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Abstract
The gut microbiome plays an important role in the variation of pharmacologic 
response. This aspect is especially important in the era of precision medicine, 
where understanding how and to what extent the gut microbiome interacts with 
drugs and their actions will be key to individualizing therapy. The impact of the 
composition of the gut microbiome on the efficacy of newer cancer therapies such 
as immune checkpoint inhibitors and chimeric antigen receptor T-cell treatment 
has become an active area of research. Pancreatic adenocarcinoma (PAC) has a 
poor prognosis even in those with potentially resectable disease, and treatment 
options are very limited. Newer studies have concluded that there is a synergistic 
effect for immunotherapy in combination with cytotoxic drugs, in the treatment of 
PAC. A variety of commensal microbiota can affect the efficacy of conventional 
chemotherapy and immunotherapy by modulating the tumor microenvironment 
in the treatment of PAC. This review will provide newer insights on the impact 
that alterations made in the gut microbial system have in the development and 
treatment of PAC.

Key Words: Pancreatic cancer; Gut microbiome; Chemotherapy; Dysbiosis; Intratumoral 
microbiome; Gut flora
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Core Tip: Pancreatic cancer (PC) remains of on the most dismal in terms of prognosis. Treatment options are limited and 
even after complete surgical resection, the prognosis remains poor. The gut microbiome has been incriminated in the past for 
the development of certain cancers. Our review found that observation to be true as well for PC. Furthermore, we also found 
that it plays a role in efficacy and tolerance of certain regimens used to treat PC.

Citation: Bangolo AI, Trivedi C, Jani I, Pender S, Khalid H, Alqinai B, Intisar A, Randhawa K, Moore J, De Deugd N, Faisal S, 
Suresh SB, Gopani P, Nagesh VK, Proverbs-Singh T, Weissman S. Impact of gut microbiome in the development and treatment of 
pancreatic cancer: Newer insights. World J Gastroenterol 2023; 29(25): 3984-3998
URL: https://www.wjgnet.com/1007-9327/full/v29/i25/3984.htm
DOI: https://dx.doi.org/10.3748/wjg.v29.i25.3984

INTRODUCTION
Pancreatic cancer (PC) usually refers to ductal pancreatic adenocarcinoma (PAC) (including its subt-ypes), which 
represents 85 to 90 percent of all pancreatic neoplasms. PC ranks fourth among cancer related mortality in the United 
States, only behind lung, colorectal, and prostate cancers in males, and lung, breast, and colorectal cancers in females. 
Although the incidence of PC has been relatively stable over time, the increasing use of imaging techniques such as 
endoscopic ultrasound and helical (spiral) abdominal computed tomography (CT) scans has revealed an increasing 
number of incidentally found cases of PC[1,2].

PC can run in some families, and approximately 10 percent of individuals with PC have a family history of the disease
[3,4]. There are two broad categories of hereditary risk for PC which are inherited genetic predisposition syndromes 
associated with PC and familial PC (FPC), which is defined as a family with a pair of affected first-degree relatives who 
do not meet criteria for a known PC-associated genetic predisposition syndrome[5].

The major gene causing most cases of hereditary PC remains unknown. Pathogenic germline variants (PGVs) in the 
breast cancer associated (BRCA) 1 and 2 genes are the most commonly associated mutations, occurring in 13 to 19 percent 
of FPC families[6]. Next generation sequencing helped uncover other genes causing hereditary pancreatic ductal 
adenocarcinoma: The partner and localizer of BRCA2 (PALB2) gene and the ataxia-telangiectasia mutated (ATM) gene[7,
8]. PGVs are especially common in individuals with early onset PC (i.e., developing before age 50)[6]. Cigarette smoking 
contributes to the risk of PC in patients with hereditary pancreatitis and FPC and is associated with an earlier PC 
diagnosis by approximately 20 years[9].

In recent years, the role of gut microbiome in the development and treatment of several cancers, including PC, has been 
an area of active research. Porphyromonas gingivalis (P. gingivalis), Aggregatibacter actinomycetemcomitans (A. actinomycetem-
comitans) and even Helicobacter Pylori (H. Pylori) are linked to an increased risk of PC[10,11]. Probiotics have been shown 
to be effective in reducing pancreaticoduodenectomy complications, by directly suppressing the growth of cancer cells. 
Postbiotics have been shown to have selective cytotoxicity against tumor cells. Prior literature revealed that fecal 
microbiota transplantation led to a reduction in tumor size for PC[12].

Carcinoembryonic antigen-related cell adhesion molecule 7 (CEACAM-7), also known as CGM2, is a glycoprotein 
expressed on the luminal surface of epithelial cells near the mouth of colonic crypts and on pancreatic ductal epithelial 
cells[13]. Most recently it has been shown that CEACAM7-directed chimeric antigen receptor (CAR) T cells can effectively 
mediate remission of late-stage patient-derived PAC xenograft tumors[13].

