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Abstract
The biliary tract has been considered for several decades a passive system just 
leading the hepatic bile to the intestine. Nowadays several researches 
demonstrated an important role of biliary epithelia (i.e. cholangiocytes) in bile 
formation. The study of biliary processes therefore maintains a continuous 
interest since the possible important implications regarding chronic cholestatic 
human diseases, such as primary biliary cholangitis or primary sclerosing 
cholangitis. Bile acids (BAs), produced by the liver, are the most represented 
organic molecules in bile. The physiologic importance of BAs was initially 
attributed to their behavior as natural detergents but several studies now 
demonstrate they are also important signaling molecules. In this minireview the 
effect of BAs on the biliary epithelia are reported focusing in particular on 
secondary (deriving by bacterial manipulation of primary molecules) ones. This 
class of BAs is demonstrated to have relevant biological effects, ranging from toxic 
to therapeutic ones. In this family ursodeoxycholic and lithocholic acid present the 
most interesting features. The molecular mechanisms linking ursodeoxycholic 
acid to its beneficial effects on the biliary tract are discussed in details as well as 
data on the processes leading to lithocholic damage. These findings suggest that 
expansion of research in the field of BAs/cholangiocytes interaction may increase 
our understanding of cholestatic diseases and should be helpful in designing 
more effective therapies for biliary disorders.

Key Words: Cholangiocytes; Biliary secretion; Cholestasis; Bile acids; Secondary bile 
acids; Ursodeoxycholic acid; Lithocholic acid
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Core Tip: The biliary epithelia present important physiologic activities that are of interest with regard to 
chronic cholestatic liver diseases. Secondary bile acids (BAs) are derived by bacterial manipulation of the 
primary BAs produced by the liver. This review summarizes the most important recent findings with 
regard to secondary BAs interaction with biliary epithelia.

Citation: Lenci I, Milana M, Signorello A, Grassi G, Baiocchi L. Secondary bile acids and the biliary epithelia: The 
good and the bad. World J Gastroenterol 2023; 29(2): 357-366
URL: https://www.wjgnet.com/1007-9327/full/v29/i2/357.htm
DOI: https://dx.doi.org/10.3748/wjg.v29.i2.357

INTRODUCTION
The biliary system is composed of a delicate structure of anastomosing ducts, leading the bile from the 
liver toward the intestine[1]. While for several years this anatomical apparatus was considered just as an 
inert route for bile transport, recently several studies have demonstrated that important qualitative/ 
quantitative bile changes occur within the biliary tract. The isolation and characterization of the biliary 
epithelia (composed of bile duct cells or cholangiocytes) has deepened our understanding of several 
important molecular process involving the biliary tree, also shedding some light on the mechanisms 
leading to chronic cholestatic liver diseases.

Bile acids (BAs) are the main organic molecules secreted in bile[2]. Their physiological importance, 
which in the beginning was identified only with regard to the physicochemical processes leading to 
micelle formation[3], nowadays has been expanded by the evidence that BAs are also essential signaling 
molecules[4]. In this minireview, the most important findings involving secondary BAs and biliary 
epithelia will be reported together with the possible implications of these mechanisms in human liver 
diseases.

