
World Journal of
Gastroenterology

ISSN 1007-9327 (print)
ISSN 2219-2840 (online)

World J Gastroenterol  2023 January 28; 29(4): 582-765

Published by Baishideng Publishing Group Inc



WJG https://www.wjgnet.com I January 28, 2023 Volume 29 Issue 4

World Journal of 

GastroenterologyW J G
Contents Weekly Volume 29 Number 4 January 28, 2023

REVIEW

Cytotoxic synergism of Clostridioides difficile toxin B with proinflammatory cytokines in subjects with 
inflammatory bowel diseases

582

Bassotti G, Fruganti A, Stracci F, Marconi P, Fettucciari K

Immune and metabolic cross-links in the pathogenesis of comorbid non-alcoholic fatty liver disease597

Kotlyarov S

Iron as a therapeutic target in chronic liver disease616

Kouroumalis E, Tsomidis I, Voumvouraki A

MINIREVIEWS

COVID-19 and the liver: Are footprints still there?656

Gupta T, Sharma H

Nanomedicine-based multimodal therapies: Recent progress and perspectives in colon cancer670

He YC, Hao ZN, Li Z, Gao DW

Gaseous metabolites as therapeutic targets in ulcerative colitis682

Yao CK, Sarbagili-Shabat C

ORIGINAL ARTICLE

Retrospective Cohort Study

Disease trends after Helicobacter pylori eradication based on Japanese nationwide claims and the health 
check-up database

692

Mizukami K, Sugano K, Takeshima T, Murakami K

Retrospective Study

Diagnostic and economic value of carcinoembryonic antigen, carbohydrate antigen 19-9, and carbohydrate 
antigen 72-4 in gastrointestinal cancers

706

Liu HN, Yao C, Wang XF, Zhang NP, Chen YJ, Pan D, Zhao GP, Shen XZ, Wu H, Liu TT

Feasibility and efficacy of endoscopic purse-string suture-assisted closure for mucosal defects induced by 
endoscopic manipulations

731

Li MM, Zhang Y, Sun F, Huai MX, Zhang FY, Qu CY, Shen F, Li ZH, Xu LM

Observational Study

Trends in gastrointestinal disease hospitalizations and outcomes during the first year of the coronavirus 
pandemic

744

Adekunle AD, Rubens M, Sedarous M, Tariq T, Okafor PN



WJG https://www.wjgnet.com II January 28, 2023 Volume 29 Issue 4

World Journal of Gastroenterology
Contents

Weekly Volume 29 Number 4 January 28, 2023

CASE REPORT

Pulmonary cryptococcosis after immunomodulator treatment in patients with Crohn’s disease: Three case 
reports

758

Fang YF, Cao XH, Yao LY, Cao Q



WJG https://www.wjgnet.com III January 28, 2023 Volume 29 Issue 4

World Journal of Gastroenterology
Contents

Weekly Volume 29 Number 4 January 28, 2023

ABOUT COVER

Editorial Board Member of World Journal of Gastroenterology, Angela Peltec, PhD, Associate Professor, Department 
of Internal Medicine, Discipline of Gastroenterology, State University of Medicine and Pharmacy "Nicolae 
Testemitanu", Chishinev 2019, Moldova. apeltec@yahoo.com

AIMS AND SCOPE

The primary aim of World Journal of Gastroenterology (WJG, World J Gastroenterol) is to provide scholars and readers 
from various fields of gastroenterology and hepatology with a platform to publish high-quality basic and clinical 
research articles and communicate their research findings online. WJG mainly publishes articles reporting research 
results and findings obtained in the field of gastroenterology and hepatology and covering a wide range of topics 
including gastroenterology, hepatology, gastrointestinal endoscopy, gastrointestinal surgery, gastrointestinal 
oncology, and pediatric gastroenterology.

INDEXING/ABSTRACTING

The WJG is now abstracted and indexed in Science Citation Index Expanded (SCIE, also known as SciSearch®), 
Current Contents/Clinical Medicine, Journal Citation Reports, Index Medicus, MEDLINE, PubMed, PubMed 
Central, Scopus, Reference Citation Analysis, China National Knowledge Infrastructure, China Science and 
Technology Journal Database, and Superstar Journals Database. The 2022 edition of Journal Citation Reports® cites 
the 2021 impact factor (IF) for WJG as 5.374; IF without journal self cites: 5.187; 5-year IF: 5.715; Journal Citation 
Indicator: 0.84; Ranking: 31 among 93 journals in gastroenterology and hepatology; and Quartile category: Q2. The 
WJG’s CiteScore for 2021 is 8.1 and Scopus CiteScore rank 2021: Gastroenterology is 18/149.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Yu-Xi Chen; Production Department Director: Xu Guo; Editorial Office Director: Jia-Ru Fan.

NAME OF JOURNAL INSTRUCTIONS TO AUTHORS

World Journal of Gastroenterology https://www.wjgnet.com/bpg/gerinfo/204

ISSN GUIDELINES FOR ETHICS DOCUMENTS

ISSN 1007-9327 (print) ISSN 2219-2840 (online) https://www.wjgnet.com/bpg/GerInfo/287

LAUNCH DATE GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH

October 1, 1995 https://www.wjgnet.com/bpg/gerinfo/240

FREQUENCY PUBLICATION ETHICS

Weekly https://www.wjgnet.com/bpg/GerInfo/288

EDITORS-IN-CHIEF PUBLICATION MISCONDUCT

Andrzej S Tarnawski https://www.wjgnet.com/bpg/gerinfo/208

EDITORIAL BOARD MEMBERS ARTICLE PROCESSING CHARGE

http://www.wjgnet.com/1007-9327/editorialboard.htm https://www.wjgnet.com/bpg/gerinfo/242

PUBLICATION DATE STEPS FOR SUBMITTING MANUSCRIPTS

January 28, 2023 https://www.wjgnet.com/bpg/GerInfo/239

COPYRIGHT ONLINE SUBMISSION

© 2023 Baishideng Publishing Group Inc https://www.f6publishing.com

© 2023 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA

E-mail: bpgoffice@wjgnet.com  https://www.wjgnet.com

https://www.wjgnet.com/bpg/gerinfo/204
https://www.wjgnet.com/bpg/GerInfo/287
https://www.wjgnet.com/bpg/gerinfo/240
https://www.wjgnet.com/bpg/GerInfo/288
https://www.wjgnet.com/bpg/gerinfo/208
http://www.wjgnet.com/1007-9327/editorialboard.htm
https://www.wjgnet.com/bpg/gerinfo/242
https://www.wjgnet.com/bpg/GerInfo/239
https://www.f6publishing.com
mailto:bpgoffice@wjgnet.com
https://www.wjgnet.com


WJG https://www.wjgnet.com 597 January 28, 2023 Volume 29 Issue 4

World Journal of 

GastroenterologyW J G
Submit a Manuscript: https://www.f6publishing.com World J Gastroenterol 2023 January 28; 29(4): 597-615

DOI: 10.3748/wjg.v29.i4.597 ISSN 1007-9327 (print) ISSN 2219-2840 (online)

REVIEW

Immune and metabolic cross-links in the pathogenesis of comorbid 
non-alcoholic fatty liver disease

Stanislav Kotlyarov

Specialty type: Immunology

Provenance and peer review: 
Invited article; Externally peer 
reviewed.