This review will provide a concise and up to date overview of the impact of commensal gut microbiota in the 
development and management of PAC. Furthermore, we will focus on the pathoph-ysiology and pathogenesis by which 
the gut flora can gain oncogenetic attributes and to what extent their alteration can affect the treatment and outcome of 
PAC.

DIAGNOSIS OF PC
Recent advances in imaging techniques have elevated the diagnostic acumen for PC. Abdominal ultrasound (US) is a 
non-invasive approach, which can detect pancreatic masses with an accuracy of 50%-70%[14]. Although there are no tell-
tale characteristic signs of different pancreatic masses, a hypoechoic mass, pancreatic and/or biliary duct dilation could 
point towards an ominous pathology[14,15]. If a contrast enhanced US is available, the diagnostic accuracy could be 
significantly enhanced as hypovascularity of a mass point towards PAC whereas endocrine cell tumor is hyper 
vascularized and any pancreatitis associated mass is usually iso-vascularized[14,16].

CT with contrast is perhaps the most widely used-in detection and staging of PC. Hypovascularity, increased fibrous 
stroma, and decreased enhancement compared to surrounding tissue points towards PAC[17]. In hypoattenuating lesions 
and in instances where CT is equivocal, multi-detector row CT can be helpful as it provides three dimensional images and 
various phases of contrast enhancement-parenchymal, portal venous, and arterial-leading to earlier detection and 
accurate staging of the cancer[18-20]. Enhanced magnetic resonance imaging (MRI), due to better soft tissue visualization, 
has been shown to be equal or superior to CT imaging for blood vessel invasion and local extent, however, it is poor in 
detecting the involvement of portal venous system or duodenum[21-23]. The most accurate and sensitive method for 
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detection of even the smallest tumors with or without vascular invasion is EUS-superior to MRI, CT, or US. It is also an 
excellent modality for diagnosis when combined with biopsy and has incredibly high sensitivity to detect metastasis to 
the lymph nodes as well as vascular invasion[24-27]. The biggest challenge in diagnosis is differentiating between chronic 
pancreatitis and PAC, this is when EUS with biopsy comes in handy.

STAGING OF PC
The staging of PC at the time of diagnosis is pivotal for prognosis and treatment planning as the aggressive or palliative 
care approach could be applied based on the stage. The role of CT imaging with contrast is pivotal in determining the 
stage, however, sometimes, sophisticated modalities such as enhanced MRI, EUS, or fluorodeoxyglucose-positron 
emission tomography could be needed. The tumor size, location in the pancreas, surrounding structures involvement-
with or without vascular involvement, and spread to surrounding lymph nodes or metastasis are the components 
involved in staging for PC.

The T (tumor), N (Node), and M (Metastasis) is the widely accepted staging systems for PC as per The American Joint 
Committee for Cancer[28]. The T stage is classified based on the tumor size within the pancreas and/or involvement of 
vascular structures. The N and M stage is classified based on the involvement of regional lymph nodes and sites of 
metastasis, if any. Subsequently, based on the imaging, cancer is characterized as resectable, borderline resectable, locally 
advanced, or metastatic disease. Stages I and II do not involve any major blood vessels, stage III is a localized tumor but 
with involvement of a major blood vessel, whereas Stage IV is metastatic disease[28].

The National Comprehensive Cancer Network stages PC primarily based on tumor extent. This is primarily in the 
absence of metastatic disease and resection options are localized advanced/unresectable, borderline resectable, and 
resectable disease. Locally advanced/unresectable disease is predominantly when the tumor involves major vascular 
structures such as aorta, superior mesenteric or portal vein (unreconstructable), or > 180 degrees of tumor contact with 
the Superior mesenteric artery or celiac artery. Resectable disease or borderline resectable is defined as no involvement of 
any vascular structures mentioned above or ≤ 180 degrees of involvement[29].

PC-MODALITIES OF TREATMENT
Depending on the staging of PC, there are various modalities which are employed for the treatment. Surgical resection is 
always desirable, however, due to the relatively silent clinical course of PC, only 1/5th of patients have resectable tumors 
at the time of diagnosis[30,31]. The most utilized surgical procedures are total pancreatectomy, distal pancreatectomy, 
and Whipple’s procedure depending on the staging of the cancer[32]. Previously, in patients presenting with jaundice, 
preoperative biliary stenting was considered if there was a tumor on the head of the pancreas causing biliary obstruction, 
however, recent studies have shown that this modality is associated with increased time to surgery, increased rates of 
infection, and complications; preoperative biliary stenting is as a result, no longer recommended for head of the pancreas 
tumors which have not metastasized and can be easily resected[33,34]. However, preoperative stenting can be considered 
in patients who are undergoing neoadjuvant chemotherapy, if surgery is postponed by logistical constraints, or have 
severe jaundice[33,34].