SECONDARY BAS
BAs are synthesized by the liver starting from cholesterol and are the most represented lipidic 
component in bile[5]. Taurine or glycine conjugation, occurring after synthesis, confers increased water 
solubility to these molecules in bile. BAs are traditionally classified as primary (produced by the liver) 
or secondary (derived by primary BAs after bacterial dehydroxylation in the intestine)[6]. In humans, 
the primary BAs are cholic (CA) and chenodeoxycholic (CDCA) acid, while the most represented 
secondary ones are deoxycholic (DCA) and lithocholic (LCA) acid. The removal of a hydroxyl group (C-
7 position) in general determines reduced water solubility and increased detergency in comparison with 
primary precursors. The hydrophilic or hydrophobic character of a specific BA has been put in relation 
with its potential cytotoxicity and damaging effects[7]. In this perspective, secondary BAs are generally 
regarded as possibly damaging molecules when they reach adequate concentrations since their 
detergent/destabilizing effect on cell membranes. Being the bile a mixture of different (primary and 
secondary) BAs, the concept of hydrophilic/hydrophobic balance of the bile (and so the net concen-
tration of secondary BAs) has been related with possible liver injury in some conditions[8]. The most 
hydrophobic human BA is the monohydrate LCA. Sulfation of this molecule by the liver greatly reduces 
its intestinal absorption (also enhancing its hydrophilicity and urine elimination) and the consequent 
damage induced by LCA enterohepatic recirculation[9]. It in fact represents less than 5% of total BAs in 
human bile[6]. The number of hydroxyl groups, however, is not the only determinant of the specific 
hydrophilic/hydrophobic character of a specific BA. In fact, another secondary BA, ursodeoxycholic 
acid (UDCA), despite having an equal number of OH groups (two) in comparison with CDCA and one 
less than CA, is more hydrophilic in comparison with the latter molecules. This physico-chemical 
characteristic is related to the fact that, differently from CDCA (3α, 7α), in UDCA, the two hydroxyl 
groups are not on the same plane (3α, 7β). See Table 1 for a quick reference on hydroxyl group number 
and position, together with some other features, of the principal BAs found in human bile. On Figure 1 
the approximate amount of each individual BA in human bile is reported.

BILIARY EPITHELIA
Together with hepatocytes, cholangiocytes constitute the liver epithelial compartment. These latter cells, 
lining the intrahepatic and extrahepatic biliary ducts, despite representing less than 10% of liver mass, 
are able to support nearly 50% of bile volume under stimulation[10]. They in fact contribute almost 

https://www.wjgnet.com/1007-9327/full/v29/i2/357.htm
https://dx.doi.org/10.3748/wjg.v29.i2.357
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Table 1 Some physico-chemical features of the most relevant primary and secondary bile acids in human bile

Hydroxil groups 
number and position

Solubility in water 
(protonated form, µM)1

Critical micellar concentration 
(sodium salt, mM)1

Hydrophobicity index 
(taurine conjugated)2

Primary bile acids

Cholic acid 3 (3, 7, 12) 273 13 0

Chenodeoxycholic 
acid

2 (3, 7) 27 9 0.46

Secondary bile acids

Deoxycholic acid 2 (3, 12) 28 10 0.59

Lithocholic acid 1 (3) 0.05 0.9 1

Ursodeoxycolic acid 2 (3, 7) 0.9 19 -0.47

1Values assessed in water as reported by Hofmann et al[44].
2Cholic acid and Lithocholic acid were assumed to have (by definition) a value of 0 and 1 respectively[8].

Figure 1 The relative amount of individual bile acids in human bile is depicted. For each bile acid the extent of conjugation with glicine vs taurine is 
approximately 3 to 1.

exclusively to the so-called BA-independent bile flow. Cholangiocytes are heterogeneous in size and 
function; the larger ones represent the physiologically functional compartment, while smaller cells 
(harboring small branches) may replace large ones when the latter are injured[11]. The most studied 
mechanism of bile duct secretion concerns the interaction between secretin (Sec) and a specific Sec 
receptor (SR) expressed by cholangiocytes only within the liver. The subsequent downstream molecular 
mechanisms are characterized by increased intracellular cAMP in bile duct cells, followed by PKC 
phosphorylation, extrusion of Cl- by the cystic fibrosis transmembrane regulator and finally its 
reabsorption and exchange with bicarbonate operated by the Cl-/HCO3

- exchanger (AE2)[12]. With this 
process, a bicarbonate-enriched choleresis is obtained. See Figure 2 for a schematic representation of this 
mechanism. However, several hormones and neuropeptides (such as somatostatin, histamine, 
melatonin, gastrin and others) may regulate bile duct cell activity, as these cells have been demonstrated 
to express the corresponding receptors[13]. BA receptors and transporters are also present on cholan-
giocytes. They are responsible for important physiological mechanisms.