Peer-review model: Single blind

Peer-review report’s scientific 
quality classification
Grade A (Excellent): 0 
Grade B (Very good): B 
Grade C (Good): C, C 
Grade D (Fair): 0 
Grade E (Poor): 0

P-Reviewer: He F, China; Zhou T, 
China

Received: September 19, 2022 
Peer-review started: September 19, 
2022 
First decision: October 22, 2022 
Revised: October 28, 2022 
Accepted: November 7, 2022 
Article in press: November 7, 2022 
Published online: January 28, 2023

Stanislav Kotlyarov, Department of Nursing, Ryazan State Medical University, Ryazan 390026, 
Russia

Corresponding author: Stanislav Kotlyarov, PhD, Researcher, Department of Nursing, Ryazan 
State Medical University, Vysokovoltnaya St. 9, Ryazan 390026, Russia. skmr1@yandex.ru

Abstract
In recent years, there has been a steady growth of interest in non-alcoholic fatty 
liver disease (NAFLD), which is associated with negative epidemiological data on 
the prevalence of the disease and its clinical significance. NAFLD is closely related 
to the metabolic syndrome and these relationships are the subject of active 
research. A growing body of evidence shows cross-linkages between metabolic 
abnormalities and the innate immune system in the development and progression 
of NAFLD. These links are bidirectional and largely still unclear, but a better 
understanding of them will improve the quality of diagnosis and management of 
patients. In addition, lipid metabolic disorders and the innate immune system link 
NAFLD with other diseases, such as atherosclerosis, which is of great clinical 
importance.

Key Words: Non-alcoholic fatty liver disease; Metabolism; Lipid metabolism; Lipid; Fat; 
Innate immune system; Pathogenesis
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Core Tip: Non-alcoholic fatty liver disease (NAFLD) is an important medical and social 
problem. The development of NAFLD is closely related to the metabolic syndrome, 
which further increases attention to the problem. The pathogenesis of NAFLD is 
complex and involves closely intertwined metabolic and immune mechanisms, a better 
understanding of which will improve the effectiveness of measures to prevent and treat 
the disease. Lipid metabolism has multiple connections with the innate immune system, 
in which various liver cells are involved.
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INTRODUCTION
Interest in non-alcoholic fatty liver disease (NAFLD) has increased significantly in recent years, due to 
an increasing number of reports on its high prevalence and clinical significance[1]. Epidemiologic data 
show that the prevalence of NAFLD in the adult population ranges from 17% to 46%, but the data vary 
by region and depend on age, sex, and several other characteristics[2]. These negative epidemiologic 
findings are thought to be related to the high prevalence of metabolic diseases, such as obesity and 
diabetes mellitus, which is due to the effects of low physical activity and poor diet[3]. The links of 
NAFLD with the metabolic syndrome are attracting increasing attention from clinicians. Dyslipidemia, 
obesity, insulin resistance, and diabetes are important features of the metabolic syndrome and are 
closely related to NAFLD[4-6]. Indeed, the prevalence of NAFLD among obese adults is 80%-90%, 
approximately 30%-50% in patients with diabetes, and up to 90% in patients with hyperlipidemia[7].

Another problem associated with NAFLD is that the disease is often not diagnosed in a timely 
manner, as patients do not seek medical care for a long time. Most patients are asymptomatic or the 
symptoms are nonspecific, and patients may not pay enough attention to them. In addition, these 
patients often have comorbidities, the clinical picture of which may be more pronounced and of greater 
concern to patients. Atherosclerotic cardiovascular diseases are common in these patients, significantly 
affecting quality of life and prognosis[8-10]. It is important to note that accurate diagnosis of NAFLD is 
currently associated with a number of difficulties, primarily, the limited availability of modern 
diagnostic tools in the primary care setting. Thus, NAFLD is currently a growing burden on patients 
and healthcare systems.

NAFLD includes two morphological forms, non-alcoholic fatty liver (NAFL) and non-alcoholic 
steatohepatitis (NASH)[11,12]. At the same time, the diagnosis of NAFLD assumes the exclusion of 
secondary causes and significant alcohol consumption.

NAFLD is characterized by excessive fat accumulation in the liver, but the pathophysiology of this 
disorder involves complex mechanisms. According to the "two-hit hypothesis" model proposed in 1998 
by Day et al[13], the "first hit" involves lipid accumulation in hepatocytes and development of steatosis, 
which is associated with the negative impact of obesity, type 2 diabetes, dyslipidemia and other 
metabolic risk factors on the liver[13-15]. The "second hit" leads to damage to the hepatocellular system 
and liver inflammation and is associated with the effects of oxidative stress and proinflammatory 
cytokines[13]. A growing body of evidence suggests that NAFLD develops as a result of a complex 
chain of events, many of whose links are cross-linked, consistent with the newly proposed "multiple 
parallel-hit" concept. Thus, insulin resistance, de novo lipogenesis, local and systemic inflammation, 
disorders in the structure of the gut microbiota, and oxidative stress play an important role in the 
pathophysiology of NAFLD and have crosslinks that involve different cells (Figure 1)[16]. Recent 
advances in the study of the mechanisms that contribute to the development and progression of NAFLD 
have led to a better understanding of the complex interplay between environmental factors, the gut 
microbiota, metabolism, and the innate immune system, which include both intrahepatic and 
extrahepatic events[17].