In patients who present with PC s of ‘borderline resectability’, neoadjuvant therapy prior to surgical resection is a 
consideration. However, data is conflicting. While there is some evidence on increased survival amongst borderline 
resectable tumors with neoadjuvant gemcitabine-based chemotherapy, there are also studies which suggest an increased 
postoperative stay and increased surgical challenges in locally resectable tumor patients who received neoadjuvant 
chemotherapy[35-37]. Also, it is important to note that histological diagnosis is mandatory prior to starting the 
chemotherapy, which may further delay the time to surgery.

The overall prognosis of PC is abysmal, even post complete surgical resection. As a result, 5-Fluorouracil (with 
Leucovorin) or Gemcitabine adjuvant chemotherapy is frequently employed post-surgical resection. Which agent is better 
though, does remain a topic of discussion. Studies are equivocal with some showing no difference between the two 
whereas others favor gemcitabine[38]. In patients with metastatic disease, the armamentarium consists of psychosocial 
support, chemotherapy, treating a variety of other comorbid conditions, and targeted therapy. As far as chemotherapy is 
concerned in such a setting, Gemcitabine has been shown to be superior, by far and remains the first line standard of care
[39]. Arguably, Conroy et al[40] have proven that FOLFIRINOX can super side Gemcitabine, as patients on FOLFIRINOX 
demonstrated not only a better response rate, but also improved one year, progression free, and overall survival[40]. In 
patients who are non-tolerant to first line gemcitabine, second line treatment consisting of oxaliplatin with 
fluoropyrimidines have demonstrated some clinical benefit[41,42]. Furthermore, if FOLFIRINOX was used as the first 
line, gemcitabine-based therapy should be tried as second line and has some clinical evidence of being beneficial[40].

Newer modalities of treatment include but are not limited to the use of epidermal growth factor receptor (EGFR) 
inhibitors. Medications like Cetuximab and Erlotinib which target the EGFR have been developed recently for targeted 
therapy and have been shown to be effective in many clinical trials. A combination of gemcitabine with Erlotinib is shown 
to increase overall survival rates and decrease the progression of PC[43]. PC cells are notorious to adapt in order to 
decrease the drug delivery to them by production of desmoplastic stroma and lead to resistance to chemotherapeutic 
agents[44]. Several therapies have recently been developed to decrease this stromal tissue and improve drug penetration 
despite the desmoplastic stroma, including nab-paclitaxel[45].
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Radiation therapy has a somewhat beneficial role alongside surgery and chemotherapy. Neoadjuvant radiation therapy 
for PC has been described in prior literature. Pisters et al[46] demonstrated that minimal toxicity and a very small 
recurrence rate can be obtained with preoperative fractionation chemoradiation based on 5-Fluorouracil, Whipple’s 
procedure, and intraoperative radiation[46]. In another study, utilizing a similar strategy for treatment but replacing 5-
Fluorouracil with paclitaxel-based chemotherapy, the results were similar, however, the toxicity levels were higher[47].

To improve the patient’s overall prognosis, radiation therapy is frequently being utilized for management of PC 
alongside chemotherapy. In the United States, adjuvant radiation therapy is a common norm after the Gastrointestinal 
Tumor Study Group’s prospective study in 1985. Patients with resectable PC were enrolled in this trial and were found to 
have a significantly longer and medial survival rate when treated with adjuvant chemoradiation[48]. Owing to this trial, 
adjuvant chemoradiation, the most commonly used adjuvant treatment for patients with resectable PC, is being practiced 
to date in the United States.

Novel techniques like stereotactic body radiotherapy have also been developed in recent years for targeted delivery of 
radiation. However, it has only been shown to slow local progression of the disease but has no effect on overall survival 
rates as the majority of mortality in PC patients is secondary to systemic and distant metastasis[49-51]. As PC is 
genetically a heterogeneous malignancy, there have also been baby steps in personalized chemotherapeutic regimen 
based on the patient’s genome to significantly increase the rates of chemotherapeutic efficacy by decreasing the resistance 
and making the response to chemotherapy consistent across all individuals. However, further research is needed on this 
novel therapeutic approach.

GUT MICROBIOTA AND PC
Mechanisms via which microbes regulate pancreatic oncogenesis
The gut microbiome, which refers to microbes naturally present in the human mucosal surfaces, has shown, when altered, 
to lead to oncogenesis and to some extent affect the response to therapy of several cancers, among which PAC[52]. The 
exact mechanisms by which oral and intestinal microbiota reach the pancreas remains unknown, but the proposed 
mechanisms involve the translocation via biliary/pancreatic ducts or through the blood circulation[52]. A summary can 
be found in Table 1.

