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Abstract
The relationship between metabolic derangements and fatty liver development 
are undeniable, since more than 75% of patients with type 2 diabetes mellitus 
present with fatty liver. There is also significant epidemiological association 
between insulin resistance (IR) and metabolic (dysfunction)-associated fatty liver 
disease (MAFLD). For little more than 2 years, the nomenclature of fatty liver of 
non-alcoholic origin has been intended to change to MAFLD by multiple groups. 
While a myriad of reasons for which MAFLD is thought to be of metabolic origin 
could be exposed, the bottom line relies on the role of IR as an initiator and 
perpetuator of this disease. There is a reciprocal role in MAFLD development and 
IR as well as serum glucose concentrations, where increased circulating glucose 
and insulin result in increased de novo lipogenesis by sterol regulatory element-
binding protein-1c induced lipogenic enzyme stimulation; therefore, increased 
endogenous production of triglycerides. The same effect is achieved through 
impaired suppression of adipose tissue (AT) lipolysis in insulin-resistant states, 
increasing fatty acid influx into the liver. The complementary reciprocal situation 
occurs when liver steatosis alters hepatokine secretion, modifying fatty acid 
metabolism as well as IR in a variety of tissues, including skeletal muscle, AT, and 
the liver. The aim of this review is to discuss the importance of IR and AT 
interactions in metabolic altered states as perhaps the most important factor in 
MAFLD pathogenesis.

Key Words: Metabolic (dysfunction)-associated fatty liver disease; Insulin resistance; 
Adipose tissue; Fatty liver; Metabolic syndrome; Adipokine
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Core Tip: In this review, we outline the main arguments that support the importance of insulin resistance 
(IR) in fatty liver pathogenesis, stressing its role in metabolic dysfunction. IR and other genetic and 
molecular mechanisms play a pivotal role not only in metabolic dysfunction–associated fatty liver disease 
development but also in some of its complications and comorbidities, such as chronic kidney disease.
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INTRODUCTION
The term non-alcoholic fatty liver disease (NAFLD) was initially used by Klatskin and colleagues in 
1979[1], while Ludwig coined the term non-alcoholic steatohepatitis after witnessing similar clinical 
features in patients with liver steatosis[2]. Even though this nomenclature has been used for almost four 
decades, in 2020 a group of experts suggested a change of nomenclature from NAFLD to metabolic 
(dysfunction)-associated fatty liver disease (MAFLD) due to the large multifactorial basis for the disease 
and the fact that non-alcoholic does not accurately describe the disease pathogenesis[3-5]. By contrast, 
metabolic dysfunction accounts for a great deal of the pathogenesis of fatty liver whenever large alcohol 
consumption amounts are not present. MAFLD diagnosis is based on the presence of hepatic steatosis in 
addition to one of the following: obesity or overweight, type 2 diabetes mellitus (T2DM), or metabolic 
dysregulation. Metabolic dysfunction (in this context) accounts for the following conditions: increased 
waist circumference, systemic hypertension, dyslipidemia, prediabetes and insulin resistance (IR) 
(measured through the homeostatic model assessment [HOMA] > 2.5).

The development of MAFLD is linked to dyslipidemia, obesity, and IR. These are also the main 
features of metabolic syndrome (MetS). MetS constitutes a cluster of metabolic abnormalities which 
stem from IR and chronic low grade inflammation and on the long run increase the risk for 
cardiovascular disease (CVD) and T2DM[6]. The criteria for diagnosing MetS have changed since they 
were first established by the World Health Organization in 1988[7], evolving since the knowledge of the 
pathogenesis and its implications expanded. The criteria include the presence of visceral adiposity, IR, 
atherogenic dyslipidemia, and endothelial dysfunction, among others[8].

On a very important note, the change of nomenclature to MAFLD is very well justified by the sole 
fact that about 90% of NAFLD patients have one or more MetS component[9]. Furthermore, Marchesini 
et al[10] showed that the presence of MetS among patients with hepatic steatosis carry a significantly 
increased risk of developing steatohepatitis and fibrosis, with odds ratios of 3.2 and 3.5, respectively
[10]. Also, MetS is a useful index for the prediction of the severity of obesity-related fatty liver[11].