MOLECULAR MECHANISMS INVOLVED IN NAFLD PROGRESSION
The significance of metabolic disorders in the pathogenesis of NAFLD
The results of studies suggest that NAFLD exhibits a close bidirectional relationship with the metabolic 
syndrome[18]. The development of the metabolic syndrome may precede NAFLD or be a consequence 
of it[19,20]. NAFLD significantly increases the risk of metabolic syndrome and may also be considered 
an independent risk factor for some cardiovascular diseases[21-23]. Given that NAFLD is often 
combined with metabolic diseases such as obesity, type 2 diabetes, hyperlipidemia, and hypertension, it 
may have negative prognostic implications[24,25]. Thus, an overweight person is a typical NAFLD 
patient phenotype[26,27]. Moreover, body mass index and NAFLD show a strong correlation[27,28]. 
Interestingly, NAFLD also occurs in non-obese individuals, with the majority of these findings 
occurring in Asian countries, although they have been described worldwide[29-32]. Despite the 
phenotypic differences, NAFLD patients who were not obese had similar severity of histologic liver 
damage[33]. At the same time, NAFLD patients without obesity had a higher degree of fibrosis[34-37].

https://www.wjgnet.com/1007-9327/full/v29/i4/597.htm
https://dx.doi.org/10.3748/wjg.v29.i4.597
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Figure 1 Risk factors and links of non-alcoholic fatty liver disease pathogenesis. NAFL: Non-alcoholic fatty liver; NASH: Non-alcoholic 
steatohepatitis.

A key histological characteristic of NAFLD is the cellular accumulation of triglyceride (triacylgly-
cerides, TAGs) containing lipid droplets[38-40]. TAG biosynthesis is carried out using fatty acids, which 
may enter the cells from the blood or be formed by de novo lipogenesis and endocytotic recycling of 
lipoprotein remnants[40,41]. In most cases, the main source of fatty acids used for TAG formation is 
absorption from the blood[41,42]. Interestingly, some data suggest that TAG accumulation per se is not 
harmful to hepatocytes and can even be considered as a certain protective mechanism against 
lipotoxicity induced by free fatty acids[43]. This is supported by the data that an excess of free fatty 
acids in nonfat cells can lead to their dysfunction and apoptotic death[44]. Moreover, levels of free fatty 
acids in the blood are related to the severity of NAFLD, with saturated fatty acids being more 
hepatotoxic than unsaturated fatty acids[45]. Thus, free fatty acids are important mediators of excessive 
lipid accumulation in the liver.

Studies have shown that monounsaturated fatty acids such as oleic or palmitoleic acids are less toxic 
than saturated fatty acids such as palmitic or stearic acids[46,47]. Long-chain saturated palmitate 
induces apoptosis in Chinese hamster ovary cells through a mechanism involving reactive oxygen 
species (ROS) and ceramide formation, which can enhance palmitate-induced apoptosis signals[43]. In 
turn, unsaturated fatty acids prevent palmitate-induced apoptosis by directing palmitate to triglyceride 
pools and removing them from pathways leading to apoptosis[43]. In doing so, reducing the ability of 
cells to synthesize triglycerides contributes to lipotoxicity[43]. The mechanism of this action may be 
related to the fact that palmitate is poorly incorporated into cellular triglyceride pools in the absence of 
additional signals, but the presence of unsaturated fatty acids can help direct palmitate toward trigly-
ceride storage, thereby excluding palmitate from apoptotic pathways. Moreover, unsaturated fatty 
acids, which come both as additives to the medium, such as the addition of oleate, and as a result of the 
action of desaturase (e.g., stearoyl-CoA desaturase), demonstrate this action[43]. Stearoyl-CoA 
desaturase-1 (SCD), known as fatty acid desaturase, is an enzyme that is expressed in the liver and is 
involved in the biosynthesis of monounsaturated fatty acids, primarily oleate and palmitoleate from 
corresponding saturated fatty acids. Decreased expression and activity of SCD1, leads to the intake of 
excessive amounts of saturated fatty acids, increasing their lipotoxic effects and the development of 
steatohepatitis and fibrosis[48,49]. Indeed, oleic acid has been shown to be more steatogenic but has less 
apoptotic effects than palmitic acid in hepatocyte cell cultures[50].

Increased fat in the liver correlates directly with changes in plasma saturated fatty acids and inversely 
with polyunsaturated fatty acids (PUFAs)[51]. Saturated fatty acids markedly induce fat deposition in 
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the liver and serum ceramides, whereas dietary PUFAs prevent fat accumulation in the liver and reduce 
ceramides and hyperlipidemia with excess energy intake in overweight people[51]. Higher concen-
trations of total ω-6 PUFAs and serum linoleic acid have been shown to be associated with lower odds 
of developing NAFLD in the future[52]. Meanwhile, ω-3 PUFAs such as eicosapentaenoic acid (EPA) 
and docosahexaenoic acid (DHA) may have a protective effect on the liver by reducing insulin 
resistance, reducing inflammation, and inhibiting apoptosis of hepatocytes[53].

These and other data allow us to expand our views on the features of metabolic processes in NAFLD, 
as well as NAFLD comorbid relationships. It has been shown that in NAFLD, regardless of the presence 
or absence of obesity, there is a high risk of coronary atherosclerosis, which contributes to the clinical 
picture[54]. It is widely known that NAFLD is associated with the development of atherosclerosis[55-
57]. Moreover, NAFLD is associated with an increased risk of cardiovascular disease beyond that due to 
established risk factors[57]. Moreover, cardiovascular disease is the main cause of death in NAFLD 
patients[55].

NAFLD patients often have dyslipidemia along with other features of the metabolic syndrome. 
NAFLD patients have significantly elevated levels of oxidized low-density lipoprotein (LDL), and a 
significant association has been shown between LDL levels and the prevalence of NAFLD[58,59]. 
Elevated LDL levels within the normal range were associated with an increased risk of NAFLD[59]. In 
addition, there are important differences in LDL and high-density lipoprotein (HDL) subfractions in 
NAFLD patients. Liver fat has been shown to correlate more strongly with circulating HDL2 cholesterol 
and the ratio of HDL2 to HDL3 cholesterol than with total HDL cholesterol[60]. Patients with NASH 
had an increased number of small, dense LDL3 and LDL4 particles[61]. These changes may contribute to 
the increased risk of atherosclerosis and cardiovascular disease in these patients.

THE IMPORTANCE OF INNATE IMMUNITY IN THE PATHOGENESIS OF NAFLD 
A growing body of evidence is increasing the understanding of the importance of the innate immune 
system in the development of NAFLD (Figure 2). The innate immune cells, which include Kupffer cells, 
neutrophils, dendritic cells (DCs), and natural killer (NK) cells, play an important role in the 
pathogenesis of NAFLD. Kupffer cells, which constitute 80% to 90% of the total macrophage population, 
are under physiological conditions a long-lived and self-renewing population[62]. Due to their location, 
they are central to innate immunity and are responsible for the rapid removal of exogenous particles 
such as lipopolysaccharide (LPS)[63-65]. Like other macrophages, Kupffer cells are also capable of 
detecting endogenous molecular signals resulting from homeostasis disruption[62].

