
World Journal of
Gastroenterology

ISSN 1007-9327 (print)
ISSN 2219-2840 (online)

World J Gastroenterol  2023 January 21; 29(3): 413-581

Published by Baishideng Publishing Group Inc



WJG https://www.wjgnet.com I January 21, 2023 Volume 29 Issue 3

World Journal of 

GastroenterologyW J G
Contents Weekly Volume 29 Number 3 January 21, 2023

REVIEW

Salvage locoregional therapies for recurrent hepatocellular carcinoma413

Criss CR, Makary MS

COVID-19 and hepatic injury: cellular and molecular mechanisms in diverse liver cells425

Ali FEM, Abd El-Aziz MK, Ali MM, Ghogar OM, Bakr AG

Seronegative spondyloarthropathy-associated inflammatory bowel disease450

Wang CR, Tsai HW

Review of ferroptosis in colorectal cancer: Friends or foes?469

Wu Z, Fang ZX, Hou YY, Wu BX, Deng Y, Wu HT, Liu J

MINIREVIEWS

Clinical implications of COVID-19 in patients with metabolic-associated fatty liver disease487

Jeeyavudeen MS, Chaudhari R, Pappachan JM, Fouda S

Potential role of the microbiome in liver injury during COVID-19: Further research is needed503

Tovani-Palone MR, Pedersini P

Artificial intelligence and inflammatory bowel disease: Where are we going?508

Da Rio L, Spadaccini M, Parigi TL, Gabbiadini R, Dal Buono A, Busacca A, Maselli R, Fugazza A, Colombo M, Carrara S, 
Franchellucci G, Alfarone L, Facciorusso A, Hassan C, Repici A, Armuzzi A

Role of advanced imaging techniques in the evaluation of oncological therapies in patients with colorectal 
liver metastases

521

Caruso M, Stanzione A, Prinster A, Pizzuti LM, Brunetti A, Maurea S, Mainenti PP

ORIGINAL ARTICLE

Retrospective Study

Magnetic resonance imaging-based deep learning model to predict multiple firings in double-stapled 
colorectal anastomosis

536

Cai ZH, Zhang Q, Fu ZW, Fingerhut A, Tan JW, Zang L, Dong F, Li SC, Wang SL, Ma JJ

SYSTEMATIC REVIEWS

Metabolic dysfunction associated fatty liver disease: The new nomenclature and its impact549

Tang SY, Tan JS, Pang XZ, Lee GH



WJG https://www.wjgnet.com II January 21, 2023 Volume 29 Issue 3

World Journal of Gastroenterology
Contents

Weekly Volume 29 Number 3 January 21, 2023

CASE REPORT

Small intestinal angiosarcoma on clinical presentation, diagnosis, management and prognosis: A case 
report and review of the literature

561

Ma XM, Yang BS, Yang Y, Wu GZ, Li YW, Yu X, Ma XL, Wang YP, Hou XD, Guo QH

LETTER TO THE EDITOR

Discussion on gemcitabine combined with targeted drugs in the treatment of pancreatic cancer579

Huang JH, Guo W, Liu Z



WJG https://www.wjgnet.com III January 21, 2023 Volume 29 Issue 3

World Journal of Gastroenterology
Contents

Weekly Volume 29 Number 3 January 21, 2023

ABOUT COVER

Editorial Board Member of World Journal of Gastroenterology, Dmitry S Bordin, MD, PhD, Chief Doctor, Professor, 
Department of Pancreatic, Biliary and Upper GI Tract Diseases, A.S. Loginov Moscow Clinical Scientific Center, 
Moscow 111123, Russia. dmitrybordin@gmail.com

AIMS AND SCOPE

The primary aim of World Journal of Gastroenterology (WJG, World J Gastroenterol) is to provide scholars and readers 
from various fields of gastroenterology and hepatology with a platform to publish high-quality basic and clinical 
research articles and communicate their research findings online. WJG mainly publishes articles reporting research 
results and findings obtained in the field of gastroenterology and hepatology and covering a wide range of topics 
including gastroenterology, hepatology, gastrointestinal endoscopy, gastrointestinal surgery, gastrointestinal 
oncology, and pediatric gastroenterology.

INDEXING/ABSTRACTING

The WJG is now abstracted and indexed in Science Citation Index Expanded (SCIE, also known as SciSearch®), 
Current Contents/Clinical Medicine, Journal Citation Reports, Index Medicus, MEDLINE, PubMed, PubMed 
Central, Scopus, Reference Citation Analysis, China National Knowledge Infrastructure, China Science and 
Technology Journal Database, and Superstar Journals Database. The 2022 edition of Journal Citation Reports® cites 
the 2021 impact factor (IF) for WJG as 5.374; IF without journal self cites: 5.187; 5-year IF: 5.715; Journal Citation 
Indicator: 0.84; Ranking: 31 among 93 journals in gastroenterology and hepatology; and Quartile category: Q2. The 
WJG’s CiteScore for 2021 is 8.1 and Scopus CiteScore rank 2021: Gastroenterology is 18/149.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Yi-Xuan Cai; Production Department Director: Xiang Li; Editorial Office Director: Jia-Ru Fan.

NAME OF JOURNAL INSTRUCTIONS TO AUTHORS

World Journal of Gastroenterology https://www.wjgnet.com/bpg/gerinfo/204

ISSN GUIDELINES FOR ETHICS DOCUMENTS

ISSN 1007-9327 (print) ISSN 2219-2840 (online) https://www.wjgnet.com/bpg/GerInfo/287

LAUNCH DATE GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH

October 1, 1995 https://www.wjgnet.com/bpg/gerinfo/240

FREQUENCY PUBLICATION ETHICS

Weekly https://www.wjgnet.com/bpg/GerInfo/288

EDITORS-IN-CHIEF PUBLICATION MISCONDUCT

Andrzej S Tarnawski https://www.wjgnet.com/bpg/gerinfo/208

EDITORIAL BOARD MEMBERS ARTICLE PROCESSING CHARGE

http://www.wjgnet.com/1007-9327/editorialboard.htm https://www.wjgnet.com/bpg/gerinfo/242

PUBLICATION DATE STEPS FOR SUBMITTING MANUSCRIPTS

January 21, 2023 https://www.wjgnet.com/bpg/GerInfo/239

COPYRIGHT ONLINE SUBMISSION

© 2023 Baishideng Publishing Group Inc https://www.f6publishing.com

© 2023 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA

E-mail: bpgoffice@wjgnet.com  https://www.wjgnet.com

https://www.wjgnet.com/bpg/gerinfo/204
https://www.wjgnet.com/bpg/GerInfo/287
https://www.wjgnet.com/bpg/gerinfo/240
https://www.wjgnet.com/bpg/GerInfo/288
https://www.wjgnet.com/bpg/gerinfo/208
http://www.wjgnet.com/1007-9327/editorialboard.htm
https://www.wjgnet.com/bpg/gerinfo/242
https://www.wjgnet.com/bpg/GerInfo/239
https://www.f6publishing.com
mailto:bpgoffice@wjgnet.com
https://www.wjgnet.com


WJG https://www.wjgnet.com 521 January 21, 2023 Volume 29 Issue 3

World Journal of 

GastroenterologyW J G
Submit a Manuscript: https://www.f6publishing.com World J Gastroenterol 2023 January 21; 29(3): 521-535

DOI: 10.3748/wjg.v29.i3.521 ISSN 1007-9327 (print) ISSN 2219-2840 (online)

MINIREVIEWS

Role of advanced imaging techniques in the evaluation of 
oncological therapies in patients with colorectal liver metastases

Martina Caruso, Arnaldo Stanzione, Anna Prinster, Laura Micol Pizzuti, Arturo Brunetti, Simone Maurea, Pier 
Paolo Mainenti

Specialty type: Gastroenterology 
and hepatology

Provenance and peer review: 
Invited article; Externally peer 
reviewed.