One way in which we can argue in favor of IR’s importance in MAFLD pathogenesis is by analyzing 
the causes of the established items in the metabolic risk abnormalities checklist. Another way is by 
refuting the counterarguments for the use of this new term. In this review, we will cover both issues.

One of the most valid points involves the fact that given MAFLD is a heterogeneous and complex 
disease, considering a single postulation to explain is pathogenesis is absurd. We agree that MAFLD is a 
multifactorial disease, and similar to diabetes, systemic hypertension and many more involve genetic 
and environmental mechanisms. In fact, there is progressively more data proving the influence of 
different environmental factors on fatty liver genesis, including air pollution and cigarette smoke. 
However, in MAFLD as a multifactorial disease, there is one specific overarching concept that accounts 
for most of the cases and pathogenesis of MAFLD, which is metabolic dysfunction.

To give an educated opinion on the subject, we must first understand what IR is, how it manifests on 
different endocrine organs, how it influences triglyceride (TG) metabolism in the liver, and its role in 
metabolic dysfunction.

IR: The basis
Insulin is the main anabolic hormone in the body, primordial for glucose homeostasis as well as other 
functions in tissue growth and development. Glucose homeostasis is maintained by regulating glucon-
eogenesis and glycogenolysis in the liver, as well as by inducing insulin-mediated glucose uptake in 
skeletal and cardiac muscle, as well as in adipose tissue (AT)[12]. IR refers to the impaired response of 
target tissues to insulin stimulation. This abnormality can be a result of altered number of receptors, or 
malfunction of the existing ones. In reality, there is not a single cause for IR development; instead 
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multiple factors together lead to this metabolic abnormality. These include the mentioned receptor 
abnormalities, as well as defects in the insulin signaling cascade, negative regulation of the cascade by 
inhibitors, or the presence of a proinflammatory internal milieu. There has even been a proposal 
regarding the induction of IR by fatty acids, which because of their abnormal metabolism lead to lipid 
accumulation in the muscle and liver. In any given case, whenever there is a decreased sensitivity of a 
hormonal stimulus, the result is a positive feedback loop that increases the concentration of the effect-
lacking hormone (in this case, insulin). Increased insulin serum concentrations have a variety of effects 
due to its trophic effects on various tissues. Insulin serum concentrations are the basis for determining 
the presence of IR in an individual, principally through the use of the HOMA.

During the past decade, the “glucocentric” view of IR has shifted to the “lipocentric” view, regarding 
its pathogenesis and associated mechanisms. We can appreciate how much the focus of IR effect on 
glucose metabolism prevailed before the year 2000 in any scientific literature, even if we don’t look in 
depth. For instance, IR had been included within a concept denominated the “IR syndrome”, which 
considered the presence of dyslipidemia, hypertension and impaired glucose tolerance as factors 
leading to increased cardiovascular risk, however, that’s the farthest lipids’ involvement got[13]. 
Chronic hyperglycemia leads to glucotoxicity, directly inducing IR and the IR degree is one of the 
strongest predictors for T2DM onset in populations at risk[14,15]. While all of this is a fact, the role of 
fatty acid metabolism had been overlooked since in 1965 Randle and colleagues first suggested 
increased serum free fatty acids (FFAs) as one of the primary causes for decreased glucose oxidation 
and IR development[16]. The last decade has had an increased body of research supporting this fact, 
centering the role of lipids, along with that of glucose, in the development of fatty liver.

IR is present in a variety of metabolic disorders, such as MetS and T2DM. IR in the liver presents as 
increased gluconeogenesis and decreased hepatic glycogenesis, resulting in increased glucose 
production and release[17].