Steatohepatitis is characterized by marked enlargement and aggregation of Kupffer cells in 
perivenular regions, with scattered large fat vacuoles found within Kupffer cells[66]. The contribution of 
macrophages originating from blood monocytes to this cell pool is not entirely clear, as there is 
currently no marker to distinguish them from resident macrophages[67].

Kupffer cells, which are resident macrophages of the liver, uptake large amounts of free fatty acids, 
which contributes to their proinflammatory activation. During inflammatory activation, Kupffer cells 
produce proinflammatory cytokines such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α, 
which are important participants in the progression of inflammation and development of NASH[68]. 
Thus, free fatty acids mediate the link between lipid metabolism and the innate immune system[69-71].

It is important to note that Kupffer cells, like other macrophages, have complex immunometabolic 
regulation (Figure 3). It has been shown that a prolonged high-fat diet increased the number of Kupffer 
cells with a proinflammatory M1 phenotype producing proinflammatory cytokines. Saturated fatty 
acids promoted M1 polarization of Kupffer cells, whereas ω-3 PUFAs polarized Kupffer cells to the M2 
phenotype, which was associated with activation of the NF-κB and PPAR-γ signaling pathways, 
respectively[72]. The proinflammatory M1 phenotype of macrophages is characterized by enhanced 
glycolysis and fatty acid synthesis, whereas the anti-inflammatory M2 macrophages use fatty acid 
oxidation[73].

It has been suggested that polarization of M2 Kupffer cells may protect against fatty liver disease. M2 
macrophages have been shown to be predominant in individuals with limited liver lesions, corres-
ponding to little hepatocyte apoptosis compared with patients with more severe lesions[74]. 
Interestingly, M2-induced apoptosis of M1 macrophages is one of the mechanisms regulating the 
balance between M1 and M2 macrophages[74].

It has been suggested that elevated levels of free fatty acids, resulting from their excessive intake with 
food or by release from adipose tissue during starvation, may be the main cause of TNF release from 
Kupffer cells, leading to hepatocyte steatosis. Toll-like receptor 4 (TLR4) is able to detect free fatty acids 
on Kupffer cells to detect excess and overload of fatty acids in the liver[75]. It is known that saturated 
fatty acids can participate in the activation of TLR4, a receptor of the innate immune system[76-78]. This 
action can be associated with both direct stimulation of the receptor, confirming the evolutionary 
connection with the structure of LPS, which is the receptor aimed at detecting. In addition, fatty acids 
can be incorporated into the phospholipids of the plasma membrane and thus influence their 
biophysical properties and function[77,79]. The saturation and length of the alkyl chain are important. 
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Figure 2 Cellular mechanisms of non-alcoholic fatty liver disease pathogenesis. DAMPs: Damage associated molecular patterns.

By influencing the biophysical properties of the plasma membrane and the stability of lipid rafts in this 
way, the function of some membrane proteins can be regulated. It is suggested that unsaturated fatty 
acids contribute to a decrease in lipid ordering and the stability of lipid rafts, which may lead to anti-
inflammatory effects, given the role of lipid rafts as platforms for the assembly and function of many 
signaling pathways. Thus, unlike saturated fatty acids, unsaturated fatty acids do not have the ability to 
activate TLR4. In addition, their effect on the biophysical properties of plasma membranes is opposite
[77].

Unsaturated fatty acids can participate in the regulation of inflammation not only due to their 
biophysical properties. They are also precursors for the formation of many lipid mediators associated 
with inflammation. The family of lipid mediators called "specialized pro-resolving mediators" includes 
lipoxins, resolvins, protectins and maresins. They are formed enzymatically from ω-3 and ω-6 PUFAs 
such as arachidonic acid, EPA and DHA. Lipoxins are formed from arachidonic acid, E-series resolvins 
from EPA, and D-series resolvins, protectins and maresins from DHA[80].

Circulating maresin-1 (MaR1) levels were shown to be decreased in NAFLD patients, and a negative 
correlation between NAFLD and serum MaR1 concentrations was found[81]. MaR1 is mainly 
synthesized in M2-macrophages and plays an important anti-inflammatory role. It improves insulin 
sensitivity and eliminates adipose tissue inflammation[82]. In addition, MaR1 improves hepatic steatosis 
by inhibiting endoplasmic reticulum stress and lipogenic enzymes, and inducing autophagy via the 
AMP-activated protein kinase (AMPK) pathway[81,83,84]. Activation of Kupffer cells leads to M1 
polarization and a decrease in the M2 phenotype, which corresponds to a decrease in maresin 
production and a decrease in their anti-inflammatory effect. Resolvin D1 (RvD1), which is an 
endogenous mediator produced from ω-3 DHA, reduced macrophage accumulation in adipose tissue 
and improved insulin sensitivity in obese and diabetic mice[85]. RvD1 shifted macrophages from an 
M1-to-M2-like anti-inflammatory phenotype, triggering the resolution process initiated by caloric 
restriction in obesity-induced steatohepatitis[86]. Protectin DX, derived from DHA, showed suppressive 
effects on inflammation and insulin resistance and improved hepatic steatosis by suppressing 
endoplasmic reticulum stress through AMPK-induced ORP150 expression[87].

On the other hand, the development of NAFLD correlates with an increase in serum eicosanoids. 
Moreover, profiling of plasma eicosanoids and other PUFA metabolites can differentiate NAFLD from 
NASH[88]. 11,12-dihydroxy-eicosatrienoic acid (11,12-diHETrE) was used as a biomarker to differ-
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Figure 3 Kupffer cell polarization. LPS: Lipopolysaccharide; FAO: Fatty acid oxidation; FAS: Fatty acid synthesis; IFN-γ: Interferon gamma; IL: Interleukin; 
iNOS: Inducible nitric oxide synthase; OXPHOS: Oxidative phosphorylation.

entiate NAFLD from NASH[88]. In another study, patients with NASH had significantly elevated levels 
of 9- and 13-HODE and 9- and 13-oxoODE, products of linoleic acid oxidation, compared with patients 
with steatosis[89]. Interestingly, patients with stage I NAFLD had lower plasma levels of 5-HETE, 
whereas patients with stage II steatosis had higher concentrations of 9-HODE[90].

