
inducers of inflammation and autoimmune disease, specific targeting of these cells can reduce inflam-
mation. Digoxin downregulates Th17 differentiation through suppression of RORγT transcriptional 
activity without effect on the differentiation of T cell lineages[66].

Th17 and T1 play a crucial role in rheumatoid arthritis, a systemic autoimmune inflammatory 
disorder characterized by hyperplasia of the synovial membrane along with persistent inflammation of 
joints. In one study assessing the effect of digoxin on the peripheral blood mononuclear cells of 30 
rheumatoid arthritis patients and 10 healthy controls, there was a significant reduction in the population 
of Th17 cells through suppression of the transcription factor RORγT and a decrease in the levels of IL-1β
, IL-6, IL-17, and IL-23 cytokines[67]. Digoxin treatment did not modify the expression of transforming 
growth factor-beta 1 and interferon-gamma (IFN-γ) at the level of mRNA and protein.

Psoriasis is another chronic inflammatory disease involving IL-17-producing Th17 cells[68]. The toll-
like receptor 7 agonist imiquimod creates psoriasis-like lesions on the ear or back skin of mice through 
an IL-17-dependent mechanism. Intraperitoneal digoxin differentially affects these skin lesions, 
reducing those on the ear and exacerbating those on the back[68]. This differential effect of digoxin may 
relate to differences in target tissues, the imiquimod application dose, and digoxin bioavailability in 
different sites.

Digoxin might also be effective for managing pain[69]. Digoxin is a potent inhibitor of soluble 
epoxide hydrolase enzyme, which breaks down endogenous lipid mediators like epoxyeicosatrienoic 
acids that are known to have cardiovascular effects including vasodilation, anti-migratory actions on 
vascular smooth muscle cells, and anti-inflammatory actions[70]. Digoxin has antipyretic activity in rats 
and inhibits neutrophil infiltration and alveolar septal thickening in lung tissue[69]. Administration of 
digoxin at a low dose can reduce pain and allodynia and decrease edema and abdominal contraction
[69].

DIGOXIN IN CANCER
In a study investigating potential new drugs for prostate cancer, digoxin was found to be highly potent 
in inhibiting prostate cancer cell growth in vitro[71]. Regular digoxin use, especially over 10 years, was 
found to be associated with a 25% lower risk of prostate cancer[71]. Although the methods through 
which digoxin reduced prostate cancer risk are unclear, one potential mechanism involves the increased 
influx of intracellular calcium into prostate cancer cells triggering apoptosis through the cyclin-
dependent kinase 5/p25 pathway. Activated Src/mitogen-activated protein kinase (MAPK) signaling 
results in inhibition of p53 synthesis, suggesting that CGs may have utility in the treatment of cancers 
with gain of function P53 mutations[72]. Other mechanisms proposed for the anticancer effects of 
digoxin include inhibition of Na+/K+-ATPase and topoisomerase[73], alterations of calcium signaling
[74], and inhibition of HIF-1α synthesis[26]. The DIG-HIF-1 pharmacodynamic trial, which sought to test 
whether digoxin can reduce the expression of HIF-1α protein in surgically resected breast cancer tissue, 
was terminated early due to difficulty with accrual (NCT01763931). We hope that there will be 
subsequent studies that will shed light on this important question.

When given together with the anti-neoplastic drug adriamycin, digoxin enhanced anti-cancer effects 
in vitro on non-small cell lung cancer by inhibiting both DNA double-strand break and single-strand 
break repair and reducing the cardiotoxicity of adriamycin[72]. Cotreatment with digoxin blocked the 
adriamycin-induced reduction in cardiomyocyte size, suggesting that digoxin can ameliorate the 
reduction of heart weight/body weight ratio by adriamycin.

Digoxin suppresses lung cancer progression by inhibiting Src activation and related pathways[75]. In 
digoxin-treated cells, the phosphorylation of Src and its related proteins was inhibited, suppressing lung 
cancer cell proliferation, migration, and invasion through inhibition of phosphatidylinositol 3-kinase, 
focal adhesion kinase, stress-activated protein kinases/Jun amino-terminal kinases, paxillin, and 
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p130Cas activities. Digoxin also reduces mRNA expression of Src and related protein kinases[75]. 
Digoxin was also found to have effects on glioblastoma, a highly aggressive and lethal brain tumor, by 
enhancing apoptosis and reducing the levels of the anti-apoptotic protein through its proteasomal 
degradation[76].