Adipose tissue IR-Which came first: The resistance or the fat?
AT has long been known to be an endocrine organ, both by releasing hormones such as leptin and 
adiponectin (adipokines), and by regulating proinflammatory mediator secretion and metabolic 
processes. AT IR refers to the impaired suppression of lipolysis in the presence of high insulin serum 
levels (Figure 1). One of the key hormones involved in AT-IR is adiponectin, which contributes to the 
development of obesity-related IR and CVD[18]. While in this case adiponectin levels are lower, other 
adipokines such as leptin are increased[19], the former one acting as a protective factor for hepatic 
steatosis development[20].

Whenever IR ensues, there is a disinhibition of lipolysis in the AT, which results in higher breakdown 
of stored triglycerides in AT and higher release of FFA into the blood. The circulating FFAs lead to 
activation of the proinflammatory nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) 
pathway in the liver, ultimately resulting in lipotoxicity. Lipotoxicity, however, is not the end result of a 
single pathway, but rather the combination of the role of FFAs, TGs, biliary acids (BAs), free cholesterol, 
ceramides, and lysophosphatidyl cholines[21].

When it comes to metabolic health, AT is the major determinant given the ability of subcutaneous AT 
(SAT) to store excess fat (through adipocyte de novo lipogenesis [DNL] instead of allowing it to deposit 
in the non-fatty tissues, otherwise known as “ectopic” deposition of fat. Whenever this ability becomes 
impaired, aberrant adipocyte tissue develops, where the adipocytes undergo hypertrophy along with 
decreased number of glucose transporter-4 (GLUT-4) receptors. Under physiologic conditions, 
adipocytes carry out recruitment of adipogenic precursor cells, along with adequate angiogenesis. 
Dysregulation of the signaling pathway between the wingless-related integration site (WNT) and the 
bone morphogenetic protein 4 (BMP-4) results in alterations in the recruitment, proliferation and differ-
entiation of the precursors. BMP-4 has also been found to contribute to “browning” of white AT in mice, 
where brown AT (BAT) tallies to the oxidative phenotype of lipid-storing adipocytes[22]. The alteration 
in AT expansion means that not only do pathologic adipocytes have decreased number of GLUT-4 
receptors but they also have altered blood supply, leading to hypoxia and consequently to activation of 
hypoxia-inducible factor 1 alpha (HIF-1α). By having a reduced number of GLUT-4 receptors, glucose 
influx is impaired, which in turn limits DNL. The induction of HIF-1α factor in this pathological AT 
state increases systemic inflammatory conditions. Transcriptome analysis of AT macrophages in obese 
mice revealed rewiring of the metabolic pathways within these macrophages with increased glycolysis 
and oxidative phosphorylation, rendering them as inflammatory macrophages[23]. Macrophage HIF-1α 
is involved in the formation of crown-like structures, which lead to maintenance of inflammatory 
processes and inhibition of angiogenesis in preadipocytes, leading to a vicious circle of added hypoxia 
and expansion of the aberrant AT[24] (Figure 2). Pathologic expansion of AT leads to systemic IR, as 
mentioned throughout this review.

Briefly expanding upon the importance of BAT, a 2011 paper proved how cold-induced browning of 
AT in rats controlled TG rich lipoprotein metabolism by boosting their turnover and channeling lipids 
into AT browning[25]. There has been a number of studies proving that the presence of BAT in 
adulthood is independently associated with lower probability of developing liver steatosis[26,27], for 
which multiple mechanisms have been uncovered. For instance, the uncoupling protein 1 (UCP-1) 
expressed specifically in BAT reverses obesity and also antagonizes liver inflammation and pathology
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Figure 1 Effect of insulin resistance on adipose tissue lipolysis. Under normal circumstances, insulin inhibits lipolysis in adipose tissue by inducing the 
hormone sensitive lipase, thus decreasing the release of excessive free fatty acids (FFAs) into the serum. However, in an insulin resistance state, inhibition of 
lipolysis is blocked, increasing serum FFAs, which eventually increase the influx of lipids into the liver. All the figures were created  using BioRender. AT: Adipose 
tissue; IR: Insulin resistance.