Thus, lipid metabolites derived from fatty acids are involved in the development of NAFLD, which is 
an interesting topic for further research (Figure 2).

Hepatocellular accumulation of lipids can modulate the biological activity of Kupffer cells through a 
number of mechanisms. On the one hand, fat-saturated hepatocyte swelling changes the architecture of 
the sinusoidal network, reducing intrasinusoidal volume and microvascular blood flow. Disruption of 
microvascular blood flow also contributes to the involvement of sinusoidal endothelial cells, Kupffer 
cells, stellate cells and involvement of inflammatory cells and platelets[91]. Later developing fibrosing 
steatohepatitis with capillarization of the sinusoids, increases narrowing and distortion of the sinusoidal 
lumen, further limiting microvascular blood flow. In addition, leukocytes entering the narrowed 
sinusoids may adhere to the endothelium as a result of activation of the hepatic microvascular inflam-
matory response[91]. On the other hand, fat overload of hepatocytes causes lipotoxicity and the release 
of damage-associated molecular patterns (DAMPs), which can activate Kupffer cells and hepatic stellate 
cells (HSCs), promoting inflammation and fibrosis[92]. Lipid accumulation in hepatocytes has been 
shown to induce the release of factors that accelerate the activation and proliferation of HSCs and 
increase their resistance to apoptosis[93]. Conditioned medium from steatotic hepatocytes induced 
expression of the profibrogenic genes transforming growth factor (TGF)-beta, tissue inhibitor of metallo-
proteinase-1 (TIMP-1), TIMP-2 and matrix metalloproteinase-2, and expression of the NF-κB-dependent 
monocyte chemotactic protein-1 (MCP-1) in HSCs[93]. Thus, quiescent HSCs participate in the 
maintenance of liver architecture by maintaining the balance of extracellular matrix, while disruption of 
this balance, for example, due to metabolic disorders, leads to HSCs activation and fibrosis[94,95].

Hepatocytes exposed to apoptosis form apoptotic bodies, which are phagocytosed by HSCs and 
Kupffer cells, triggering a profibrogenic response due to transdifferentiation of HSCs into collagen-
producing myofibroblasts[96]. Apoptotic cell uptake has been shown to stimulate Kupffer cell 
production of death ligands, including Fas ligand and TNF-alpha, which promotes inflammation and 
fibrogenesis[97].

An important pathogenetic mechanism involved in the pathogenesis of NAFLD is the role of the 
intestinal microbiota and a defect in the intestinal barrier caused by liver damage. Impaired gut barrier 
function is thought to accelerate translocation of enteric LPS, which activates proinflammatory signaling 
pathways and the release of related inflammatory factors in the liver[98]. Intestinal bacterial microflora 
and TLR4 have been shown to be involved in liver fibrogenesis[99]. Escherichia coli LPS can enhance 
liver damage in NAFLD by inducing macrophage and platelet activation through the TLR4 pathway
[100]. Plasma endotoxin levels and inflammatory markers have been shown to be significantly higher in 
NAFLD compared with controls and to increase with the severity of hepatic steatosis[101]. Proinflam-
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matory activity and immune imbalance associated with the pathophysiology of NAFLD may be related 
to gut dysbiosis[102]. For example, decreased Bacteroidetes and increased Firmicutes were observed in 
obese individuals[102]. Changes in gut microflora ratios may also increase endogenous ethanol 
production, which generally increases gut permeability, and contributes to translocation of endotoxins 
from the gut lumen into the portal bloodstream[102,103].

Another immunometabolic link between the gut microbiota and NAFLD, related to short-chain fatty 
acids (SCFAs), should also be noted[104,105]. SCFAs are formed by the gut microbiota during the 
fermentation of non-digestible fibers such as resistant starch, cellulose, and pectin[106]. SCFAs are used 
by colonic mucosal epithelial cells as an energy substrate, are involved in the regulation of a number of 
processes in the intestinal wall or enter the portal bloodstream, and may be involved in the formation of 
immunometabolic connections with other organs[107].

A growing body of evidence strengthens the understanding of the importance of SCFAs in inflam-
mation. SCFAs act via receptors associated with the G-protein GPR43 and GPR41, also known as free 
fatty acid receptor (FFA)2 and FFA3, respectively[108-111]. In addition, SCFAs realize their action 
through inhibition of histone deacetylase (HDAC)[112,113].

Butyrate is well known for its anti-inflammatory properties and is of great clinical interest[107,114,
115]. Through HDAC3 inhibition, butyrate can induce a metabolic switch of macrophages toward an 
anti-inflammatory M2 phenotype[112,113].

SCFAs are also known to affect the differentiation, recruitment and activation of neutrophils, DCs, 
macrophages and monocytes as well as T cells[116,117]. Butyrate is involved in the regulation of DC 
differentiation derived from human monocytes, keeping DCs in the immature stage[118].

In addition to their involvement in inflammation, SCFAs regulate lipid metabolism in the liver. 
Butyrate levels have been shown to decrease in NAFLD patients and mice with decreased estrogen 
levels, with butyrate administration attenuating liver steatosis[119]. Studies in rats fed a high-fat diet 
(HFD) have shown that butyrate increases β-oxidation of fatty acids, inhibits lipid synthesis and 
suppresses nuclear factor-kappa B and inflammation[120,121]. The addition of sodium butyrate protects 
mice from developing NASH. It is important to note that the metabolic role of SCFAs in liver function is 
rather complex[122]. In addition to attenuating hepatic steatosis, acetate, another SCFA derived from 
the microbiota, may conversely promote hepatic lipogenesis after excessive fructose intake[123,124].

A growing body of evidence strengthens the understanding that lipoproteins are part of an important 
transport mechanism that is utilized by the innate immune system. The mechanism of LPS elimination 
involves LPS disaggregation and binding to circulating lipoproteins, uptake of lipoprotein-associated 
LPS by the liver, and excretion of LPS with the bile[125,126]. This pathway, known as reverse LPS 
transport, involves lipoproteins as the main carriers of LPS in the plasma and includes the proteins LBP, 
BPI, phospholipid-transfer protein (PLTP), and cholesteryl ester transfer protein (CETP), which belong 
to the lipid transfer/LPS binding gene family (LT/LBP) and play different roles in LPS metabolism
[126]. In addition, reverse cholesterol transport is at the beginning of the cross-talk between cholesterol 
metabolism and the innate immune system[126]. ABCA1, a key participant in reverse cholesterol 
transport also contributes to the efflux of LPS from macrophages[127]. HDL and other plasma lip-
oproteins have been shown to contribute to the release of LPS from the cell surface of monocytes[128].