BAS/BILIARY EPITHELIA INTERACTIONS
The biliary epithelium is constantly exposed to significant concentrations (mM) of BAs. This strict 
connection is at the basis of important processes under both normal and pathological conditions. As 
previously stated, BAs are mainly present in bile as glycine or taurine conjugates; however, more than 
30 years ago, the possibility that unconjugated BAs may cross the biliary epithelium and recirculate in 
the liver (the so-called chole-hepatic shunt) was hypothesized, thereby inducing increased choleresis 
with multiple passages[14]. Later, uptake of BAs by the biliary epithelium was demonstrated by the 
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Figure 2 A step by step representation of secretin-induced biliary secretion is depicted. 1: Secretin (Sec) bind to specific Sec receptor on 
cholangiocytes; 2 and 3: Increased intracellular levels of cAMP stimulate formation of p-PKA; 4: Cystic fibrosis transmembrane regulator is opened determining Cl- 
efflux; 5: chloride-bicarbonate exchanger (AE2) favors reuptake of Cl- and releases HCO3- (osmotically recalling water) in the canalicular space. CFTR: Cystic fibrosis 
transmembrane regulator; Sec: Secretin; SR: Secretin receptor.

identification of the apical sodium-dependent BA transporter (ASBT) on cholangiocytes[15]. ASBT in the 
same study was demonstrated to be expressed only by cholangiocytes within the liver and to prompt 
unidirectional BA transport from the apical to the basolateral cellular domain. ASBT is also expressed in 
the small intestine, actively reabsorbing BAs and having a major role in maintaining the appropriate 
entero-hepatic recirculation of these molecules. Gene disruption of this transporter, in fact, nearly 
completely abolished intestinal recovery of BAs[16], even if a reduced proportion of unconjugated 
protonated BAs is absorbed by passive uptake in the colon[17]. ASBT function in cholangiocytes, 
however, remains less clear. In one study, it was demonstrated that Sec stimulation of cholangiocytes 
was able to increase choleresis, also promoting the transfer of ASBT from the plasma membrane to the 
apical domain and supporting the original concept of the BA cholehepatic shunt[18]. In another study, a 
relationship between biliary BAs concentration and ASBT expression was found, suggesting a possible 
regulatory mechanism of this transporter in maintaining an appropriate biliary BAs concentration[19]. 
At present, ASBT inhibitors are under study to reduce the BA pool in diseases possibly related to its 
pathological increment, such as primary biliary cholangitis (PBC)[20].

Further information regarding BAs and cholangiocyte molecular interactions came after the identi-
fication of the TGR5, specific for BAs[20]. While in the liver the FXR is mainly expressed in the 
hepatocyte nucleus where it regulates the transcripts for the synthesis of these molecules[21], on the 
other hand, TGR5 is prevalently found on the cholangiocyte apical domain[22]. Studies on TGR5(-/-) 
mice showed an effect on body weight, the immune system and glucose homeostasis[23]. With regard to 
the biliary tree, TGR5 seems to be an important regulator of cell proliferation with the opposite effect 
when it is activated in ciliated vs non-ciliated cells[24]. In fact, activation of TGR5 on cholangiocyte cilia 
depresses cAMP formation and proliferation while the same signal in non-ciliated cholangiocytes 
enhances intracellular cAMP and cell growth. The important role of TGR5 as a possible regulator of 
biliary mass suggests that this receptor is a possible target in human diseases characterized by 
uncontrolled cholangiocyte growth, such as cholangiocarcinoma[25] or polycystic liver disease[26]. 
More recently, other BA receptors, such as the S1PR2, have been identified on cholangiocytes[27]. These 
signals enhance biliary growth upon stimulation with taurocholic acid (TCA), employing an ERK1/2 
dependent mechanism. In conclusion, accumulating evidence demonstrates that the role of BAs in bile is 
not restricted to lipid dissolution. In fact, BAs are also important molecular signaling molecules.