Figure 2 Adipose tissue dysfunction in metabolic dysfunction–associated fatty liver disease. Adipocyte precursor cells undergo initial proliferation 
through the wingless-related integration site (WNT) signaling pathway and thereafter commitment to the adipogenic lineage by bone morphogenetic protein 4 (BMP-4) 
stimulus, until its conversion to preadipocytes and later on to mature adipocytes. White adipose tissue can undergo beiging or browning under the influence of two 
main stimuli: BMP-4 and irisin. Browning of adipose tissue (AT) implies higher catabolic and oxidation rates, In the case of WNT, BMP-4, and WNT-1 inducible 
signaling pathway protein 2 pathway dysregulation, there is hypertrophy of AT. Physiologically, hyperplasia through the proliferation process mentioned is the 
appropriate mechanism for AT expansion. Pathologically, however, hypertrophy of AT leads to decreased levels of intracellular glucose transporter 4 and limited 
angiogenesis. Limited angiogenesis stimulates the hypoxia inducible factor 1 alpha (HIF-1a), stimulating further AT hypertrophy, creating a vicious cycle in the 
expansion of pathological AT. WAT: White adipose tissue; WISP-2: WNT-1 inducible signaling pathway protein 2; GLUT-4: Glucose transporter 4.

[28]. Interestingly, uric acid transporters have been seen to influence fatty liver[19]; a study carried out 
by Tanaka et al[29] found that the use of dotinurad (urate reabsorption inhibitor) showed amelioration 
of IR in rats by reducing liver steatosis and promoting rebrowning of AT[29].

Novel discovery of a group of lipids known as the fatty acid esters of hydroxy fatty acids (FAHFAs) 
released from the AT when appropriate levels of GLUT-4 and adipogenesis are present shed light to 
another pathway through which AT, and specially SAT, regulates systemic IR and inflammation[30]. 
FAHFAs induce metabolic health by stimulating insulin-dependent glucose transport in various tissues, 
as well as glucagon-like peptide 1 and insulin release from the gut enteroendocrine cells and the 
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pancreatic β-cells, respectively. Important anti-inflammatory effects have also been shown by studying 
docosahexaenoic acid (DHA)-derived FAHFAs’ effects in cultured human hepatoma-derived cells, 
finding potent activation of nuclear factor erythroid 2-related factor 2 with tenable antioxidant function
[31].

The answer to the question “what came first: the resistance or the fat?” could go both ways, i.e. liver 
fat build-up could be attributed to some degree to IR and hyperinsulinemia or directly from excessive 
FFA availability, which consequently brings about IR. Amount of AT, hepatic steatosis, and low-grade 
subacute inflammation are all correlated with the development of IR and MetS[32]. For this reason, the 
interaction between fat and IR is not causal, but rather reciprocal.

Skeletal muscle IR
Skeletal and cardiac muscle play important roles in glucose metabolism. Studies in humans have shown 
that it is the principal insulin-stimulated glucose uptake site (about 75% of postprandial serum glucose), 
whereas AT presents with relatively lower uptake[33]. Similar to hepatic IR, one of the ways skeletal 
muscle IR develops is by increased FFA supply, which cannot be processed by the tissue.