Peer-review model: Single blind

Peer-review report’s scientific 
quality classification
Grade A (Excellent): 0 
Grade B (Very good): B 
Grade C (Good): C 
Grade D (Fair): 0 
Grade E (Poor): 0

P-Reviewer: Mohey NM, Egypt; 
Reis F, Brazil

Received: October 6, 2022 
Peer-review started: October 6, 
2022 
First decision: October 21, 2022 
Revised: November 25, 2022 
Accepted: January 3, 2023 
Article in press: January 3, 2023 
Published online: January 21, 2023

Martina Caruso, Arnaldo Stanzione, Arturo Brunetti, Simone Maurea, Department of Advanced 
Biomedical Sciences, University of Naples "Federico II", Napoli 80131, Italy

Anna Prinster, Laura Micol Pizzuti, Pier Paolo Mainenti, Institute of Biostructures and 
Bioimaging, National Research Council, Napoli 80131, Italy

Corresponding author: Arnaldo Stanzione, MD, PhD, Postdoc, Department of Advanced 
Biomedical Sciences, University of Naples "Federico II", Via S. Pansini 5, Napoli 80131, Italy.  
arnaldo.stanzione@unina.it

Abstract
In patients with colorectal liver metastasis (CRLMs) unsuitable for surgery, onc-
ological treatments, such as chemotherapy and targeted agents, can be performed. 
Cross-sectional imaging [computed tomography (CT), magnetic resonance 
imaging (MRI), 18-fluorodexoyglucose positron emission tomography with 
CT/MRI] evaluates the response of CRLMs to therapy, using post-treatment 
lesion shrinkage as a qualitative imaging parameter. This point is critical because 
the risk of toxicity induced by oncological treatments is not always balanced by an 
effective response to them. Consequently, there is a pressing need to define bio-
markers that can predict treatment responses and estimate the likelihood of drug 
resistance in individual patients. Advanced quantitative imaging (diffusion-
weighted imaging, perfusion imaging, molecular imaging) allows the in vivo 
evaluation of specific biological tissue features described as quantitative 
parameters. Furthermore, radiomics can represent large amounts of numerical 
and statistical information buried inside cross-sectional images as quantitative 
parameters. As a result, parametric analysis (PA) translates the numerical data 
contained in the voxels of each image into quantitative parameters representative 
of peculiar neoplastic features such as perfusion, structural heterogeneity, 
cellularity, oxygenation, and glucose consumption. PA could be a potentially use-
ful imaging marker for predicting CRLMs treatment response. This review 
describes the role of PA applied to cross-sectional imaging in predicting the 
response to oncological therapies in patients with CRLMs.

Key Words: Colorectal cancer metastases; Prediction response; Computed tomography; 
Magnetic resonance imaging; Positron emission tomography; Parametric imaging
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Core Tip: Chemotherapy and targeted agents can be administered to patients with colorectal liver 
metastasis (CRLM) unsuitable for surgery. The risk of toxicity requires identification of imaging 
biomarkers that can estimate the likelihood of response and drug resistance before starting therapy. 
Clinical validation may aid clinicians in tailoring their individual treatment regimens. In this setting, 
parametric analysis applied to cross-sectional imaging plays a crucial role in evaluating in vivo peculiar 
neoplastic features, such as perfusion, structural heterogeneity, cellularity, oxygenation, and glucose 
consumption. However, there is no consensus on the most promising imaging quantitative parameter to 
predict therapy response in CRLMs patients.

Citation: Caruso M, Stanzione A, Prinster A, Pizzuti LM, Brunetti A, Maurea S, Mainenti PP. Role of advanced 
imaging techniques in the evaluation of oncological therapies in patients with colorectal liver metastases. World J 
Gastroenterol 2023; 29(3): 521-535
URL: https://www.wjgnet.com/1007-9327/full/v29/i3/521.htm
DOI: https://dx.doi.org/10.3748/wjg.v29.i3.521

INTRODUCTION
Colorectal cancer is one of the most common cancers worldwide and the fourth leading cause of cancer 
death[1]. Unfortunately, up to 19% of colorectal cancer patients present with liver metastasis at 
diagnosis, while up to 13% develop it within the 5-year follow-up[1]. Surgery plays a crucial role in 
improving the prognosis of colorectal liver metastasis (CRLMs), but only 20% of them are initially 
suitable for this approach[2]. Hence, systemic chemotherapy is the treatment of choice for the remaining 
80% of patients with the aim of rendering metastases resectable and/or prolonging survival[3]. In 
clinical practice, systemic chemotherapy based on a combination of fluoropyrimidines with oxaliplatin 
and/or irinotecan is usually associated with targeted agents. The assessment of KRAS, NRAS, and BRAF 
genes status influences the choice of the most appropriate targeted agents: If they are wild-type, 
panitumumab or cetuximab, epidermal growth factor receptor (EGFR) antibodies, are preferred, 
whereas if they are mutated, bevacizumab, a vascular endothelial growth factor (VEGF) antibody, is 
chosen[4]. In this setting, the cross-sectional imaging evaluation, represented by computed tomography 
(CT), magnetic resonance imaging (MRI) and 2-[18F]fluoro-2-deoxy-D-glucose positron emission 
tomography (2-[18F]FDG-PET) associated with CT or MRI (2-[18F]FDG-PET/CT or MRI), is fundamental 
in the assessment of treatment response based on dimensional evaluation of tumour burden in 
consecutive scans through the application of standardised criteria, known as “Response Evaluation 
Criteria in Solid Tumours (RECIST, Figure 1)”[5-7]. These criteria have been very useful in the 
assessment of treatment response to cytotoxic chemotherapeutic agents, but the introduction of targeted 
agents with predominant cytostatic effects, such as anti-EGFR and anti-VEGF, makes them insufficient 
for adequate response imaging evaluation. Indeed, solid tumours may respond to these new agents by 
developing intra-tumoural necrotic areas and/or cystic, fibrotic, or myxoid degeneration, resulting in an 
overall increased, decreased, or unchanged size. Thus, the assessment of treatment response during 
follow-up based purely on dimensional evaluation of the tumour burden seems no longer sufficient. 
Furthermore, targeted agents are more expensive than cytotoxic agents and are burdened by hepatic 
toxicity (steatosis, hepatitis, sinusoidal obstruction syndrome, and impaired liver function). Considering 
these issues, identification of imaging biomarkers that can estimate the likelihood of response and drug 
resistance in individual patients before or immediately after starting therapy is mandatory. This critical 
point represents not only a clinician request to avoid unnecessary drug toxicity and the starting delay of 
alternative therapies, potentially more effective, but also an economic requirement to reduce futile 
health care costs.