Lipid transfer proteins (lecithin-cholesterol acyltransferase (LCAT), CETP, and PLTP) as well as 
hepatic and endothelial lipases remodel HDL in the bloodstream. CETP is part of a family of proteins 
including LPS-binding protein (LBP) and bactericidal permeability increasing protein (BPI) and may 
participate in the transport of LPS between lipoproteins for further utilization in the liver. CETP 
transports cholesterol esters from HDL to apoB-containing LDL and very low density lipoproteins 
(VLDLs).

Kupffer cells take up most of the LPS and can inactivate it by deacylation with acyloxyacyl hydrolase. 
Kupffer cells express high levels of class A scavenger receptors (SR-A), which bind oxidized low-density 
lipoproteins (LDL) and are also involved in LPS uptake[64,129]. SR-A expression is increased by 
oxidized LDL[130,131]. Importantly, in the liver, SR-A is also important for cell adhesion, suggesting a 
role for SR-A in the recruitment and retention of cells in various organs or in sites of pathological 
conditions, such as foci of inflammation or areas of atherosclerotic lesions[64]. In addition to Kupffer 
cells, SR-A types I and II are expressed in the liver on endothelial cells, which are less able to bind LPS
[132].

Interestingly, plasma CETP predominantly originates from Kupffer cells, and plasma CETP levels 
predict the content of Kupffer cells in the liver in humans[133]. In addition, activation of Kupffer cells by 
LPS strongly decreases CETP expression[134]. LPS has been shown to activate resting Kupffer cells, 
resulting in decreased hepatic CETP expression and decreased CETP in plasma and increased HDL 
cholesterol levels[135]. Importantly, CETP inhibition improves HDL function but leads to liver obesity 
and insulin resistance in CETP-expressing transgenic mice on a HFD[136]. Information obtained in 
recent years has improved the understanding of the role of CETP in inflammation. Experimental 
evidence suggests that CETP in macrophages as well as in the liver prevents LPS interaction with TLR4, 
thereby reducing the inflammatory response[137]. Compared with wild-type mice, CETP mice showed a 
higher survival rate after polymicrobial sepsis. CETP mice had lower plasma IL-6 concentrations and 
decreased levels of hepatic TLR4 and acyloxyacyl hydrolase protein[137]. Species-specific differences in 
CETP expression should be noted[138]. In mice and rats, in contrast to humans, as well as primates, 
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rabbits, and hamsters, CETP is absent in plasma. Consequently, wild-type mice, have naturally low LDL 
and high HDL levels, in which up to 90% of cholesterol is transported and have low susceptibility to 
developing atherosclerosis. Transgenic mice expressing human CETP have increased reverse cholesterol 
transport, which is associated with increased clearance of apoB lipoproteins in the liver. They also show 
increased postprandial triglyceridemia, increased liver uptake of LPS, and increased survival in 
endotoxemia[139,140]. Transgenic expression of CETP in mice also reduces liver fat accumulation and 
improves insulin sensitivity in diet-induced obesity[141,142]. CETP has been shown to reduce liver TAG 
content in female mice through enhanced β-oxidation and to promote the synthesis and assembly of 
VLDL[142]. CETP inhibition in transgenic CETP-expressing mice disrupted TAG metabolic pathways, 
leading to liver TG accumulation and insulin resistance in diet-induced obese mice[136]. In addition, 
CETP inhibition by anacetrapib increased systemic and hepatic inflammation to a greater extent in obese 
mice[136].

Despite its weaker ability to bind LPS compared to LBP or BPI, CETP is associated with resistance to 
sepsis. Experiments with human CETP transgenic mice showed lower mortality after LPS adminis-
tration compared to wild-type mice. The pathway involving CETP is of interest because it represents a 
cross-talk mechanism of reverse cholesterol transport and the innate immune system, in which LPS and 
cholesterol share common transport and utilization pathways[140].

Neutrophils, other important participants in the innate immune system, are also involved in the 
pathogenesis of NAFLD[143]. Given that inflammation is a key event that contributes to the progression 
of fatty liver dystrophy to NAFLD, these patients show significant neutrophil infiltration into the liver, 
often accompanied by increased expression of chemokines that promote neutrophil chemotaxis[144].

Neutrophils exhibit cross-links with HSCs. On the one hand, neutrophils activate HSCs through the 
production of ROS[145-147]. On the other hand, activated HSCs have been shown to support neutrophil 
survival by producing granulocyte-macrophage colony-stimulating factor and IL-15. This may serve as 
a positive direct loop contributor to liver damage and fibrosis under a HFD[147].

Interestingly, it has been shown that neutrophils in blood in patients with NASH had increased 
expression of receptors reflecting the preparation of neutrophils to migrate into tissue. In addition to 
preparation for migration, blood neutrophils in NASH were also functionally activated[148]. They were 
characterized by increased IL-8 production and had more than double the spontaneous oxidative burst. 
In analyzing these data, it was noted that neutrophils can not only move from the vascular lumen into 
extravascular tissues but can also move back into the bloodstream, through a process known as reverse 
transendothelial migration. Reverse transendothelial migration is of interest due to its possible 
interaction with the immune system[149]. However, its possible role in NAFLD has yet to be studied.

Thus, neutrophils play an important role in the development of inflammation and liver fibrosis[150]. 
On the other hand, neutrophils contribute to the spontaneous resolution of inflammation and liver 
fibrosis. Acting via miR-223, neutrophils act as resolving effector cells that induce the transition of 
proinflammatory macrophages to a restorative phenotype by suppressing NLRP3 inflammasome 
expression[151]. Another study in a diet-induced NASH mouse model also showed a phase-dependent 
contrasting role of neutrophils as triggers and pro-resolutive mediators of liver injury and fibrosis[150]. 
In addition to these findings, miR-223 was shown to be elevated in hepatocytes from HFD-treated mice 
and patients with NASH, which may be due to the fact that miR-223 can be transferred from neutrophils 
via the exosome. Moreover, miR-223 in hepatocytes acts as an anti-inflammatory molecule, directly 
affecting several inflammatory genes[152].

Thus, neutrophils play a complex multifaceted role in the pathogenesis of NAFLD, which is a 
promising topic for further research.