The association between skeletal muscle dysfunction and the progression of MAFLD has been widely 
recognized. There are several muscular conditions that are directly related to fatty liver, such as myoste-
atosis and sarcopenic obesity. We briefly touched upon the fact that AT releases adipokines key to 
metabolic regulatory systems. However, skeletal muscle also has the capacity to release hormonally 
active molecules termed myokines, which exert their function in an autocrine, paracrine, or endocrine 
fashion[34]. There are hundreds of myokines and the specific function of most has not been fully 
elucidated; however, many have shown effects in a multisystemic manner, including cognition, bone 
composition, AT “browning,” as well as lipid and glucose metabolism. Myostatin, myonectin, irisin and 
a series of interleukins are among the most important myokines. Myostatin has a negative effect on 
MAFLD progression, given that it enhances liver inflammation and fibrogenesis by hepatic stellate cell 
stimulation[35]. Irisin, on the other hand, has the opposite effect by stimulating white AT browning and 
UCP-1 expression reducing adipose IR. This is key, given that one of the hallmarks of treatment for 
MAFLD is physical exercise. Irisin, among others, is an exercise-inducible myokine; this represents one 
of the few pathways through which moderate or rigorous exercise can reduce progression in MAFLD by 
targeting IR in the liver and AT (Figure 2). An additional feature of irisin is FFA oxidation, which is a 
method for lipid removal from ectopic tissue; this will later be explained in the intrahepatic triglyceride 
content section. Lastly, myonectin plays a role in FFA oxidation in the AT and the liver, as well as 
thermogenesis. Therefore, we already see how different myokines can have both beneficial or 
detrimental effects on metabolic health depending on the collective organ characteristics. A specific 
phenotype based on lifestyle characteristics defines the myokines that will be released, e.g., irisin, and 
therefore the IR in other tissues that affects the development of liver steatosis.

Lean MAFLD
The absence of overt metabolic dysfunction in the lean population with MAFLD does not exclude the 
presence of metabolic abnormalities at cellular level. An important measurement of our hypothesis 
would be measuring the presence or absence of overt IR (e.g., as per international criteria, mainly the 
HOMA) in a follow-up period of the population.

IR causes fatty liver from the inside out and not the other way around. In other words, cellular level 
alterations can, on their own, cause increased TG accumulation in the liver, even if obesity, acanthosis 
nigricans or even HOMA are not present or are within out of normal range in the latter case.

Individuals with normal body mass index (BMI) also develop MAFLD, and many studies (mainly in 
non-Caucasian populations) have shown a lack of IR in patients with MAFLD. A study conducted by 
Ahmed et al[27] studied the presence of NAFLD in patients with different BMI (non-obese, overweight, 
and obese) and evaluated whether these NAFLD individuals presented with IR. The results showed that 
a significant number of individuals without IR had NAFLD; however, there was no analysis of whether 
the NAFLD individuals without IR had non-obese BMI. This small aspect could be quite significant, 
given that we claim that the two main contributors to MAFLD development are IR and AT dysfunction. 
Furthermore, regarding lean MAFLD, it is known that IR unrelated to obesity can occur in various 
hyperglycemic states.

It is important to establish that IR drives DNL in the liver. Fatty liver diagnosis is defined based on 
the total amount of intrahepatic TG (IHTG). A recent study showed that hepatic DNL is an important 
regulator of IHTG content, concluded after correcting for the potential confounding contribution of AT 
in DNL. It was also noted that increases in serum glucose and insulin stimulate hepatic DNL. Glucose 
and insulin promote DNL by inducing the carbohydrate response element binding protein, as well as 
the sterol regulatory element binding protein 1c (SREBP 1c) and the acetyl CoA carboxylase, 
respectively[36]. Increased serum insulin is a compensatory mechanism during IR when there is 
appropriate endocrine pancreas activity, by having increased insulin release, DNL is stimulated further.

Thus, one of the most important arguments in favor of IR as the base of pathogenesis is the fact that it 
directly stimulates DNL. The question here would be: can DNL alone be contribution enough to 
increase IHTG up to MAFLD levels? The answer is no, even though DNL contributes about 26% to total 
IHTG content, while most of it originates from increased influx of FFA and their esterification in the 
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liver, accounting for 59% of total lipid content[37]. A smaller percentage, 15%, is attributable to diet TG 
consumption, as shown by Donnelly et al[37].

Mechanisms of IHTG accumulation
Increased lipid content in the liver originates from an imbalance between FFA uptake by the liver, DNL, 
lipid oxidation, and hepatic very low density lipoprotein (VLDL) export rate[38]. TG synthesis and lysis 
are the main ways in which the liver regulates the storage of FFA in serum when levels are high, 
whereas in the case of energy expenditure, it releases VLDL particles containing FFA to the muscle and 
fat tissue[39]. There was a previous misconception on the role of hepatic TG storage as a cause of 
lipotoxicity; it is now known that TG storage and secretion of VLDL particles are protective mechanisms 
against FFA-induced lipotoxicity. An elegant study by Listenberg et al[40] proved that through 
unsaturated fatty acid supplementation in CHO an 25RA cells, a protective effect against lipotoxicity 
through TG synthesis induction was achieved[40].