The growth of neoplastic tissue is characterised by the activation of several biological processes, such 
as neoangiogenesis and anarchic cellular proliferation, which determine neoplastic heterogeneity for the 
coexistence of high cell density, necrotic, hypoxic, haemorrhagic, and necrotic areas. Neoplastic cells are 
characterised by increased metabolism and glucose consumption. Currently, these biological neoplastic 
processes as well as the neoplastic heterogeneity can be analysed in vivo applying several post-
processing imaging analyses to different cross-sectional imaging techniques, such as diffusion-weighted 
imaging (DWI) on MRI, perfusion imaging on CT and MRI, and molecular imaging on 2-[18F]FDG-
PET/CT and MRI. The in vivo structural, functional, and molecular information obtained from imaging 
is expressed through parametric parameters, which represent potentially useful biomarkers in clinical 
practice. Parametric analysis (PA) allows the extraction of numerical data contained in the voxels of 
each image and converts the extracted numerical data into quantitative parametric maps, which are 

https://www.wjgnet.com/1007-9327/full/v29/i3/521.htm
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Figure 1 Contrast enhanced computed tomography images from a patient with colon cancer. A: Baseline computed tomography (CT) 
demonstrates the presence of multiple liver metastases; B: After four cycles of combined chemotherapy (folinic acid + fluorouracil + irinotecan + cetuximab) the CT 
scan shows a reduction in both size and number of liver metastases, which was classified as a partial response with Response Evaluation Criteria in Solid Tumours 
criteria; C and D: The partial response was then confirmed after (C) 8 and (D) 12 chemotherapy cycles.

representative of peculiar neoplastic features, such as perfusion, structural heterogeneity, cellularity, 
oxygenation, and glucose consumption, depending on the imaging modalities and techniques used. PA 
requires the drawing of a region of interest (ROI) or volume of interest that includes the target tissue for 
analysis. In recent years, PA has been enriched with radiomics, a complex multi-step process that allows 
the extraction of a huge amount of computational quantitative features from digital medical images, 
thereby increasing the potential role of cross-sectional imaging in the oncological field. Radiomics has 
recently emerged as a promising tool for discovering new imaging biomarkers by extracting and 
analysing numerous quantitative image features representative of tumour heterogeneity and 
phenotype. Radiomics combines quantitative imaging biomarkers with clinical reports and laboratory 
test values in statistical models[8].

Finally, the response to chemotherapeutic agents is influenced by their delivery to neoplastic tissues, 
which is influenced by the tumour microenvironment and cellular characteristics, such as uptake, 
retention, metabolic activation, and catabolism of drugs, as well as genetic factors such as DNA repair 
mechanisms[9]. The in vivo knowledge of peculiar neoplastic features through cross-sectional imaging 
may provide imaging biomarkers aiding in the prediction of treatment response and drug resistance. To 
date, several researchers have investigated the role of quantitative imaging parameters in the pre-
treatment response prediction of CRLMs patients using MRI, CT, and 2-[18F]FDG-PET/CT or MRI[10,
11], but there is no clear consensus about which is the most promising imaging technique as well as the 
most promising quantitative imaging parameter. Therefore, this review aimed to describe the role of PA 
in predicting the response to oncological therapies in patients with CRLMs.

PA BASED ON MRI DIFFUSION TECHNIQUE
DWI with apparent diffusion coefficient maps
DWI is a functional MRI technique that measures the Brownian motion of water molecules in biological 
tissues, which is restricted by an increase in cellularity and architectural tissue changes[12]. 
Consequently, in tumour tissues, the dense cellularity associated with fibrosis, necrosis, neovascular-
ization, and haemorrhages reduces the intercellular space, altering water diffusion properties and 
restricting Brownian motion. Diffusion-weighted MR images measure the apparent diffusion coefficient 
(ADC), which is inversely proportional to the cell density, presumably resulting from the tortuosity of 
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the interstitial space and the consequential limitation of water movement. Tumours with high cellularity 
tend to present low ADC values on diffusion-weighted MRI because of their high cellularity, character-
istically presenting with restriction in these lesions. Therefore, using DWI, it is possible to obtain a 
parametric ADC map, which is composed of the ADC values calculated for each voxel and represents a 
quantitative measure of water molecule diffusion expressed as 10-3 mm2/s. ADC is inversely related to 
tumour cellularity and is strongly affected by molecular viscosity, permeability of the membrane 
separating the intra- and extracellular compartments, as well as active transport and flow[13]. During 
treatment, the increase in necrosis, loss of cell membrane integrity, decrease in tumour cellularity, and 
increase in extracellular spaces determine the increase in water diffusion and, consequently, the increase 
in ADC values[14]. However, it should be mentioned that a transient decrease in ADC may occur 
during the first 36–48 h after starting therapy with vascular targeting agents, and the rationale may be 
the activation of a local immune response, as demonstrated in animal models[15]. Since DWI/ADC 
provides in vivo structural information of tissue composition at any time, and tissue composition 
influences the treatment response, several authors have investigated the role of this MRI technique in 
predicting or assessing very early therapy response in patients with CRLMs[16-21]. Most of them are 
concordant that pre-treatment lower ADC is associated with a better response in CRLMs patients, while 
a higher ADC is associated with a poorer response[16-18,20]. In particular, Cui et al[17] evaluated 11 
patients with CRLMs and found that the pre-chemotherapy mean ADC values was significantly lower 
in responding lesions than those in non-responding lesions (0.948 ± 0.147 × 10-3 mm2/s vs 1.185 ± 0.275 × 
10-3 mm2/s; P = 0.003). Furthermore, Koh et al[16] analysed 20 patients with 40 CRLMs and observed that 
high pre-treatment ADC was predictive of poor response to oxaliplatin- and 5-fluorouracil-base 
chemotherapy (non-responders: 1.55 × 10-3 mm2/s; responders: 1.36 × 10-3 mm2/s; P < 0.001). These 
results were confirmed by Tam et al[18] and Fouladi et al[20]. The former conducted a study on a larger 
population composed of 102 patients with CRLMs treated with chemotherapy alone or associated with 
surgery/radiofrequency ablation (non-responders: 1.40 × 10-3 mm2/s; responders: 1.16 × 10-3 mm2/s; P = 
0.024)[18]. The latter tested the usefulness of baseline 3D ADC to identify the potential responding 
CRLMs (non-responders: 1332.3 ± 384.6 × 10-6 mm2/s; responders: 1150.2 ± 272.9 × 10-6 mm2/s; P = 0.04)
[20]. Recently, Uutela et al[22] investigated the correlation between ADC values at baseline and the 
RECIST response in a prospective study conducted in 52 patients with CRLM. ADC values below the 
median of 1.20 × 10-3 mm2/s at baseline were associated with partial response according to the RECIST 
criteria 8–12 wk after starting therapy[22].

The biological rationale of these results can be postulated as follows: A higher ADC is observed in 
necrotic tissues, whereas a lower ADC is observed in viable areas. Necrosis before therapy may indicate 
a more aggressive phenotype and compromise the delivery of chemotherapeutic drugs; therefore, 
necrotic areas are usually poorly perfused and tumour cells are exposed to a more hypoxic and acidic 
environment. These factors reduce the effectiveness of the therapy[23]. However, it should be 
highlighted that coagulative necrosis does not increase the ADC, which could explain non-responding 
lesions with lower ADC[16]. In contrast, viable areas are usually well-perfused, facilitating the delivery 
and retention of anticancer agents.

Currently, there is no consensus regarding the optimal cutoff point ADC value for predicting 
response to treatment. The most important factors that influence the identification of a generally 
accepted ADC threshold are several, such as different scanners, methods of acquisition, sequence 
parameters, and choice of b values. The b-value is a factor that reflects the strength and timing of the 
gradients used to generate DWI images: The higher the b-value, the stronger the diffusion effect. Koh et 
al[16] identified a mean pre-treatment ADC value of 1.69 × 10-3 mm2/s for CRLMs that did not respond 
to chemotherapy with a sensitivity of 60% and a specificity of 100%, whereas Fouladi et al[20] proposed 
the baseline 3D-ADC value as the optimal cut-off point of 1.006 × 10-3 mm2/s with a sensitivity of 77.4% 
and a specificity of 91.3%. In this setting, Drewes et al[11] conducted a meta-analysis and identified a 
practical ADC threshold value of 1.2 × 10-3 mm2/s, below which nearly all responders are situated and 
no simultaneous overlap with non-responders exists.