SECONDARY BAS AND THE BILIARY EPITHELIA
As previously reported, secondary BAs originate from manipulation of the original molecules 
synthesized by the hepatocytes, by intestinal bacteria. However, within this family, molecules with 
opposite physicochemical and biological characteristics cohabit. The extremities of this class of organic 
compounds, in terms of heterogeneity, are represented by UDCA and LCA. At the same time, these two 
BAs seem particularly interesting and relevant with regard to human biliary diseases, as evidenced by 
several studies.
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UDCA (the good one) 
UDCA was first detected as primary BA in Chinese black bear bile, and later also identified in human 
bile as a secondary BA, in small amounts (≤ 3%)[28]. Interest in UDCA was first focused on its 
therapeutic potential for cholesterol gallstone dissolution[29,30]. However, its clinical efficacy for 
gallstone treatment is: (1) Limited to small (≤ 1 cm) non-calcified stones; and (2) affected by frequent 
recurrent disease when UDCA is withdrawn. On the other hand, early studies on gallstone dissolution, 
conducted in patients with concurrent chronic hepatitis, also demonstrated the capabilities of UDCA in 
improving liver function[31].

UDCA beneficial effects on biliary epithelia (general)
Some clinical studies specifically underscored the UDCA beneficial effects in diseases targeting biliary 
cells and causing an impaired biliary secretion (i.e. cholestasis), such as PBC[32]. UDCA (oral dose 13 to 
15 mg/kg/day) is in fact, nowadays, a first line treatment for this disease[33,34]. Several mechanisms 
seem responsible for the improved clinical picture when UDCA is employed in biliary cholestasis[35]. 
First, due to its intrinsic hydrophilicity, UDCA seems able to reduce the cytotoxicity/hydrophobicity of 
the total BA pool against bile duct cells. Second, increased biliary secretion is observed if UDCA 
enrichment occurs in bile. Finally, immune-modulatory and antiapoptotic effects have been 
demonstrated[32]. Moreover, also regarding PBC, impairment of AE2 and consequent inadequate 
formation of a delicate bicarbonate film in the canalicular biliary space (the so-called bicarbonate 
umbrella) has been suggested to facilitate biliary damage by protonated BAs. In this setting, UDCA 
seems to be able to reconstitute adequate bicarbonate secretion, thus mitigating PBC injury[36] and also 
reducing the endoplasmic reticulum stress and autophagy acting as a chaperone[37]. With regard to the 
biliary epithelium, experimental studies have elucidated some important mechanisms.

Molecular basis of UDCA beneficial effects 
In early research, conducted in the cholestatic model of the bile duct ligated (BDL) rat (a condition 
inducing a hyperplastic growth of the biliary tree), UDCA feeding was able to attenuate biliary mass 
proliferation[38]. A subsequent study using the same model (BDL) clarified that both pathologically 
enhanced proliferative and secretive processes of cholangiocytes were mitigated by UDCA, as 
demonstrated by reduced H3 histone, protein cellular nuclear antigen (PCNA) and SR gene expression, 
and decreased Sec-induced choleresis[39]. Decreased proliferation was not related to cholangiocyte 
apoptosis and was dependent (as was decreased secretion) on PKCα activation. Another molecular 
aspect characterizing the effects of UDCA was the decreased ASBT cholangiocyte expression leading to 
reduced intracellular BA influx. These findings were extended in a more complex model combining rat 
BDL and vagotomy. In fact, when vagotomy was performed in the BDL rat, the consequent lack of 
cholinergic stimuli impaired the hyperplastic cholangiocyte response to cholestasis and led to apoptosis 
in bile duct cells[40]. When UDCA was administered in this model, it was able to counterbalance bile 
duct cell loss and apoptosis by a PKCα/Ca2+ dependent mechanism[41].