TG storage in the liver is carried out through the conversion of FFAs into glycerol-3-phosphate. TGs, 
along with cholesterol esters are neutral lipid particles which can be stably stored in the liver or can be 
released as VLDL particles[41]. There are a number of mechanisms involved in FFA oxidation and lipid 
metabolism. As we briefly touched upon, irisin is one of hundreds of exercise-induced myokines 
secreted by skeletal muscle, which plays an important role in the AT-muscle-liver axis. It also regulates 
the adenosine monophosphate-activated protein kinase signaling pathway, thus increasing FFA 
oxidation in myocytes[42].

Another mechanism that helps keep the balance between the IHTG is fatty acid β-oxidation in the 
mitochondria or peroxisomes. This process leads to the production of adenosine triphosphate or in the 
case of excess FFAs, the production of ketone bodies[43]. Alterations in β-oxidation contribute to the 
development of hepatic steatosis. For instance, downregulation in peroxisome proliferator-activated 
receptor alpha (PPAR-α), which serves as an FFA sensor, leads to decreased fatty acid catabolism and 
intrahepatic lipid accumulation. These alterations also determine the severity to which steatosis will 
develop depending on the nutritional status of an individual[44]. Stimulation of PPAR-α in mice 
enhances the expression of cytochrome P450 4A and enhances lipid turnover in the liver, decreasing the 
risk of developing dietary steatohepatitis[45]. Furthermore, PPAR-α activation increases peroxisomal 
fatty acid β-oxidation by inducing acyl-coenzyme A oxidase (Acox1), the rate-limiting enzyme in the 
oxidation of very long-chain fatty acids[46,47]. Acox1 is also associated with spontaneous liver damage 
in humans, as well as spontaneous steatosis, steatohepatitis, and hepatocellular carcinoma development 
in mice[46]. Despite what we discussed, alterations in PPAR-α are not the only ones leading to hepatic 
steatosis. Instead, a number of altered function in nuclear receptors such as the pregnane and xenobiotic 
receptors, the liver X receptor, and the farnesoid X receptor (FXR) contribute to the pathogenesis of 
MAFLD[48].

What about the comorbidities in MAFLD? Let’s not forget CKD: The multiple effects of gene 
mutations
We have already discussed two primordial concepts in the understanding of MAFLD: AT dysfunction 
and IR. Even though these attributes explain a great deal of the pathogenic mechanisms involved in 
MAFLD, saying that overseeing genetic alterations involved is a mistake would hardly be an 
overstatement.

As it has been already reviewed in multiple studies and around a number of countries, there is a 
significant amount of genetic mutations that highly predispose populations to MAFLD. Even though 
there are multiple genetic mutations, the most common involves the gene patatin-like phospholipase 
domain-containing protein 3 (PNPLA3), which encodes for a protein called adiponutrin that exerts 
lipolytic action on TGs and reduces DNL within the liver. The PNPLA3 gene is present in many tissues 
in the body; however, it is most highly expressed in the liver and the kidney.

MAFLD is known for its large range of associated comorbidities; it is not only the hepatic 
manifestation of MetS but is a rather multisystemic disease on its own. A recent meta-analysis evaluated 
the risk of having NAFLD (previous nomenclature) and the risk of developing chronic kidney disease 
(CKD). In total, the data from more than a million patients were analyzed, and the study concluded that 
pre-existing NAFLD is associated with about a 1.45-fold increased risk of incident CKD stage ≥ 3[49]. 
The same team carried out a meta-analysis in 2017 showing 40% increased risk of CKD in patients with 
NAFLD[50]. Another group of researchers reached the same conclusions, showing that the presence and 
severity of NAFLD are associated with an increased risk and severity of CKD[51]. However, another 
group concluded that the association was not because of a causal relationship between MAFLD and 
CKD but was due to shared risk factors between them, namely diabetes, age, hypertension, and 
hyperuricemia[52]. This recent cross sectional study from The National Health and Nutrition 
Examination Survey 2017-2018 showed that MAFLD and CKD were not independently related after 
propensity score matching[52].