Although, according to the aforementioned results, ADC could appear to be a promising predictive 
biomarker, some studies contradict these previous results[19,21]. Matsushima et al[19] did not find a 
significant difference in ADC values between responders and non-responders to CRLMs treated with 
bevacizumab. Boraschi et al[21] correlated pre-chemotherapy ADC values of 58 CRLMs with histological 
tumour regression grade (TRG). TRG is a histological descriptive system aimed at grading fibrotic 
transformation induced in tumours by neoadjuvant therapy. In detail, TRG 1 is represented by fibrosis 
with no evidence of residual tumour (i.e. complete regression), TRG 2 is represented by fibrosis with 
single cells or rare groups of residual tumour cells, TRG 3 is represented by fibrosis and residual tumour 
with a dominance of fibrosis, TRG 4 is represented by fibrosis and residual tumour with a dominance of 
tumour, and TRG 5 is represented by extensive tumour without evidence of regression[24,25]. A non-
linear distribution was observed between pre-ADC values and TRG; lower pre-ADC values correlated 
with TRG 2-3, but an overlap was observed between TRG 1 (complete response) and TRG 4-5 (no 
response). The heterogeneous structure of liver metastases in terms of cellularity, necrosis, and/or 
calcification may explain these results.
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Finally, the potential role of ADC in the early prediction of therapy response in CRLMs was also 
evaluated. Cui et al[17] observed an increase in ADCs on day 3 or 7 after initiating chemotherapy in 
responders, suggesting a very early change in tissue composition from a more cellular pre-treatment 
phenotype to a less cellular or necrotic posttreatment phenotype. Knowledge of therapy effectiveness as 
soon as possible allows clinicians to prevent overtreatment of non-responder patients, thus avoiding 
adverse effects.

Intravoxel incoherent motion and diffusion kurtosis imaging 
The ADC value is calculated by a mono-exponential relationship between the DWI signal and b-value. 
Hence, ADC is influenced by tumour heterogeneity and the Gaussian movement of water molecules. 
The heterogeneity of tumour tissues affects the non-Gaussian diffusion behaviour of water molecules; 
therefore, new non-mono-exponential diffusion models, such as intravoxel incoherent motion (IVIM) 
and diffusion kurtosis imaging (DKI), have been proposed to better characterise neoplastic tissues. IVIM 
assesses both diffusion and microcapillary perfusion changes in tissues by analysing the signal decay 
curve obtained from multiple b values and provides both diffusion-related parameters, such as the true 
diffusion coefficient (D) and ADC, and perfusion-related parameters, such as the pseudodiffusion 
coefficient (D*) and perfusion fraction (f)[26]. DKI estimates and quantifies the skewed distribution of 
water diffusion based on a probability distribution function[27]. In addition to the diffusion coefficient, 
DKI extracts the kurtosis value (K) that results from the probability of the diffusion displacement distri-
bution, which is a dimensionless metric. These advanced MRI diffusion techniques have been invest-
igated for predicting the treatment response in patients with CRLM[26,28,29]. Zhang et al[29] conducted 
a prospective study of 40 patients with CRLMs to evaluate the performance of DWI, IVIM, and DKI in 
predicting therapy response. Their results confirmed the promising role of ADC and suggested the 
potential role of IVIM and DKI. At baseline, lower ADCs and D on the IVIM parameter map, mean 
diffusion values, and higher K values on the DKI parameter map correlated with a better response (P = 
0.001, < 0.001, = 0.003, = 0.002, respectively), with areas under the curve (AUCs) of 0.845, 0.832, 0.819, 
and 0.787, respectively. ADC reached the highest AUC (0.845) with a sensitivity of 73.3%, specificity of 
84.0%, and cut-off value of 1.107 × 10-3 mm2/s. In the literature, D is reported to positively correlate with 
the degree of tumour necrosis as well as ADC; hence, lower D is expression of poor presence of necrosis 
and better response to chemotherapy[30]. The combination of the aforementioned parameters by logistic 
regression yielded an AUC of 0.867[29]. Furthermore, Zhou et al[28] found that K values were higher in 
patients with non-responding CRLMs (responders 0.77 ± 0.15 vs non-responders 0.90 ± 0.15; P = 0.015), 
as expression of more complex microstructure, composed of micro-necroses, fibroses, and cystic 
changes. Finally, Kim et al[26] observed a significant change in diffusion parameters of IVIM, such as 
ADC and D, after the first cycle of therapy in responder patients, whereas perfusion-related IVIM 
parameters did not change significantly in both groups, suggesting that diffusion-related IVIM 
parameters are more useful than perfusion-related parameters in differentiating early responders from 
non-responders, avoiding overtreatment of patients who may not benefit from chemotherapy.

PA BASED ON SPECTROSCOPY
MR spectroscopy (MRS) is an advanced imaging technique that allows for the non-invasive mea-
surement of the levels of some molecules in vivo, using the magnetic properties of certain atomic nuclei, 
such as protons (1H), phosphorus (31P), and carbon-13 (13C)[31]. Therefore, MRS can provide information 
on tumour pathophysiology and metabolism, potentially influencing treatment planning[32]. Currently, 
very few studies have investigated the role of MRS in the assessment and prediction of treatment 
response in patients with CRLMs with poor and discordant results[22,31,33]. In 31P MRS, an increased 
ratio of phosphomonoesters and nucleoside triphosphate is associated with tumour progression, while 
it decreases with tumour regression, even in the absence of changes in standard imaging[31]. These 
results may encourage the use of MRS in monitoring treatment response. Similarly, Kamm et al[33] 
observed a correlation between the maximum levels of 5-FU catabolites on 19F-MRS and the response to 
treatment in patients with larger CRLMs, suggesting a potential role of MRS in the prediction of therapy 
response. In contrast, Uutela et al[22] did not find a significant association between baseline levels of free 
choline on 1H-MRS and treatment response according to the RECIST criteria. Therefore, the role of this 
technique in patients with CRLMs remains to be investigated. Currently, MRS is not yet applied in 
clinical settings because of technical issues such as the relatively long scan times needed for a good 
signal-to-noise ratio, as well as the need for additional hardware and expertise in spectral interpretation.

PA BASED ON CONTRAST-ENHANCED CT OR MRI
Neoangiogenesis is induced by the upregulation of vascular growth factors and is required for tumour 
growth. This leads to the development of a new, altered, and immature microcirculatory network inside 
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the tumour lesions. The irregular vascular pattern promotes the coexistence of areas of low vascular 
density and areas of high angiogenic activity; consequently, regions of high cell density and necrotic, 
haemorrhagic, and myxoid changes are observed. The use of contrast medium and the acquisition of CT 
or MRI images before and after its intravenous injection allows the assessment of the vascularity of 
biological tissues in vivo, hence the tumours’ neoangiogenesis. Tissue contrast enhancement can be 
evaluated using two different CT or MRI imaging modalities. One is dynamic and is based on repeated 
high-frequency image acquisition, which allows the assessment of changes in density on CT or signal 
intensity on MRI over time. The other is based on image acquisition at a fixed time point to obtain at 
least two or three phases (arterial, portal, and delayed). A broad spectrum of quantitative parameters 
can be extracted using dynamic acquisition images, which reflect tumour vessel features (perfusion, 
permeability, and density), extracellular-extravascular space composition, and plasma volume. A 
summary of the main quantitative parameters used in the assessment of treatment response in patients 
with CRLM is presented in Table 1. The development of targeting agents with angiogenesis-inhibiting 
effects, such as bevacizumab, has encouraged studies to examine the correlation between angiogenesis 
and quantitative imaging parameters. Currently, several potential predictive imaging biomarkers have 
been identified in different types of cancers, such as renal cell carcinoma, hepatocellular carcinoma, 
hypopharyngeal carcinoma, and colorectal cancer[10,34-36].