P. gingivalis, which is a bacterium mainly found in the mouth and associated with periodontal diseases, has shown the 
ability to disseminate and affect immune response. P. gingivalis infection has shown an involvement of toll-like receptors 
(TLRs) including TLR4, involved in protective immunity. TLR signaling, especially TLR4, has been shown to play an 
important role in human pancreatic tumors[53]. Furthermore, periodontal diseases, such as the ones caused by P. 
gingivalis can lead to an increased production of nitrosamines[54]. Nitrosamines can be metabolized by Cytochrome P450 
and produce electrophiles that can effectively interact with the DNA and lead to the formation of DNA adducts that have 
a carcinogenic potential if not repaired[55]. Porphyromonas Peptidyl Arginine Deaminase (PPAD) is a protein produced 
by P. gingivalis that has been associated with cancer development by the way of P53 activity and KRAS (Kirsten-ras) 
mutation[52]. P53, which is a tumor suppressor gene, if mutated can lead impairment of cell cycle arrest and decrease of 
apoptosis increasing the risk of malignancy. KRAS, which is an oncogene with hydrolyzing effect on guanosine 
triphosphate, can lead uncontrolled and inappropriate cell proliferation, thus increasing the risk of malignancy[52]. P53 is 
a transcription factor that can activate the transcription of numerous genes, including the Cyclin-dependent kinase (CDK) 
inhibitor p21.

P53 is rapidly degraded and therefore not detectable within the cell. Mutation of the P53 gene results in a protein that 
fails to bind DNA effectively. Therefore, expression of the CDK inhibitor P21 gene is decreased, and P21 protein 
production is decreased. P21 protein is not available to stop the entry of the cell into S phase, again resulting in 
unregulated cell cycle progression, potentially leading to carcinogenesis[56]. The KRAS gene, an oncogene, is one of the 
most frequently mutated genes in PC. This gene is the human homolog of a transforming gene isolated from the Kirsten 
rat sarcoma virus, hence the name KRAS. Mutations in this gene, the vast majority of which are at codon 12, are 
activating, leading to abnormal activation of the protein product of the gene[57].

A. actinomycetemcomitans is also an oral microbiome that has been incriminated in PAC[52]. Similar to P. gingivalis, it 
can lead to periodontal infections and lead to increased nitrosamine production[54]. A. actinomycetemcomitan can also 
induce DNA double-strand breaks in host cells, independently of apoptosis, and cause the risk of genome instabilities 
and subsequently increase the risk of carcinogenesis[58]. Furthermore, the bacteria can produce the cytotoxin-associated 
gene E (CagE). CagE may have helicase activity, and its role in regulating DNA methylation expression is considered as 
possible mechanisms of tumorigenesis. CagE gene has been widely expressed in various cancer cell lines and cancer 
tissues including PC[59]. Fusobacterium nucleatum (F. nucleatum), which is another oral microbiome produces Fusobac-
terium adhesin A (FadA), that showed capacity of binding to host cells and is also the most characteristic virulence factor 
of F. nucleatum[59]. The host receptors for FadA are members of the cadherin family, mainly E-cadherin and vascular 
endothelial (VE) cadherin (CDH5)[60]. FadA binds to E-cadherin of epithelial cells, leading to phosphorylation and 
internalization of E-cadherin on the membrane; afterwards, canonical Wnt pathway is activated, accompanied by 
decreased phosphorylation of β-catenin, which accumulates in the cytoplasm and translocate to the nucleus[59]. Increase 
in Wnt signaling activity and subsequent activation of the Wnt/β-catenin pathway, has shown to be essential in the 
initiation of PC[61,62]. Furthermore, FadA binds VE-cadherin on VE cells, increasing endothelial penetrability[59]. 
Therefore, FadA not only directly invades host cells but also allows dissemination of itself and other bacteria into blood 
by increasing endothelial permeability[59]. F. nucleatum can produce a protein called familial adenomatous polyposis 2, 
which binds and interacts to human inhibitory receptor T cell immunoreceptor on natural killer (NK) cells and 
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Table 1 Gut microbiota associated with Pancreatic oncogenesis

Bacteria Primary 
site Potential mechanism Subsequent effect Ref. 

Porphyromonas gingivalis Mouth TLR signaling disruption; 
Nitrosamines production; 
PPAD production

Loss of protective immunity; DNA adducts 
formation; P53 overactivity (loss of apoptosis); 
KRAS mutation (cellular overproliferation)

[52-
55]

Aggregatibacter actinomycetemcomitans Mouth Nitrosamine production; DNA 
double-strand breaks; CagE 
production

DNA adducts formation; genome instabilities; 
dysregulation of DNA methylation expression

[52,
58,59]

Fusobacterium nucleatum Mouth FadA production; Fap2 
production

activation of the Wnt/β-catenin pathway; 
suppression of the cytotoxic effects of NK cells and 
lymphocytes

[59,
61-63]

Helicobacter Pylori Stomach cagA, cag PAI and vacA 
production 

Disruption of host intracellular signaling pathways [64]

Bacteroides fragilis, Bacteroides vulgatus, Listeria 
monocytogenes, Clostridium, Lactobacillus, 
Bifidobacterium 

Large 
bowel 

Transformation of primary bile 
acids to secondary bile acids

Reduction of susceptibility to apoptosis, induction 
of inflammatory mediators, and perturbation of 
membranes and cellular movement

[76]

Escherichia coli Large 
bowel 

Polyamines production Polyamines upregulation [81-
83]

TLR: Toll-like receptor; PPAD: Porphyromonas Peptidyl Arginine Deaminase; CagE: Cytotoxin-associated gene E; NK: Natural killer; PAI: Pathogenicity 
island; cagA: Cytotoxin-associated gene A.

lymphocytes. Thus, suppressing the cytotoxic effects of NK cells and lymphocytes, leading to protection of tumors from 
the immune system and fostering a flourishing inflammatory context[63]. By a mechanism similar to P. gingivalis, F. 
nucleatum can be involved with the TLRs and lead to carcinogenesis as discussed previously[53].