UDCA effects in animal model of human biliary disease
Further information regarding UDCA and biliary epithelia came from the Mdr2(-/-) mice model. This 
mouse is not able to transport phospholipids in bile and develops a chronic cholestasis, resembling the 
human primary sclerosing cholangitis (PSC), with similar scars and strictures within the biliary tree[42]. 
In Mdr2(-/-) mice UDCA attenuated reactive cholangiocyte proliferation as well as inflammatory and 
fibrotic processes. These effects were in part related to the inhibition of mast cells, which are activated 
during experimental and human PSC[43].

LCA (the bad one) 
LCA is a monohydrate secondary BA that is known for its particular hydrophobicity, remaining water 
insoluble in its free form while it presents a very low critical micellar concentration (concentration at 
which micelles are spontaneously formed) in saline[44]. According to its physico-chemical properties, 
LCA has longer been known as a cholestatic and injurious agent in animal experiments[45,46] and, in 
parallel with this, increased levels of this BA have been found in human with chronic liver disease[47].

General mechanisms of LCA-induced cholestasis
Several mechanisms were identified at the basis of LCA-induced cholestasis such as: (1) Impairment of 
bile secretion (both BAs dependent and independent)[48]; (2) bile salt export pump translocation from 
apical membrane to cytosol with its consequent reduced activity[49]; (3) changes in apical membrane 
fluidity and tight junction permeability[50]; and (4) impairment of canalicular contraction[51].

LCA effects on biliary epithelia
With regard to biliary epithelia, a study on LCA feeding in Swiss albino mice evidenced interesting 
features[52]. After 4 d of a 1% LCA diet, destructive cholangitis characterized by stenosis of biliary 
ducts, solid crystal precipitation and bile infarcts was observed. Neutrophil infiltration surrounded the 
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Table 2 Main findings regarding secondary bile acids and biliary epithelia

Model Administration route Main results Main molecular, immunologic findings Ref.

Ursodeoxycholic acid

BDL rat Feeding (both the unconjugated 
and taurine-conjugated form)

Decreased biliary proliferation 
and secretion. No apoptosis

Decreased H3-histone. PCNA, SR and ASBT 
expression. No apoptosis. Increased PKC α 
expression

[38,
39]

BDL + vagotomy rat Feeding (both unconjugated and 
taurine-conjugated form)

Reversal of duct loss and 
apoptosis induced by vagotomy

PKCα/Ca2+ dependent mechanism [41]

Mdr2(-/-) mice Feeding Decreased proliferation, inflam-
mation and fibrosis

Inhibition of mast cells activity [43]

Lithocolic acid

Mouse Feeding Destructive cholangitis, bile duct 
stenosis, bilary infarcts 

Damage related to direct toxic effect and not 
to neutrophil infiltration 

[52,
53]

In vivo rat and isolated 
cholagiocytes

Feeding (cholic acid or 
Lithocholic acid both taurine 
conjugated)

Similar effect in increasing prolif-
eration and secretion

Effect restricted to large cholangiocytes [54,
55]

In vivo rat and isolated 
cholagiocytes

Feeding (cholic acid or 
Lithocholic acid both taurine 
conjugated)

Cholangiocytes proliferation Dependent by PKA-mediated ASBT 
expression

[56]

Deoxycholic acid

Human gallbladder cancer 
(specimens and cell lines)

In vitro exposure Increased concentration 
associated with inhibition of 
tumor growth

Reduced miR-92b-3p inhibits PI3K/AKT 
activity

[60]

ASBT: Apical sodium bile acids transporter; BDL: Bile duct ligated; PCNA: Protein cellular nuclear antigen; SR: Secretin receptor.