Contrast-enhanced MRI
Few studies have been published regarding the predictive role of MRI quantitative perfusion 
parameters in patients with CRLMs[37-41]. In particular, Coenegracht et al[37] observed in 10 patients 
with CRLMs a significant difference of Kep values between responders and non-responders (0.09852 vs 
0.07829; P < 0.001); O’Connor et al[41] also noticed a high ratio of enhancing tumour voxels to overall 
tumour voxels in patients with better tumour response. The pathophysiological basis of these results 
should be as follows: Higher baseline Kep values indicate higher exchange of contrast medium between 
the blood and the extracellular extravascular space; similarly, a higher exchange of chemotherapy may 
occur. For this reason and for the presence of an oxygen-rich environment, highly perfused CRLMs at 
baseline are more likely to respond well to treatment. Furthermore, the role of MRI quantitative 
perfusion parameters in the prediction of treatment response in patients with CRLMs after the first cycle 
of a chemotherapy regimen containing bevacizumab has also been investigated. Hirashima et al[38] 
observed a correlation between a higher response and the decrease in Ktrans ratio (∆Ktrans) and Kep ratio (∆
Kep), calculated at baseline and after the first cycle (P < 0.0001). De Bruyne et al[40] found a correlation 
between worse response and an increase of at least 40% in Ktrans after the first cycle of treatment. These 
results suggest a potential role for quantitative dynamic contrast-enhanced MRI (DCE-MRI) parameters 
in the early prediction of therapy response and in the assessment of drug resistance[38,40]. On the other 
hand, Kim et al[39] observed discordant results; no significant change in perfusion parameters, such as 
Ktrans, Kep and Ve, was found after the first cycle of chemotherapy between responders and non-
responders, questioning their role in predicting early therapy response in CRLMs patients.

In clinical practice, gadoxetic acid, a hepatobiliary contrast agent incorporated into hepatocytes by the 
transporter OATP1B3, is used to better assess CRLMs because of the excellent lesion-to-liver contrast of 
the hepatobiliary phase (HBP). Murata et al[42] investigated the role of gadoxetic acid-enhanced MRI in 
predicting treatment response in patients with CRLMs. The authors calculated the pre-treatment 
relative tumour enhancement of the HBP (RTEHBP) in 26 patients with CRLMs using the following 
formula: RTE values (%) = [(SIH - SIP)/SIP] × 100, where SIH and SIP are the signal intensities in the 
hepatobiliary and pre-contrast phases, respectively. The mean pre-treatment RTEHBP values were 
significantly higher in responders than in non-responders (37.2% ± 10.9% vs 17.9% ± 10.5%; P = 0.0006), 
suggesting a potential association between chemotherapeutic response and OATP1B3 expression. 
OATP1B3 is an organic anion transporter that is incorporated into hepatocytes, not only in gadoxetic 
acid, but also in endogenous and exogenous molecules, such as bile acids and chemotherapeutic agents.

Contrast-enhanced CT
CRLMs are generally hypovascular lesions in the portal phase that obtain their blood supply primarily 
from the hepatic artery; hence, they are arterialised tumours with increased blood flow (BF) and 
vascular permeability[43]. Based on this assumption, Joo et al[44] investigated the haemodynamic 
features of liver metastases using quantitative colour mapping of the arterial enhancement fraction 
(AEF) to explore its potential role in the prediction of therapeutic response in patients with CRLMs. The 
Authors observed a higher mean AEF value of metastatic tumour (58.9 ± 18.8) than that of tumour-
adjacent parenchyma (35.5 ± 15.4) and tumour-free parenchyma (26.4 ± 7.5) (all P < 0.0001), confirming 
the arterial vascularisation of liver metastases. Similarly, Kim et al[45] extracted some perfusion 
parameters from perfusion CT of 17 patients with CRLMs and noticed that BF, Ktrans, and portal liver 
perfusion were significantly lower in metastatic lesions than in background normal liver parenchyma 
(41.2 vs 50.8, 25.9 vs 41.2, 19.3 vs 40.9 mL/100 mL/min, respectively), while arterial CRLM perfusion 
indices were significantly higher than those of hepatic perfusions (28.0 vs 22.9 mL/100 mL/min and 
57.1% vs 26.6%, respectively) (P < 0.05). The metastatic blood supply from the hepatic artery and their 
increased arterial perfusion may be due to the development of a microcirculatory network caused by the 
neoangiogenesis process. As a consequence, responding lesions of CRLMs patients showed significantly 
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Table 1 Main quantitative parameters extracted from perfusion computed tomography and magnetic resonance imaging imaging 
techniques to predict treatment response in patients with colorectal liver metastasis

Parameter name Parameter definition Parameter significance

Transfer constant (K
trans)

Rate of contrast extraction from the blood to the interstitium It reflects the balance between capillary 
permeability and BF in a tissue

Tissue interstitial 
volume (Ve)

Volume of extravascular and extracellular contrast agent in a certain tissue, 
expressed as a percentage

It is a measure of cell density

Rate contrast (Kep) Rate at which the contrast agent returns from the extravascular-extracellular 
space to the vascular compartment (Kep = Ktrans/Ve)

It reflects the tissue microcirculation and contrast 
agent permeability

Regional BF BF per unit volume or mass of tissue (mL of blood/min/100 mL of tissue) It expresses the rate of the delivery of nutrients 
and oxygen to a certain tissue

BF: Blood flow.

higher AEF values than that non-responding (65.5 ± 9.6 vs 51.3 ± 13.2; P = 0.005)[44]. These results are 
concordant with those of Osawa et al[46], who investigated the predictive role of contrast-enhanced CT 
in patients with CRLM treated with chemotherapy with or without bevacizumab. The authors found a 
significant correlation between a higher composite endpoint (CE) ratio (ratio of CT value during the 
arterial phase to unenhanced CT value) at baseline and higher tumour shrinkage after four cycles of 
chemotherapy associated with bevacizumab (R2 = 0.24, P = 0.03), unlike in patients not treated with 
bevacizumab. Furthermore, among CRLM patients with a high CE ratio at baseline, an increase of 29.6% 
in the tumour shrinkage rate was observed in those treated with bevacizumab compared with a 
decrease of 1.46% in those not treated with bevacizumab (P = 0.03). Among the CRLMs patients with a 
low CE ratio at baseline, no significant tumour shrinkage was noted. The rationale for these results is 
unclear, but we can hypothesise that the presence of higher microvessel density at baseline, evaluated 
on CT as higher AEF values or higher CE ratios, promotes greater delivery of chemotherapeutic agents. 
Hence, the assessment of these parameters at baseline could be useful in the prediction of treatment 
response and drug resistance in patients with CRLMs.