H. Pylori is notorious for its association with gastric cancer and yields various virulence factors that may disrupt host 
intracellular signaling pathways and lower the threshold for neoplastic transfor-mation. Of all virulence factors, 
cytotoxin-associated gene A and its pathogenicity island (cag PAI) and vacuolating cytotoxin A are the major pathogenic 
factors[64]. Whether H. Pylori infection is associated with PAC remains controversial with conflicting data in the 
literature. A study by Kumar et al[65] showed a very low incidence of H. Pylori among patients with PAC, whereas 
studies by Hirabayashi et al[66], and Nilsson et al[67] found an association.

Several members of the gut microbial community (especially of the large bowel), including Bacteroides fragilis, 
Bacteroides vulgatus, Listeria monocytogenes, Clostridium, Lactobacillus, Bifidobacterium, and Escherichia, are involved in the 
transformation of primary bile acids to secondary bile acids, either by deconjugation, oxidation, dehydroxylation, or 
epimerization[68-70]. Bile acids have multiple nuclear receptors, including farnesoid-X-receptor (FXR), liver-X receptor, 
CAR, vitamin D receptor (VDR), pregnane X receptor (PXR), and a non-nuclear receptor Takeda G Protein-Coupled 
Receptor 5/G-protein-coupled bile acid receptor (TGR5), that may impact carcinogenesis[71,72]. Secondary bile acids can 
behave as both pro- and anti-carcinogens, depending on the cancer concerned and the concentration of the bile acid 
present[71-73]. Furthermore, bile acids can modulate the composition of the microbiome and facilitate bacterial translo-
cation into tissues, which is a key step in the carcinogenesis of PAC[74]. Bile acid levels have been shown to be elevated in 
PAC[75]. Bile acids can also affect risk factors for PAC such as pancreatitis and bile acid efflux disorders, type II diabetes, 
obesity, and hyperlipidemia; and they can reduce susceptibility to apoptosis, induce inflammatory mediators, and may 
perturb membranes and cellular movement[76]. A secondary bile acid, deoxycholic acid can bind to TGR5 and activate 
EGFR, mitogen-activated protein kinase, and signal transducer and activator of transcription 3 signaling in PAC cells, 
inducing cell cycle progression[77]. Other bile acid receptors such as VDR, FXR and PXR are also found to be highly 
expressed in PAC tissues compared to normal tissues[78-80].

Polyamines can be produced, accumulated, or used by the following gut bacteria Escherichia coli (E. coli), Enterococcus 
faecalis (E. faecalis), Staphylococcus aureus, Haemophilus influenzae, Neisseria flava, Pseudomonas aeruginosa, 
Campylobacter jejuni, Yersinia pestis, Vibrio cholerae, Bacteroides dorei, Bacteroides thetaiotaomicron, Bacteroides fragilis, 
Bacillus subtilis, and Proteus mirabilis[81,82]. A mouse study revealed that bacterial polyamine biosynthetic capacity was 
upregulated and aggravated by tumor progression in PAC and there was a correlated elevated serum level of polyamines
[83].

As evidence by the work of Riquelme et al[84], Fecal Microbiotal Transplant from human subjects to mice, yielded from 
PC long term murine survivors, showed a significant reduction in tumor growth, however, that effect was lost with the 
use of antibiotics altering the fecal microbiota[84,85]. Furthermore, it was found that long term survivor mice that did not 
receive antibiotics were rich in CD8+ T-cell, enhancing the tumor immune cell infiltration. On the other hand, mice that 
were treated with antibiotics, thus altering the fecal microbiota, showed an increased number of CD4+FOXP3+ T-regs and 
myeloid derived suppressor cells which are well known to lower the immune system, thus promoting tumor growth[84,
85].

NK cells are a group of cells that play an important role by mediating tumor initiation and progression. NK cells are 
often found in the circulation, preventing tumor cells from metastasizing[86,87]. When a patient is NK cells depleted, 
tumor escape and growth may ensue[86]. NK cells having the ability to inhibit CD8+ T cell responses during chronic 
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infections, it has been hypothesized that NK cells can facilitate solid tumors infiltration, among which PC[86].
Hepatotropic viruses such as hepatitis B virus (HBV) and hepatitis C virus (HCV) have been incriminated in pancreatic 

oncogenesis. HBV and HCV have the ability to delay host immune system clearance of the virus by integrating the DNA, 
modifying tissue viscoelasticity, and modulating the PI3K/AKT signaling pathway, which promotes metabolism, prolif-
eration, cell survival, growth and angiogenesis in response to extracellular signals, via the HBV X protein, thus leading to 
oncogenesis[87].