small biliary branches and periductal fibroblast activation with collagen deposition was reported. A 
subsequent study, conducted in the same experimental system, helped to clarify that LCA-related 
biliary damage was dependent on direct toxicity of this BA and not to the immune response since 
neutrophil inhibition did not significantly change the pathological picture[53]. With regard to secretive 
and proliferative cholangiocyte activities, in vitro experiments demonstrated that LCA and CA (taurine 
conjugated) had similar effects in promoting biliary growth and Sec-stimulated bile output[54]. These 
results were observed with the large cholangiocyte population, which is well-known as the main 
functional pool in the biliary tree. Similar results were later confirmed in in vivo experiments[55]. In fact, 
TCA or TLCA rat feeding (1% diet, 1-4 wk) both similarly increased biliary mass and enhanced cholan-
giocyte biliary secretion. Further experiments suggested that the TLCA stimulation of cholangiocytes 
function (similarly to TCA) was associated with increased ASBT activity and consequently enhanced 
intracellular (PKCα/Ca2+ dependent) BA trafficking[56]. This process, with regard to LCA, due to the 
changes in Ca2+ flux, was also related to impaired gap junction permeability and consequent cholestasis
[57].

Other secondary BAs
With regard to other secondary BAs that may play a role in human biliary physio-pathology, DCA is the 
only one possibly reaching significant concentrations (10%-35% of total BAs pool) in human bile[58]. 
DCA liver toxicity has been well-established since the early 1990s and, in a study on rat feeding, this 
was enhanced in comparison to LCA due to its increased intestinal reabsorption and bile enrichment
[59]. Despite this and concerning the biliary epithelia, one study has raised interest by showing the 
suppression of gallbladder cancer growth by DCA, possibly due to interference with miR-92b-3p[60]. 
This miR in fact would be responsible of the activation PI3K/AKT pathway that is enhanced in several 
tumors and also represents a target for anticancer treatment[61]. Several other secondary BAs may be 
found in different species[62]. For instance in rodents the main represented primary BA is β-muricholic 
acid (β-MCA; 3α, 6β, 7β)[63]. Bacterial manipulation of β-MCA may give origin to different secondary 
BAs including HDCA (3α, 6α)[64]. HDCA is reported as the strongest regulator of BA-sensitive ion 
channel (BASIC) that is normally expressed in brain, intestine and cholangiocytes only, within the liver
[65]. While the exact physiologic function of cholangiocyte BASIC has not been well established, 
evidences demonstrate enhanced activity of this channel, with increased trans-epithelial ion transport, 
after exposure to HDCA[66]. This suggests BASIC as a further possible regulator of biliary secretion. 
Table 2 summarizes the main findings regarding secondary human BAs and biliary epithelia.
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CONCLUSION
BAs are important organic molecules. For several decades, researchers have focused on their physico-
chemical characteristics, due to their reported detergent properties. From this perspective, the 
hydrophilic or hydrophobic character of a BA has been considered in the past as the main determinants 
of physiologic effect. This preliminary view is clearly challenged nowadays, with many studies 
demonstrating the important molecular signaling systems activated by BAs, not only in the hepatocytes 
but also in the biliary epithelium. Artificial manipulation of native BA molecules, moreover, has led to 
the discovery of new agents, such as obeticholic acid, that may be helpful for human therapy[67]. Given 
all the above, it is clear that the original classification of BAs as primary and secondary compounds only 
expresses aspects of their synthesis and not necessarily beneficial or negative physiologic effects. 
Similarly, the division of secondary BAs as good or bad ones (as reported in this review) is questionable, 
since this does not adequately recapitulate the multitude of effects (probably discovered just in part at 
the present stage) these molecules may have. In fact, UDCA (generally supposed as beneficial) has been 
demonstrated to be detrimental in experimental obstructive cholestasis as it can lead to bile infarcts and 
should not be administered in this clinical condition[68]. On the other hand, LCA has shown interesting 
curative properties and anti-tumoral and anti-inflammatory effects on intestinal environment, in some 
studies[69]. In conclusion, UDCA and LCA clearly represent the extremities of a field in which research 
may growth and a revision in our present beliefs regarding these secondary BAs remains therefore 
possible in the near future. With regard to normal human physiology and in practice, however, LCA 
accumulation is prevented by a detoxification system while UDCA is formed only in trace amounts. 
However, bile enrichment is possible when BAs are exogenously administered to manipulate the BAs 
pool for therapeutic purposes.
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