Finally, although Kim et al[45] did not find any significant difference in perfusion parameters at 
baseline between responder and non-responder patients with CRLMs, they observed a significant 
decrease in BF and Ktrans after the first cycle of chemotherapy (BF: 28.3% vs 5.2%, P = 0.036, AUC: 0.806; 
Ktrans: 18.7% vs 13.0%, P = 0.027, AUC: 0.819). The early reduction in perfusion parameters may reflect 
the inhibiting effect of neo-angiogenesis by anticancer drugs and should encourage clinicians to 
continue the chosen chemotherapy regimen. Furthermore, the Authors identified a cut-off value for the 
reduction rate of Ktrans of 15.0% after the first cycle of chemotherapy, with a sensitivity of 66.7% and 
specificity of 87.5%[45].

PA BASED ON HYBRID IMAGING
The 2-[18F]FDG-PET/CT and 2-[18F]FDG-PET/MRI are molecular and morphological imaging tec-
hniques associated with metabolic and anatomical evaluation of tumour lesions[47,48]. The tracer 2-[18

F]FDG, an analogue of glucose, is injected intravenously, transported into cells through membrane 
glucose transporter proteins, and tends to accumulate in malignant cells because of increased glucose 
consumption[49]. The uptake of 2-[18F]FDG detected by PET can be quantitatively assessed using 
different parameters; the main parameters used in the prediction of therapy response in CRLMs patients 
are shown in Table 2[45,48].

Currently, the quantitative evaluation of tumour metabolism using 2-[18F]FDG-PET integrated with 
CT or MRI plays a crucial role in the routine management of oncological patients. In patients with 
colorectal cancer, hybrid imaging aids in the detection of extrahepatic distant metastasis in the 
evaluation of therapy response, as well as in the follow-up of treated patients with rising serum 
carcinoembryonic antigen (CEA) levels and no detectable disease on morphological imaging[48]. To 
date, the role of this hybrid technique in the prediction of treatment response in CRLMs patients 
remains under investigation. Several studies have shown that standardised maximum uptake value 
(SUVmax) is significantly lower in responders than in non-responders before chemotherapy with or 
without bevacizumab[10,40,45,50-52]. In detail, Byström et al[50] found a mean baseline SUVmax of 5.6 in 
responders and 7.4 in non-responders treated with irinotecan-based chemotherapy (P = 0.02). Similarly, 
De Bruyne et al[40] observed a mean baseline SUVmax of 3.77 in responders and 7.20 in non-responders 
treated with FOLFOX/FOLFIRI and bevacizumab followed by surgery (P = 0.012). In addition, De 
Bruyne et al[40] did not find any correlation between DCE-MRI parameters, SUVmax and anatomical 
tumour response, suggesting that tumour BF, glucose metabolism, and shrinkage are potentially 
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Table 2 Main quantitative parameters extracted from the 18-fluorodexoyglucose positron emission tomography used in the prediction 
of treatment response in patients with colorectal liver metastasis

Parameter name Parameter definition

SUVmax Uptake value of the pixel with the highest activity inside an ROI divided by the injected dose, which must be 
corrected for decay and normalised to the patient’s weight or body surface

SUVmean Average of all the uptake values of the pixels within an ROI

Volume of tumour tissues included in a tridimensional ROI with pathological FDG uptake via threshold 
represented by a settled absolute value or percentage of the SUVmax or SUVmean

MTV

It includes both volumetric data and metabolic activity of the tumour

TLG The product of multiplying SUVmean by MTV

A marker of total lesion glycolysis, calculated by drawing a volume of interest [VOI(1)] around the tumour and a 
larger VOI [VOI(2)] around VOI(1)

SAM = Total SUV VOI1 − (mean BG × volume VOI1)

SAM

Mean BG (background activity) = (total SUV VOI2 − total SUV VOI1)/(volume VOI2 − volume VOI1)

SUVmax: Standardised maximum uptake value; SUVmean: Standardised mean uptake value; MTV: Metabolic tumour volume; TLG: Total lesion glycolysis; 
SAM: Standardised added metabolic activity; FDG: Fluorodexoyglucose; PET: Positron emission tomography; ROI: Region of interest; VOI: Volume of 
interest.

independent predictors[40]. Mertens et al[53] introduced a new metabolic parameter, the standardised 
added metabolic activity (SAM), which is a marker of total lesion glycolysis that measures the total 
excess tumoural SUV above the tumour background (Table 2). The authors found a significant 
difference in both SAM and SUVmax at baseline between responders and non-responders (34 vs 211, P = 
0.002; 3.8 vs 7.2, P = 0.021, respectively)[52].

In addition to SUVmax, other metabolic parameters have been proposed as predictors of therapy 
response in patients with CRLMs, such as standardised mean uptake value (SUVmean30), metabolic 
tumour volume (MTV30) and 30% lesion glycolysis (LG30). SUVmean30 was defined as the average value of 
the SUV of the voxels that showed SUVmax ≥ 30%. MTV30 was defined as the tumour volume segmented 
via the threshold SUVmean30 of the lesion. Finally, LG30 was obtained by multiplying MTV30 by SUVmean30. 
Kim et al[45] observed a higher mean SUVmean30 in responder than in non-responder patients with 
CRLMs on prechemotherapy 2-[18F]FDG-PET/CT (5.2 ± 2.3 vs 3.5 ± 1.0, P = 0.046; AUC: 0.792) and a 
significant difference in the reduction rate of MTV30 and LG30 between responders and non-responders 
(18.1% vs -5.5%, P = 0.015, AUC: 0.847; 37.9% vs 10.7%, P = 0.008, AUC: 0.868, respectively) on 2-[18

F]FDG-PET/CT performed 2 or 3 wk after the first cycle of chemotherapy. These results suggest the role 
of these other 2-[18F]FDG-PET/CT quantitative parameters in the prediction of treatment response in 
patients with CRLMs. In the same population, Kim et al[45] did not observe a significant reduction in 
the SUVmax after the first cycle of therapy between responders and non-responders. A possible 
explanation is that SUVmax is based only on a single pixel and does not consider the entire heterogeneous 
tumour volume, whereas MTV and LG are volume-based parameters and could be more accurate in the 
early prediction of treatment response. Similarly, Hendlisz et al[51] investigated the potential role of 2-[18

F]FDG-PET/CT in the prediction of early response after the first cycle of chemotherapy in patients with 
CRLMs. To avoid metabolic imaging-based rejection of potentially beneficial therapy, the lowest 
possible reliable response threshold for FDG uptake changes, the ΔSUVmax < 15%, was applied. Using 
this threshold, the predictive performance of the metabolic assessment for RECIST response showed a 
sensitivity of 100%, specificity of 57%, positive predictive value of 43%, and negative predictive value of 
100%.

Finally, in the assessment of early response to chemotherapy with 2-[18F]FDG-PET, the flare 
phenomenon should be considered because it might interfere with the measurement of quantitative 
parameters. It occurs–1–2 wk after the initiation of chemotherapy and consists of a marked increase in 2-
[18F]FDG metabolism in lesions that respond later. Hence, it is recommended to avoid the first two 
weeks after chemotherapy when performing 2-[18F]FDG-PET/CT evaluation[54].