It has been shown that fungal microbiota including Candida, Saccharomyces, Aspergillus or Malassezia spp. are involved 
in pancreatic oncogenesis. One proposed mechanism is that ligation of mannose-binding lectin, which binds to glycans of 
the fungal wall may lead to activation of the complement cascade and oncogenic progression[88].

Short-chain fatty acids (SCFA) which are metabolites from the gut microbiota and cathelicidin-related antimicrobial 
peptides secreted by normal pancreatic β-cells protect against tissue inflammation and control pancreatic bacterial 
overgrowth[89,90]. It has been shown that patients with PC have an abundance of a higher abundance of lipopolysac-
charide-producing bacteria, and a reduction in beneficial microbes, such as butyrate-producing bacteria[91]. Butyrate, 
which is a SCFA produced by certain bacteria of gut possesses anti-inflammatory and anti-neoplastic properties in regard 
to PC by the means of “pro-differentiation, anti-proliferation, anti-invasion, pro-apoptosis” and chemo-sensitization 
effects[91]. Another SCFA from the gastrointestinal (GI)  microbiota, acetate, induces insulin secretion via the 
microbiome-brain β-cell axis controlling pancreatic bacterial overgrowth[92,93]. Tryptophan metabolism can serve as an 
immunomodulatory factor by overexpression of indoleamine2,3-dioxygenase1 which inhibits the maturation of CD11c 
and dendritic cells, and T-cell proliferation and by high expression of Kyn which leads to induction and activation of the 
aryl hydrocarbon receptor, leading to upregulation of programmed cell death protein 1 expression; enhancing the efficacy 
of antitumor adoptive T-cell therapy and reducing the rate of migration and invasion in both tumor-bearing mice and 
patients with PC[94-96].

IMPACT OF GUT MICROBIOME ALTERATION ON THE TREATMENT OF PC
PAC is only resectable in approximately 15% to 20% of cases at the time of diagnosis, however, surgical resection offers 
the only chance of cure. PAC carries a dismal prognosis even after surgical resection with negative margins given its high 
rate of recurrence. Therefore, systemic chemotherapy, radiation therapy, and combined approaches (chemoradiotherapy) 
have been used both prior to and following surgical resection in an effort to improve cure rates[97]. More recently, 
immunotherapy and CAR T-cell therapy have gained favor for use in the treatment of PAC[13]. The gut microbiome has 
been shown to interact with those treatment modalities and affect their efficacy[13,42]. Furthermore, the gut microbiome 
has also shown some cytotoxic effect in PAC[42].

E. coli and Staphylococcus aureus strains have the potential to produce Cytolysin A (ClyA), which is a pore-forming 
cytotoxin that possesses anticancer properties[98]. ClyA exerts its cytotoxicity, by creating multimeric pores and imposing 
cell death in the eukaryotic membrane by the caspase-dependent pathway[99]. E. coli, A. actinomycetemcomitans, 
Campylobacter and Helicobacter are known to produce Cytolethal distending toxin (CDT)[100]. CDT is known to have 
genotoxic attributes by DNase activity which creates DNA double stranded breaks, leading to cell cycle arrest and 
cytotoxicity[49]. Streptococcus pyogenes secretes streptolysin O which is implicated in cytolysis and apoptosis[101].

Prebiotics are defined as nutrients that are degraded by gut microbiota and may affect not only the intestinal microen-
vironment but also distant organs. In a mice study by Trivieri et al[102] using xenograft mice model confronted with PC 
gene expression dataset (GSE16515) and investigating the impact of high levels of prebiotic resistant starch diet (RSD) on 
miRNA expression profiles in tumor tissues, RSD was associated with dysregulation of 19 miRNAs genes expression in 
comparison to control. subsequent analysis revealed that part of genes participating in the regulation of processes such as 
the development of carcinoma, inflammatory response, abdominal cancer, metabolic disease, growth, invasion, and 
metastasis were downregulated in a group of mice fed with RSD in comparison to control. Furthermore, genes 
participating in the synthesis of carbohydrates, glucose metabolism disorder, and cell death of cancer cell lines were 
significantly upregulated in mice fed with RSD. Thus, the authors concluded that there is prolonged overall survival and 
beneficial value of RSD in PAC[103].

Lactobacillus casei is a probiotic that can produce Ferrichrome, which has the potential to suppress the growth of 
refractory PC cells by inhibiting cancer cells progression and dysregulating cell cycle by activating P53[102,103]. Next-
generation probiotics such as Akkermansia muciniphila (A. muciniphila), are identified using next-generation sequencing 
and bioinformatics tools. A. muciniphila has been shown to inhibit the proliferative activity of INS-1 (rat pancreatic islet 
cell tumor cells) in a mouse model[104].