A screen of 200000 small molecules for inhibitory effect against primary human melanoma cells 
showed that several CGs, including digoxin, demonstrated toxicity against melanoma cells vs normal 
human melanocytes[77]. This effect involves inhibition of the ATP1A1 Na+/K+ pump that is crucial for 
the maintenance of ion gradients across the plasma membrane for substrate transport. Although CGs 
alone were insufficient to cause melanoma regression in patient-derived xenografts, they showed 
synergistic effects with inhibitors of MAPK pathway to mediate regression in both BRAF wildtype and 
BRAF mutant melanomas[77]. Polarization of CD4+ T cells into the Th17 subtype in a transgenic mouse 
model resulted in destruction of advanced B16 murine melanoma through IFN-γ dependent 
mechanisms[78]. A recent phase 1B clinical trial of digoxin and trametinib, a MAP kinase kinase 
inhibitor, in patients with BRAF wildtype metastatic melanoma who were refractory or intolerant to 
immune checkpoint blockade showed that 13 out of 20 patients (65%) achieved disease control 
(NCT28278423)[79]. The results of this early study are encouraging and need to be expanded.

Digoxin is currently being studied in a phase 1B combination drug trial in pancreatic cancer and other 
advanced solid tumors (NCT03889795) (Table 2). It is also being studied for feasibility and safety when 
combined with folinic acid, 5-fluorouracil, irinotecan, and oxaliplatin in patients with resectable 
pancreatic cancer (NCT04141995).

DIGOXIN IN VIRAL INFECTION
Digoxin inhibits coronaviruses and other viruses[80]. It inhibits the cytokine storm generated by severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and blocks viral cell penetration and 
infectivity[81]. After single-dose digoxin treatment, SARS-CoV-2 titers were the same as achieved with 
treatment by remdesivir, with > 99% viral inhibition compared to controls or patients on chloroquine at 
48 h post-infection[81]. In other cases, digoxin suppressed viral mRNA expression (99%) more 
effectively than remdesivir (> 60%) or chloroquine (> 30%)[82]. Host cell entry by Middle East 
respiratory syndrome and SARS-CoV is inhibited through the silencing or inhibition of the Na, K-
ATPase α1-subunit by low doses of CG. This disruption of cell entry occurs at an early stage by 
interfering with endocytosis through a non-elucidated pathway[80,83]. In the post-entry stage, digoxin 
significantly inhibits viral mRNA expression, copy number, and viral protein expression at half-
maximal inhibitory concentration of 0.043 nM[81].

In rat models infected with influenza virus, administration of digoxin analog digitoxin suppressed 
cytokine levels, including tumor necrosis factor-alpha, growth-regulated oncogene/keratinocyte 
chemoattractant, macrophage inflammatory protein 2, monocyte chemoattractant protein-1, and IFN-γ 
in the rat lung[84]. The inhibition of Na-K-ATPase by CGs decreased intracellular potassium, inhibiting 
the host cell translational machinery and decreasing influenza virus replication[80].

Digoxin and other CGs also inhibit replication of cytomegalovirus, a herpesvirus pathologic agent of 
important human diseases, at nanomolar concentrations, with an additive effect when combined with 
antiviral drugs for cytomegalovirus such as ganciclovir[80]. CGs reduced the levels of viral proteins and 
cellular nuclear factor-kappaB, with the activity of CGs correlating with the expression of hERG, a 
potassium channel gene[85].

Human papillomaviruses (HPVs) rely on potassium ion influx for replication[86]. Cutaneous warts 
(including plantar warts or common warts) are typically caused by HPV 1, 2, 27, and 57[87,88], while 
genital warts are typically caused by HPV 6 and 11. CGs such as digoxin and the loop diuretic 
furosemide interact with the cell-membrane ion cotransporters Na+/K+-ATPase and Na-K-Cl and inhibit 
potassium flux thus inhibiting HPV replication[86]. The inhibitory effect on DNA replication appears 
most potent when digoxin and furosemide are combined; the term ionic contra-viral therapy (ICVT) 
describes the topical application of these drugs in combination. A phase 1/2 open-label study of ICVT 
was safe and efficacious in 12 healthy patients with common warts[89]. A follow-up randomized, 
double-blind, placebo-controlled phase 2A proof-of-concept study assessed the efficacy, safety, and 
tolerability of ICVT in adults with cutaneous warts. Eighty adult patients were randomized to digoxin 
or furosemide alone, ICVT or placebo (NCT02333643)[87]. Reduction in HPV load and wart size was 
achieved in all active treatment groups but not in placebo, with a statistically significant reduction in 
wart diameter in those treated with ICVT vs placebo. On the contrary, a phase 2 study of ICVT for HPV-
related genital lesions was terminated early due to a lack of effect on interim analysis (NCT03334240). 
Overall, digoxin appears promising for the treatment of HPV-induced lesions, especially the cutaneous 
subtype, and warrants further investigation in large multicenter studies.