Liver DCs are a heterogeneous population of hepatic sinusoidal antigen-presenting cells[153,154]. 
DCs exist in mature or immature states and undergo maturation when exposed to immune or inflam-
matory signals such as microbial products and proinflammatory cytokines. DCs are involved in 
maintaining immune homeostasis and liver tolerance by promoting CD8+ T-cell elimination, as well as 
secreting anti-inflammatory cytokines that maintain the quiescent HSC state and promote TLR4 refract-
oriness to LPS. In addition, DCs regulate the number and activity of cells involved in the development 
of fibrosis and may play a role in the regression of liver fibrosis[155]. Dendritic cells can contribute to 
liver fibrosis regression by activating metalloproteinases and contribute to the homeostasis of NK cells, 
which are mainly antifibrogenic[154].

Natural killer cells are a heterogeneous multifunctional population of lymphoid cells located inside 
the sinusoidal space, where they can attach to endothelium and Kupffer cells[156]. A key factor 
determining the activity of these cells in NASH is their metabolic reprogramming.

Liver NK cells are part of the innate immune system and may play an important role in NAFLD. 
However, the regulation and function of NK cells in NAFLD remains controversial due to their different 
involvement at different stages of the disease. On the one hand, NK cells are active and may be useful in 
the early stages of fibrosis, when they contribute to TRAIL-mediated HSC death. On the other hand, NK 
cell involvement becomes detrimental when they lose their antitumor capacity, which may contribute to 
disease progression in later stages[156]. Indeed, metabolic reprogramming of NK cells in obesity limits 
the antitumor response, which is known as "metabolic paralysis"[157]. Overload of NK cells with lipids 
absorbed from the environment in obesity leads to metabolic defects that cause inhibition of the 
cytotoxic mechanism, resulting in loss of antitumor functions[157]. Overall, the available data suggest a 
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possible therapeutic potential for the regulation of NK cell function, which is a promising topic for 
further research.

ROLE OF RECEPTORS IN THE INNATE IMMUNE SYSTEM
The innate immune system relies on a large number of pattern recognition receptors (PRRs) to recognize 
both DAMPs and pathogen-associated molecular patterns. Toll-like receptors (TLRs) are the most well 
characterized representatives of PRRs. They are expressed in a variety of liver cells, including Kupffer 
cells, HSCs, hepatocytes, sinusoidal endothelial cells, and biliary epithelial cells[158-160]. A growing 
body of evidence reinforces the importance of TLRs in the pathogenesis of NAFLD[161]. TLR4 is of 
particular interest in connection with liver inflammation and fibrogenesis[158,162,163]. TLR4 is a 
receptor that detects the LPS of Gram-negative bacteria and is widely known for its role in various 
diseases.

TLR4 is expressed on all types of liver cells, including Kupffer cells, HSCs, and hepatocytes. Under 
normal conditions, hepatic cells express minimal TLRs, indicating a high tolerance of the liver to TLR 
ligands[164]. At the same time, receptor expression in the liver is associated with inflammation and 
fibrosis[164]. TLR4 plays a central role in Kupffer cell activation by responding to LPS. LPS is 
considered a potent inducer of hepatic inflammation. It promotes the production of TNF-α in Kupffer 
cells, which is a mediator of inflammation in the pathogenesis of NAFLD[165]. In addition, LPS can 
activate HSCs, and Kupffer cells can enhance this process by producing TGF-β and making HSCs more 
sensitive to TGF-β[164]. Despite the fact that Kupffer cells are the main targets for LPS in the liver, it is 
HSCs that contribute to TLR4-dependent fibrosis[99]. In addition, modulation of TGF-β signaling along 
the TLR4-MyD88-NF-κB axis provides a link between proinflammatory and profibrogenic signals[99]. 
Numerous data support the involvement of HSCs as central mediators of hepatic fibrosis. Activation of 
TLR4 in quiescent HSCs enhances chemokine secretion and induces Kupffer cell chemotaxis and 
inhibits the TGF-β pseudoreceptor Bambi, which increases HSCs sensitivity to signals induced by TGF-β 
and enables unrestricted activation by Kupffer cells[99]. A significantly reduced expression of the Bambi 
gene in HSCs was seen when incubated with the TLR4 LPS ligand[166].

It was found that a diet high in cholesterol leads to the accumulation of free cholesterol in HSCs, 
which promotes TLR4 signaling by increasing TLR4 levels in the membrane and can suppress Bambi 
gene expression. As a consequence, TGF-β signaling in HSCs was enhanced, leading to HSCs activation 
and progression of liver fibrosis[166].

ENDOTHELIAL CELL INVOLVEMENT IN THE IMMUNE SYSTEM IN THE LIVER
Endothelial cells, which form the inner membrane of blood vessels, play an important role in the 
functioning of the barrier between blood and tissues. Endothelium is characterized by heterogeneity 
and plasticity due to phenotypic specialization of different tissue types. This endothelial specialization 
can provide dense connections necessary for functioning of histo-tissue barriers, or on the contrary can 
promote infiltration and extravasation of molecules and particles circulating in the bloodstream due to 
fenestrated endothelium in the liver and kidneys[167]. Given that the liver is a highly vascularized 
organ (accounting for 20% of cardiac output), hepatic sinusoidal endothelial cells constitute a significant 
proportion of the total number of liver cells[168]. Liver sinusoidal endothelial cells (LSECs) have a 
unique morphological phenotype characterized by a combination of numerous fenestrae and lack of a 
basement membrane, which provides open access for dissolved substances between the sinusoidal 
blood and the Disse space (Figure 2). LSECs are involved in regulation of the liver microenvironment 
and act as the liver's first protective barrier. An important functional phenotypic feature of hepatic 
sinusoidal endothelial cells is their high endocytic capacity[169]. These cells are capable of absorbing 
and removing soluble macromolecules from the portal venous blood in addition to Kupffer cells located 
on the lumen side of the endothelium[168].

Disruption of the LSECs phenotype is a critical step in the liver fibrosis process (Figure 2). Capillar-
ization, in which there is a lack of fenestration of hepatic sinusoidal endothelial cells and formation of an 
organized basal membrane, precedes fibrosis and contributes to HSC activation[169]. Vascular 
endothelial growth factor (VEGF) produced by hepatocytes and HSCs has been shown to be a key 
regulator of the LSEC phenotype[169-173]. The maintenance of the fenestrated LSEC phenotype is 
provided by the action of VEGF through a nitric oxide (NO)-dependent and NO-independent pathway
[169-171]. In this case, VEGF, which is produced by hepatocytes or stellate cells, promotes NO formation 
from LSECs via endothelial nitric oxide synthase (eNOS)[171].