FOLFIRINOX, which is a commonly used regimen in PAC is composed of leucovorin calcium (folinic acid), 
fluorouracil, irinotecan hydrochloride, and oxaliplatin. Oxaliplatin has an immunomodulatory effect as well, potentiating 
tumoricidal T-cell immunity. In a mice model, a group with a defective TLR signaling pathway, demonstrated no 
response to oxaliplatin treatment[105]. Agonistic TLR molecules from microbial membranes were reported to help 
stimulate the immune system and increase reactive oxygen species production, thus enhancing the tumoricidal activity of 
oxaliplatin[105]. Irinotecan is characterized by common GI side effects limiting the dose and effectiveness of treatment. 
Those side effects can be modulated by enzymatic activity of the gut microbiome, with some bacteria improving the side 
effects profile, while others may worsen the side effects. The β-glucuronidase enzyme produced by intestinal bacteria 
cleaves the active irinotecan metabolite SN-38G into a toxic form that damages the colonic mucosa and causes GI side 
effects. The literature revealed that antibiotics or modification of gut microbiomes significantly alleviated the GI toxicity 
in cancer patients[106]. Furthermore, reduced risk of developing irinotecan toxicity has been shown with the use of 
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indigestible fibers, using appropriate probiotics and adequate butyrate intake[107].
Several animal studies showed that mice housed in germ-free conditions and animals treated with broad-spectrum 

antibiotics showed reduced effects of immunotherapy by a combination of TLR-9 antagonist and anti-interleukin-10 
antibody. Furthermore, the ineffectiveness of cancer immunotherapy directed against the major negative regulator of T 
cell activation cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) was observed when applied to antibiotic-treated 
animals or germ-free mice[108]. Monoclonal antibodies that neutralize CTLA-4 have been shown to rely on the intestinal 
microbiota, in particular, Bacteroidales and Burkholderiales[108]. A recent study used a gut microbe-derived metabolite 
trimethylamine N-oxide (TMAO) that showed enhanced anti-tumor immunity to PAC. TMAO was delivered either 
intraperitoneally or via a dietary choline supplement to orthotopic PAC bearing mice, and lead to reduced tumor growth 
and associated with an immunostimulatory tumor-associated macrophage phenotype and activated effector T cell 
response in the tumor microenvironment. The combination of TMAO and immune checkpoint inhibitors (ICI) such as 
programmed cell death 1, in a mouse model of PAC, proved to be superior in reducing tumor burden and improving 
survival compared to either therapy alone[109].

CAR T-cell therapy has shown tremendous results in hematologic malignancies. Only recently, it was tried on non-
hematologic malignancies with promising preliminary data. CAR T-cell therapy of solid tumors faces a major issue in that 
commonly targeted tumor antigens are expressed at low levels in normal tissues, leading to on-target off-tumor toxicity. 
CEACAM7, which has low to undetectable expression in all normal tissues and with strong surface expression on a 
subset of primary human PAC tumors was identified as a potential target antigen for CAR T-cell therapy of PAC. CAR T-
cells targeting CEACAM7 were generated in a study by Raj et al[13] and showed significant antitumor activity against 
patient-derived PAC tumor cultures both in vitro and in vivo[13]. A brief summary can be found in Table 2.

Oncolytic adenoviruses have been engineered to replicate in cancer cells and controlling tumor progression. Oncolytic 
adenovirus AdNuPARmE1A with miR-222 binding sites, are made to withdraw the miRNA from the cellular 
environment. AdNuPAR-E-miR222-S mediated-decrease of miR-222 expression in pancreatic cancer cells was shown to 
strongly improve the viral yield and enhance the adenoviral cytotoxic effects[110].

INTRATUMORAL MICROBIOME IN PANCREATIC CA
Intratumoral microbiome is derived from 3 basic mechanisms; (1) Sloughing of the mucosal barrier; (2) Adjacent normal 
tissues; and (3) Hematogenous spread[111]. Interestingly, Nejman et al[112] demo-nstrated that amongst the tumors that 
they studied, every tumor was associated with a completely different microbiome composition[112]. The pancreas is 
traditionally thought to be a ‘bacteria-free’ organ. However, bacterial DNA belonging to the Proteobacteria phylum was 
very abundantly found in pancreatic cancer[112]. Another study which confirmed increased amounts of bacterial DNA in 
pancreatic cancer vs normal pancreatic tissue was the study by Geller et al[113]. Bacterial ribosomal DNA was detected via 
FISH technique in 76% of patients with PAC vs 15% of patients with normal pancreatic tissue[88]. Similarly, by using the 
FISH technique, Aykut et al[88] demonstrated that Pseudomonadota, Bacillota, and Bacteroides were the most abundant 
bacteria found intratumorally in pancreatic cancer patients[88]. Interestingly, the fungal mycobiome in pancreatic tissue 
samples obtained from patients with PAC was also found to be very distinct from healthy individuals with a high 
prevalence of Malassezia[88].