PA BASED ON RADIOMICS
Radiomics represents a multi-step post-processing technique that can be applied to any medical image 
to convert it into mineable high-dimensional data (radiomics features). The assumption is that 
biomedical images contain information that reflects tissue heterogeneity and pathophysiology[8]. 
Radiomics data can be used alone or with other clinical data to build predictive models and decision-
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support tools to aid physicians in clinical practice, potentially improving diagnostic, prognostic, and 
predictive accuracy. Radiomics analyses represent the pursuit of precision medicine to choose the right 
treatment for the right patient at the right time. To extract the radiomics features, the first step is image 
acquisition; the second step is image segmentation, which consists of the 2D or 3D delineation of the 
ROI, represented by the largest cross-section of the tumour, the whole tumour, or tumour sub-regions; 
and the third step is the radiomics data extraction (Figure 2). Radiomics features are obtained from the 
drawn ROI using specifically designed formulae conveying different quantitative parameters, such as 
first-order (based on histogram analysis of the distribution of individual voxel values without concern 
for spatial distribution) and second- and higher-order statistical descriptors (accounting for pixel 
intensity spatial distribution)[55]. Second-order statistical descriptors are generally defined as “texture” 
features, which describe the statistical interrelationship between voxels with similar or dissimilar 
contrast values, providing a measure of heterogeneity.

The huge amount of radiomics data extracted from medical images can be more easily handled by 
artificial intelligence (AI) than traditional statistical methods, and machine learning (ML) is a branch of 
AI focused on algorithms that can be trained for a task they were not specifically programmed to 
perform[56]. The algorithms are decision support tools and are mainly used for classification problems. 
In the oncological field, they are applied to detect and characterise tumour lesions as well as to predict 
and monitor therapy response. A family of ML algorithms of particular interest is represented by neural 
networks (NN), a complex model composed of nodes (called neurones) that contribute to the creation of 
deep, multi-layered networks. The use of NNs with such architectures is commonly referred to as deep 
learning (DL), which autonomously learns the best features for performing data classification[56]. The 
texture features utilised were a grey-level co-occurrence matrix (GLCM) and grey-level run length 
(GLRL). Some features were extracted after pre-processing with a wavelet transform. Supervised classi-
fication was achieved using ML approaches: Support vector machine (SVM), k-nearest neighbours, and 
Random Forest. Texture analysis (TA) is a technique that enables the quantification of variations in pixel 
intensity, including those imperceptible to the human visual system. TA includes the quantification of 
grey-level patterns, pixel interrelationships, and the spectral properties of an image[57,58].

Few studies have been published on the role of radiomics applied to CT and MRI images to predict 
therapy response in patients with CRLMs[59-64].

MRI
Zhang et al[63] conducted an analysis of T2-weighted images of liver MRI in 26 patients with CRLMs (a 
total of 193 liver metastases) and extracted five histogram features (mean, variance, skewness, kurtosis, 
and entropy) and five GLCMs, including angular second moment (ASM), entropy, contrast, correlation, 
and inverse difference moment. Among the former parameters, only variance was significantly different 
between CRLMs responders and non-responders (P < 0.001), whereas among the latter, all parameters 
were significantly different (P ≤ 0.001). Furthermore, when tested using multivariable logistic regression 
analysis, the association of variance and ASM showed the most potential predictive value for discrim-
inating responders from non-responders with an AUC of 0.814, a sensitivity of 71%, and a specificity of 
84.9. These parameters correlate with the complexity and non-uniformity of the image texture, and 
hence with tumour heterogeneity. According to Zhang et al[63], heterogeneous tumours seem to have a 
more favourable response to therapy. This observation may be related to irregular angiogenesis, greater 
distribution of tumour blood vessels, and extracellular vascular permeability. Since the effect of drugs 
relies on their delivery to the tumour site, tumours with greater heterogeneity should theoretically have 
a better response.

Furthermore, Liang et al[62] performed a histogram analysis using ADC maps of 53 patients with 
CRLMs before starting chemotherapy and observed that the mean, 1st, 10th, 50th, 90th, and 99th percentile 
values of the ADC maps were significantly lower in responders than in non-responders (P = 0.000-0.002) 
with AUCs of 0.79, 0.76, 0.76, 0.79, 0.80, and 0.82, respectively. The 99th percentile of ADC showed the 
highest diagnostic performance for predicting response to chemotherapy, with an AUC of 0.82. These 
results are concordant with those mentioned above: ADC values included in the 99th percentile are 
predictive of a good response to chemotherapy, suggesting their association with viable neoplastic 
tissues, whereas the remaining 1% of ADC values are predictive of insensitivity to chemotherapy, 
suggesting their association with areas of fluid resulting from necrotic tissues. The authors also invest-
igated histogram-derived CE-MRI parameters extracted from arterial and portal venous phases, such as 
mean, variance, skewness, kurtosis, and 1st, 10th, 50th, 90th, and 99th percentiles; however, they did not find 
any significant difference between responders and non-responders in patients with CRLMs. These 
results may reflect the fact that tumour enhancement is non-specific and influenced by several factors, 
including BF, capillary permeability, blood volume, and extravascular leakage space[62].

CT
Ahn et al[59] conducted a study of 235 patients (145 in the training cohort and 90 in the validation 
cohort) with CRLMs treated with FOLFOX and FOLFIRI to evaluate several parameters on contrast-
enhanced CT, including histogram, volumetric, and morphological features. In multivariate analysis, 
lower skewness [odds ratio (OR): 6.739, P = 0.003] in 2D analysis, higher mean attenuation (OR: 2.587, P 
= 0.017), and narrower standard deviation (SD) (OR: 3.163, P = 0.002) in 3D analysis attained statistical 
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Figure 2 Schematic diagram showing how radiomics features can be extracted from medical images using a diffusion-weighted imaging 
image from an magnetic resonance imaging scan of a patient with colorectal liver metastasis as an example. The process begins on the left 
upper corner with image acquisition, followed by lesion segmentation on a dedicated software leading to a region of interest. The shape of the region of interest as 
well as the distribution and spatial relation of intensity values of each pixel are computationally analysed to extract radiomics features of different order.

significance for predicting the response of CRLMs to chemotherapy in the training cohort. The lower 
skewness on 2D images and the narrower SD on 3D images showed good performance in the validation 
cohorts (AUC: 0.797 and 0.785, respectively). In contrast, Rabe et al[64] conducted a CT TA on 29 
patients with non-necrotic CRLMs and did not observe a significant correlation between SD and the 
prediction of response. A possible explanation for these contradicting results could be the exclusion of 
necrotic lesions in the analysis conducted by Rabe et al[64]; indeed, necrosis increases SD. Furthermore, 
among the several first- and second-order radiomics features extracted by Rabe et al[64], eight, such as 
minimum histogram gradient intensity, skewness, discretised skewness, volume at intensity fraction 10, 
three GLRL indicators (long run low grey level emphasis, low grey level run emphasis, short run low 
grey level emphasis), and low grey level count emphasis, were significantly associated with treatment 
response in univariate analysis. Due to strong correlations within these radiomics features, only two, 
minimum histogram gradient intensity and long-run grey level emphasis, were included in the 
multivariate analysis. The AUC of the multivariate model using minimum histogram gradient intensity 
and long-run grey level emphasis was 0.80, with a sensitivity of 0.73 and a specificity of 0.79 reached 
with the best threshold of the linear predictor of 0.42. In addition, Ravanelli et al[60] investigated the role 
of contrast-enhanced CT TA in predicting treatment responses to chemotherapy ± bevacizumab in 43 
patients with CRLMs. Uniformity was lower in responders than in non-responders (P < 0.001) in the 
bevacizumab-containing chemotherapy group, and in the multivariate analysis, this parameter was 
independently correlated with radiological CT response at three months (OR: 20, P = 0.01). The CT 
texture parameters were not significantly different between responders and non-responders in the 
group of patients treated with chemotherapy alone. The correlation between lower uniformity and 
responders to chemotherapy regimens containing bevacizumab seems to contradict the concept that 
higher heterogeneity reflects greater aggressiveness. However, it should be highlighted that lesion 
uniformity is mainly influenced by the presence of angiogenesis, which is triggered and promoted by 
the upregulation of VEGF, the molecular target of bevacizumab; indeed, the leakage of contrast medium 
from newly formed and highly permeable tumour microvessels into the extracellular space could 
account for the small areas of hyper-enhancement that are quantified by the variable uniformity. Hence, 
the assessment of uniformity should be useful in clinical practice for identifying patients who may 
benefit from bevacizumab. Low contrast-enhanced CT lesion density was significantly associated with 
no response in patients with CRLMs treated with chemotherapy with or without bevacizumab (P = 0.03 
and 0.02, respectively), reflecting poor vascularisation, and thus poor local bioavailability of 
chemotherapy. Creasy et al[61] evaluated, for the first time, the prediction of volumetric response to 
systemic chemotherapy alone or in association with hepatic artery infusion (HAI), extracting 272 
radiomics features from the largest hepatic metastases of 157 colorectal cancer patients. Thirty of the 271 
analysed CT radiomics features were selected based on the univariate analysis and used as inputs for 
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the multivariate regression model. This model was constructed to calculate the percentage of tumour 
responses. The mean absolute prediction error (MAPE), which represents the mean difference between 
the predicted response from the model and actual radiographic response, was calculated. MAPE was 
16.5% for the training set and 21.5% for the validation set. Furthermore, they conducted a secondary 
analysis in the validation set stratified by HAI utilisation, demonstrating a MAPE of 19.5% for patients 
with CRLM treated with HAI and 25.1% for those treated with chemotherapy alone. Since HAI 
chemotherapy is an expensive treatment with potential complications, predicting the response before 
starting therapy is very useful for clinicians to choose the most appropriate treatment strategy for each 
patient.