A growing body of evidence supports the important role of the endothelium in vascular biology. 
Endothelial cells can detect changes in blood flow and are involved in the regulation of hemodynamics 
and inflammation through the production of several bioactive substances. Endothelial production of NO 
is the best known way to regulate vascular hemodynamics. Nitric oxide is an important signaling 
molecule that is at the crossroads between the regulation of vascular hemodynamics and innate 
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immunity[174]. Importantly, NO demonstrates active involvement in the regulation of inflammation in 
the vascular wall, which is important in the development of atherosclerosis. Endothelial NO actively 
regulates the innate immune response involved in atherogenesis by regulating macrophage and 
lymphocyte uptake and vessel wall migration via adhesion molecules[174].

Nitric oxide synthesis in the endothelium is carried out by a specific constitutive eNOS isoform. 
Mechanical stimulation of endothelial cells by blood flow triggers a complex chain of events involving 
numerous cellular mechanosensors and enzymes, leading to activation of eNOS[175]. eNOS is expressed 
in LSECs and produces small amounts of NO, which maintain intrahepatic sinusoidal vascular tone and 
hemodynamics in the liver. Another isoform of nitric oxide synthase, inducible NOS (iNOS) is 
expressed in various liver cells, including LSECs, hepatocytes, Kupffer cells, HSCs and other immune 
cells[176-178]. LPS induces iNOS expression and NO production and increases caveolin-1 and decreases 
eNOS phosphorylation[179].

It should be noted that while the NO produced by eNOS has a hepatoprotective effect by inhibiting 
inflammatory activation of Kupffer cells, the NO produced by iNOS, in contrast, promotes NAFLD
[180]. iNOS produces significantly more NO than eNOS, which can have negative effects. This is due to 
the cytotoxicity of NO in high concentrations. In particular, peroxynitrite (ONOO-) can damage a wide 
range of cellular molecules[181]. Interestingly, peroxynitrite can affect cyclooxygenase (COX)-1 and 
COX-2 activity depending on the concentration[182,183]. It has been suggested that NO can interact 
directly with COX, for example via S-nitrosylation, causing an increase in its enzymatic activity[184,
185]. Thus, NO production has closely overlapping connections with innate immunity. These and other 
data suggested a role for COX enzymes as important endogenous receptor targets for NO functions
[186]. COX-2-mediated inflammation is important for insulin resistance associated with obesity and 
fatty liver dystrophy. Daily aspirin intake was associated with less severe histologic signs of NAFLD 
and NASH and a reduced risk of fibrosis progression over time[187].

Importantly, eNOS activity is decreased in pathological conditions, whereas iNOS activity is 
increased. Decreased NO production in LSECs causes endothelial cell capillarization and HSCs 
activation. This leads to deposition of extracellular matrix, proliferation of HSCs, increased intrahepatic 
resistance and impaired sinusoidal blood flow[180].

Thus, the function of NO is related to the maintenance of liver cell function. NO derived from eNOS 
protects against liver disease, whereas NO derived from iNOS has a proinflammatory effect[180]. When 
mice were fed a HFD, a decrease in liver NO was shown to precede the onset of liver inflammation 
through the NF-κB pathway as well as impaired insulin signaling at the IRS-1 and phospho-Akt levels. 
Thus, an important physiological role of endothelial NO has been shown to limit obesity-associated 
inflammation and impaired insulin signaling in hepatocytes and Kupffer cells via the NO/cGMP-
dependent protein kinase (PKG)/ vasodilator-stimulated phosphoprotein (VASP) pathway as part of a 
cross-talk mechanism with metabolic disturbances associated with obesity[168].

LSECs exhibit a proinflammatory phenotype during the progression of NAFLD to NASH. It is charac-
terized by surface overexpression of adhesion molecules such as ICAM-1, VCAM-1, and VAP-1 (AOC3) 
and production of proinflammatory molecules such as TNF-α, IL-6, IL-1, and MCP1 (CCL2)[188,189]. 
Interestingly, LSECs and HSCs are involved in maintaining each other's differential phenotype. On the 
one hand, VEGF-A production by either HSCs or hepatocytes supports LSECs differentiation[170]; on 
the other hand, fenestrated LSECs prevent HSCs activation and promote the conversion of activated 
HSCs to a dormant state. However, LSECs lose this effect when they are undifferentiated or have a 
capillarized phenotype[171,190].

Thus, LSECs play an important role in liver immunology and the development of NAFLD. In contrast 
to hepatocytes, free fatty acids such as palmitic acid and oleic acid inhibit LPS-induced production of 
proinflammatory chemokines in LSECs and inhibit inflammatory cell recruitment. These findings 
suggest a potentially protective role for LSECs in the liver with excess free fatty acids, as in NAFLD
[191].

A growing body of evidence suggests that the role of lipid metabolism in endothelial cell function is 
not only as a structural or energetic substrate, but also as a participant in cell mechanobiology. In doing 
so, lipids are at the intersection of chemo- and mechanobiological signaling pathways.

CONCLUSION
NAFLD is a widespread disease whose clinical and pathophysiological links are only beginning to be 
understood. TAG accumulation in hepatocytes in NAFLD results from a complex chain of events and is 
complicated in nature, involving many exogenous and endogenous factors. Obesity and impaired lipid 
metabolism are considered to be the key links in the development of NAFLD. Moreover, impaired fatty 
acid metabolism is one of the central events in the pathogenesis of NAFLD due to their involvement not 
only as an energy substrate or their structural function in cells, but also due to their connection with the 
innate immune system. Lipid metabolism has multiple cross-links with the innate immune system, and 
these links are important in the pathogenesis of NAFLD.
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Analysis of the data allows us to emphasize the need for a better study of the multifaceted role of 
lipid metabolism and its disorders as a link in the complex chain of processes underlying the 
development of NAFLD.

The pathogenesis of NAFLD is an important target for further research, among which immuno-
metabolic cross-linkages can be considered as one of the promising directions. Immunometabolic 
regulation of cells and intercellular connections at different stages of liver disease development can be a 
significant target for therapeutic intervention. In addition, the immune and metabolic axes that link the 
liver to other organs are also of research and clinical interest. There is a growing understanding that the 
gut microbiota is an important participant in immune and metabolic processes not only in the gut, but 
also in other organs. There is also interest in information on the cross-linkages of lipid-transport 
function and innate immunity, which have evolutionarily conservative roots and link a number of 
diseases that mutually influence their natural history.

In summary, NAFLD is a complex multifaceted disease whose keys are still unknown to clinicians 
and researchers, but a better understanding of metabolic and immune cross-linkages will improve 
patient diagnosis and treatment approaches.
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