MICROBIOME IMBALANCE AND PANCREATIC CA
Dysbiosis or imbalance in the microbiome has been shown to impact the inflammatory cascade in a non-physiological 
way and in turn, contribute to the development of cancer[114]. The known risk factors for pancreatic carcinoma are 
smoking, advancing age, type 2 diabetes mellitus, chronic pancreatitis, and obesity. Interestingly, many of these risk 
factors have been recently found to be associated with an imbalance in the microbiome, which may increase the risk of 
PAC[115-118]. A meta-analysis by Maisonnuevve demonstrated a positive correlation between periodontal disease and 
PAC[119]. This may be related to an imbalance in the oral microbiome. Oral microbiomes have been shown to be 
associated with carcinogenesis via inducing systemic inflammation, and the most important being Porphyromonas 
Gingivalis[120-122]. A case control study demonstrated that the risk of PAC was 2-fold higher in patients with a higher 
level of antibodies against a specific strain of P. Gingivalis, whereas higher levels of antibodies against commensal oral 
microbiome were actually protective against PAC, with an almost 50% lower risk of the cancer in patients who had these 
antibodies[123]. In-vivo studies have shown that P. gingivalis enhances the proliferation of pancreatic tumor cells, 
regardless of the concentration of TLR-4. Furthermore, the concentration and proliferation of P. gingivalis is greatly 
increased in PAC tissue secondary to hypoxia, which is very prevalent in the cancer microenvironment[124]. 
Furthermore, bacteria that cause periodontitis are also found to cause K-ras and p53 mutations, and those have in turn 
been associated with poor prognosis in patients with pancreatic cancer[125]. They also demonstrated that the number of 
cases of pancreatic cancer were higher in patients who had GI infections from H. Pylori, Enterobacter, and Enterococcus 
species[125].

This prior literature leads us into sensibly concluding that possibly, an imbalance in the oral microbiome is associated 
with an increased risk of PAC, however, reverse causation is an important factor that needs to be excluded before 
exploring this aspect further. One study evaluated this and found that 2 oral bacteria-P. gingivalis and Aggregatibacter 
actinomycetemcomitans are associated with an increased risk whereas Leptotrichia genus of Fusobacterium species was 
associated with a reduced risk of PAC. Interestingly, even after excluding patients who developed the cancer within 2 
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Table 2 Impact of gut microbiota in the treatment of Pancreatic cancer

Bacteria Primary site Potential mechanism Subsequent effect Ref.

Escherichia coli Large bowel Cytolysin A production; 
Cytolethal distending toxin 
production 

Imposing cell death in the eukaryotic membrane by the 
caspase-dependent pathway; DNA double stranded 
breaks, leading to cell cycle arrest and cytotoxicity

[49,
86,87]

Staphylococcus aureus Variable Cytolysin A production Imposing cell death in the eukaryotic membrane by the 
caspase-dependent pathway

[86]

Streptococcus pyogenes Variable Streptolysin O production Increase in apoptosis and cytolysis [88]

Aggregatibacter actinomycetem-
comitans, Campylobacter and Helico-
bacter

Mouth, 
stomach, large 
bowel 

Cytolethal distending toxin 
production 

DNA double stranded breaks, leading to cell cycle arrest 
and cytotoxicity

[87]

Lactobacillus casei Mouth and 
small intestine 

P53 activation Upregulation of apoptosis [90]

Bacteroidales, Burkholderiales Large bowel CTLA-4 upregulation Enhancing activity of monoclonal antibody against CTLA-
4

[95]

CTLA-4: Cytotoxic T-lymphocyte-associated protein 4.

years from the date of sample collection, the risks remained elevated[10]. This significantly reduces the likelihood of 
reverse causation. Another significant study going in favor of a causality between E. faecalis, and pancreatic cancer is the 
one by Maekawa et al[126], wherein the level of antibodies against E. faecalis capsular polysaccharide were found to be 
increased in the serum of pancreatic cancer patients[126]. However, larger cohort studies are needed on the subject to 
conclusively establish causation.

CONCLUSION
Despite advances in medicine and the discovery of newer anticancer therapies, the prognosis of pancreatic cancer remains 
dismal. By the way of this review, we found that a prebiotic resistant starch diet has been associated with better overall 
survival in PAC. We also found that periodontal diseases increase the risk of developing PAC. This is especially 
important as periodontal diseases should be avoided and promptly treated in patients with a family history of PAC, other 
risk factors for PAC, and those with known/suspected genetic mutations susceptible for the development of PAC. 
Furthermore, we found that the use of concomitant antibiotics can positively or negatively affect treatment of PAC. Some 
gut microbiomes can enhance the effect of therapy and improve tolerance to therapy as well. Thus, neutropenic diet can 
be avoided in select patients meeting the requirements. Newer therapeutics such as ICI and CAR T-cell therapies can play 
a major role in the outcome of PAC, however, most promising studies are done in animal models. We hope that in the 
near future, there will be more clinical trials in human subjects replicating the promising results from animal studies 
which will possibly offer newer ways to handle this very deadly malignancy.
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