In the era of personalised medicine, Giannini et al[65] developed and validated an ML algorithm to 
predict the response of individual liver metastases in 24 colorectal cancer patients with a total of 123 
lesions, extracting 22 radiomics features on pre-treatment portal CT scans and using an SVM classifier. 
Their ML algorithm achieved accuracies of 80.9% and 61.5% with sensitivities of 85.7% and 72.7%, and 
specificities of 66.7% and 47.1%, in the training and test sets, respectively. The prediction of response for 
each metastasis is crucial in treatment planning because the detection of one or more metastases that 
will respond differently than others can suggest clinicians to treat them differently[65]. The same group 
of researchers developed another ML algorithm to predict response in a subgroup of patients with 
CRLMs and who express HER2 amplification and undergo HER2-targeted therapy[66]. These patients 
may exhibit a heterogeneous response because some metastases shrink, while others progress[67]. 
Giannini et al[66] extracted 24 radiomics features from a 3D-ROI drawn on baseline portal phase CT and 
used a Gaussian naïve Bayesian classifier. The radiomics score of individual metastases reached a per-
lesion sensitivity of 90% and specificity of 42% in the validation set; thus, the ML algorithm was more 
accurate in predicting responders than non-responders.

Wei et al[68] developed and validated a DL-based radiomics model based on contrast-enhanced CT to 
predict the response to chemotherapy in patients with CRLMs. The authors compared the diagnostic 
accuracy of four predictive models based on clinical data and contrast-enhanced CT qualitative features, 
such as tumour margin, enhanced rim, and target lesion size, DL-based radiomics model, and a 
combined model. The model that reached the highest AUC was constructed using a combination of 
CEA level and DL-based fusion radiomics signature (AUC of 0.935 in the training cohort and 0.830 in 
the validation cohort). Considering that the scanning CT parameters may influence the grey level values 
and, consequently, the radiomics features, Ahn et al[59] compared data acquired with four different CT 
scanners and did not find any significant differences.

SYNTHESIS OF CURRENT KNOWLEDGE, LIMITS AND FUTURE PERSPECTIVES
The accurate prediction of therapy response in patients with CRLMs is a clinical requirement. In this 
setting, different imaging techniques such as MRI, CT, and 2-[18F]FDG-PET/CT have been investigated.

PA imaging plays a crucial and promising role. However, evidence is limited, and reproducibility is a 
major concern. First, most of the studies were retrospective, monocentric, and conducted on small 
samples, and their results were not validated in the external population. Therefore, prospective, 
multicentre studies with a larger patient population should be conducted. On the other hand, the identi-
fication of a universally accepted cut-off value for each imaging quantitative parameter would be 
desirable, but it represents a great and ambitious challenge. Indeed, scanners and protocols may 
influence the value of some quantitative parameters such as ADC and radiomics features.

Regarding contrast-enhanced MRI and CT, perfusion parameters showed the most promising results 
for predicting therapy response in patients with CRLM. Unfortunately, perfusion techniques have not 
yet been introduced in routine clinical practice, possibly because of the complexity of the parameter 
measurements and acquisition protocols. In addition, the quantification of contrast agent concentration 
is difficult because of the complex relationship between density on CT and signal intensity on MRI and 
contrast medium concentration, influenced by many factors, such as contrast agent dose, injection rate, 
time of circulation, and scanner parameters. Finally, the current tumour ROI analysis utilises mean 
quantitative vascular parameters, which do not accurately reflect the spatial heterogeneity of tumour 
perfusion.

Regarding hybrid imaging techniques, only a few studies have been published, and they recognise a 
promising role of 2-[18F]FDG-PET/CT in the prediction of treatment response in patients with CRLM, 
although this is still under investigation. This technique is not routinely performed in clinical practice, 
and FDG uptake is influenced by different factors such as tumour grade and histological type.

Recently the emergency of radiomics opens new horizons about the potential role of imaging 
techniques in predicting tumour response in patients with CRLMs, but currently a lot of issues have to 
be solved. First, the biological correlation of radiomics features is unclear, and second, imaging 
acquisition and post-processing may influence the values of radiomics features, hence their reprodu-
cibility between different centres. Radiomics represents an ongoing topic of investigation, but its clinical 
effectiveness remains to be defined.
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Hence, considering the great potential of PA in the prediction of therapy response in patients with 
CRLMs, some issues should be solved. To overcome the lack of reproducibility of quantitative imaging 
parameters, centre-specific solutions could be hypothesised (i.e. each centre could identify its own 
threshold using the same protocol and the same scanner every time).

Finally, considering that PA is time consuming, the real effect on patient management and outcomes 
must be defined accurately before introducing it in clinical practice.

CONCLUSION
In an oncological setting, PA applied to cross-sectional imaging allows the extraction of numerical data 
from neoplastic tissues, which are correlated with morphological, structural, functional, and metabolic 
features. In vivo evaluation of parametric imaging biomarkers can estimate the likelihood of response 
and drug resistance in individual patients before or immediately after starting chemotherapy and 
targeted agent therapy. Although the potential role of different imaging quantitative parameters in the 
prediction of therapy response in patients with CRLMs has been investigated, there is no consensus 
about which is the most promising parameter; moreover, sometimes the results are controversial. This 
critical point depends in part on the need for standardisation of the acquisition protocols to obtain data 
of good quality and reproducibility among different scanners and operators, a well-defined cut-off 
value, and a clear knowledge of the clinical significance of each imaging quantitative parameter. 
Therefore, further investigation should be conducted in this field. The identification of a shared 
quantitative predictive imaging parameter can be of clinical value because it avoids the risk of toxicity 
in patients who may not benefit from treatment as well as an economic utility to reduce unnecessary 
healthcare costs.
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