We propose an explanation for this, which might account for the high prevalence of CKD in people 
with MAFLD, and also shed light on the reason why these two diseases, even when highly correlated, 
are not independently related.
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As previously mentioned, the PNPLA3 gene is most highly expressed in two tissues: the liver and 
kidney. Mutations in the PNPLA3 gene, especially the PNPLA3 I148M variant, leads to CKD in a similar 
pattern as how the mutation predisposes to MAFLD. Montovani and his team followed this line of 
thought and by studying 157 patients with T2DM, found that the presence of this mutation (especially 
in the podocytes on the renal cortex) was associated with lower glomerular filtration rates (GFR) and 
higher risk of CKD, 63.6% vs 24.2% risk in people without homozygous mutation[53]. It is important to 
establish that the association between the PNPLA3 I148M variant and the risk of lower GFR and CKD 
development is independent of liver disease severity as well as other factors[53]. This association has 
also been found among children with MAFLD, where the PNPLA3 G/G genotype leads to decreased 
kidney function and increased 24-h proteinuria[54].

By having established this, we can understand the multifactorial nature of MAFLD and its 
comorbidities, as in this case, CKD’s. Whether or not MAFLD predisposes to kidney malfunction could 
be studied in a group of patients who develop both entities but lack mutations in the PNPLA3 gene.

While PNPLA3 gene mutations might be a common factor in the predisposition for both CKD and 
MAFLD, there are a number of nuclear transcription factors that contribute to the pathogenesis of both 
diseases. These factors include the peroxisome proliferator-activated receptor (PPAR) family, FXR, and 
SREBP2, which modify their respective molecular pathways and influence the progression of both CKD 
and hepatic steatosis[55]. For instance, the downregulation of PPAR-α, PPAR-δ, and PPAR-γ causes a 
myriad of cellular alterations in the nephron, including increased podocyte apoptosis leading to altered 
glomerular barrier integrity, increased mesangial cell hypertrophy and enhanced matrix deposition, as 
well as NF-κB activation with consequent proinflammatory cytokine secretion in the glomerular 
endothelium[56]. These same factors under physiologic circumstances suppress fibrogenesis by 
inhibiting the transforming growth factor β in stellate cells, lower the M1/M2 Kupffer cell phenotype 
ratio (thus decreasing inflammatory stimulus in the liver) and increases catalase activity in hepatocytes, 
among other functions. It is clear how downregulation of the PPAR family of factors hinders these 
protective mechanisms in the liver and promotes the development of fatty liver, as well as CKD. The 
same situation of multiorgan damage comes about with decreased expression of FXR and upregulation 
of SREBP-2, given that FXR inhibits SREBP-1c-mediated DNL in hepatocytes while decreasing reactive 
oxygen species formation in mesangial cells and increasing endothelial nitric oxide synthase in the 
glomerular epithelium[55]. Finally, SREBP-2 upregulation leads to increased cholesterol synthesis and 
decreased excretion in both liver and renal cells[57,58]. With this brief compilation of the molecular 
pathway similarities between CKD and fatty liver development, it would be of no surprise to find in the 
near future novel discoveries on further overlapping mechanisms and genetic predisposition for both 
diseases.

CONCLUSION
In conclusion, although MAFLD pathogenesis is multifactorial and complex, we consider IR to be the 
basis for the development of the disease, the abnormal metabolic profile in patients, and disease 
complications. Further research is required to fully understand and test this hypothesis along with 
others that may develop. Understanding the basis of the disease and the many variables that play a role 
in its development will lead to appropriate targeted therapies for MAFLD.
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