A cell-based screen performed on cells transfected with proviral DNA constructs uncovered a 
number of compounds that inhibit HIV-1 virion production, including numerous CGs[90]. Digoxin 
selectively impaired HIV-1 replication at two levels: (1) Through global alterations in the efficiency of 
HIV-1 RNA processing; and (2) By blocking the export of incompletely spliced viral RNAs to the 
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cytoplasm[91]. The cardenolides and the bufadienolides, both subclasses of CGs, inhibited the late 
stages of the HIV-1 replication cycle. Although both are C(23) steroids, they differ in that cardenolides 
contain a five-membered lactone ring at C-17, whereas bufadienolides contain a six-membered lactone 
ring. Members of both classes of CGs inhibited late stages of HIV-1 production, and changes in structure 
resulted in changes in inhibition. Digoxin (and potentially the CG family of drugs) represents a novel 
HIV-1 inhibitor with the potential for rapid development into antiretroviral therapy. The dose-limiting 
toxicities observed with CGs in humans are typically related to toxic increases in cardiac contractility 
driven by increases in intracellular calcium. As the mechanism of CG inhibition of HIV-1 appears to be 
independent of such calcium increases, it is possible that structural modification of the CGs could avoid 
cardiac toxicity while maintaining HIV-1 inhibition.

DIGOXIN IN NON-CARDIAC GENETIC DISORDERS
CGs or their derivatives, including digoxin, also appear promising for treating certain genetic diseases, 
such as cystic fibrosis and Duchenne’s muscular dystrophy, wherein truncated protein products 
encoded by the corresponding nonsense mRNAs are fully or partially functional[92,93]. The nonsense-
mediated mRNA decay (NMD) pathway selectively eliminates aberrant transcripts containing 
premature translation termination codons and regulates the levels of a number of physiological 
mRNAs. NMD modulates the clinical outcome of a variety of human diseases, including cancer and 
several genetic disorders. Using a dual-color bioluminescence-based NMD reporter system, Nickless et 
al[94] performed a high-throughput screen to identify drug candidates that can alter NMD activity in 
human cells[94]. The effects of seven of the inhibitor hits were found, and each validated compound 
inhibited NMD in a dose-dependent manner. Notably, the top five verified hits, including digitoxin, 
digoxin, lanatoside C, proscillaridin, and ouabain, are all CGs[95]. It should be noted that the concen-
trations of CGs used in this study to achieve more complete NMD inhibition without causing significant 
cellular toxicity (for example, 500 nM for digoxin and 175 nM for ouabain) are much higher than 
standard clinical doses used for the treatment of cardiac failure. Thus, acute use of these drugs at the 
experimental working concentrations cannot directly translate to the clinic owing to in vivo toxic effects. 
However, the benefits of partial NMD inhibition with chronic treatment at clinically relevant doses may 
potentially be efficacious, but this will require further clinical pharmacology studies.

CONCLUSION
Until now, most of our knowledge and experience with digoxin pertains to its use in the cardiac field. 
However, in the past decade, digoxin has emerged as a potential pharmacologic agent in the 
management of several conditions, including steatohepatitis in the context of nonalcohol and alcohol-
associated fatty liver disease, obesity and other metabolic disorders, autoimmune conditions, 
malignancy, and viral infection, among others. Clinical trials on the repurposing of digoxin for 
therapeutic use in a variety of non-cardiac conditions are still in their early stages but appear promising.

At relatively high concentrations (hundreds of nM), digoxin and other CGs inhibit the Na-K ATPase 
pump, leading to accumulation of sodium ions in the cytosol that drives an influx of calcium into the 
heart, increasing contractility[96]. At lower doses (picomolar to low nanomolar), digoxin induces the 
Na-K ATPase to act as a receptor that can modulate a variety of pathways[5,96], including the Src/
MAPK pathway, which regulates a number of downstream signaling pathways. Also at high doses, 
digoxin binding to the ligand-binding domain of the NR RORγT inhibits its transcriptional activity, 
leading to inhibition of Th17 activity and IL-17 release[59] and suppressing nuclear factor-kappaB 
activity[85], altogether reducing the inflammatory response. At lower doses, digoxin activates RORγT 
signaling, leading to induction of several Th17-specific genes, suggesting a potential role of digoxin in 
adoptive cell therapy[14,47,48].

Several questions remain to be clarified in the quest towards repurposing of digoxin including: the 
structure-activity relationships that direct its molecular targeting in specific disease settings; whether 
dosing/concentration alone determines its activity as an inhibitor vs activator or whether other factors 
affect its action; and the ideal potency that can be utilized for pharmacologic intervention in a particular 
tissue while optimizing its safety profile. Indeed, the decline of digoxin in the cardiac arena is largely 
attributable to its narrow therapeutic index and potential toxicity, thus it is very exciting that recent 
studies show potent biological activity of much smaller doses of digoxin than used historically in the 
clinical setting. Digoxin is commercially available as a relatively cheap generic drug, thus further 
elucidation of its biological effects and mechanisms of action especially at low non-toxic doses will 
facilitate its rapid therapeutic repurposing.
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