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Abstract
Colon cancer has attracted much attention due to its annually increasing 
incidence. Conventional chemotherapeutic drugs are unsatisfactory in clinical 
application because of their lack of targeting and severe toxic side effects. In the 
past decade, nanomedicines with multimodal therapeutic strategies have shown 
potential for colon cancer because of their enhanced permeability and retention, 
high accumulation at tumor sites, co-loading with different drugs, and comb-
ination of various therapies. This review summarizes the advances in research on 
various nanomedicine-based therapeutic strategies including chemotherapy, 
radiotherapy, phototherapy (photothermal therapy and photodynamic therapy), 
chemodynamic therapy, gas therapy, and immunotherapy. Additionally, the 
therapeutic mechanisms, limitations, improvements, and future of the above 
therapies are discussed.

Key Words: Colon cancer; Nanomedicine; Drug permeability; Drug retention; Multimodal 
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Core Tip: Nanomedicine has exhibited great potential in the colon cancer therapy over the past decades. In 
this review, we summarize the advances in research on various nanomedicine-based therapeutic strategies 
including chemotherapy, radiotherapy, phototherapy (photothermal therapy and photodynamic therapy), 
chemodynamic therapy, gas therapy, and immunotherapy. Additionally, the therapeutic mechanism, 
limitations, and improvement in these therapies are also introduced. The challenges and future prospect of 
the nanomedicine-based multimodal therapies for colon cancer are discussed.

Citation: He YC, Hao ZN, Li Z, Gao DW. Nanomedicine-based multimodal therapies: Recent progress and 
perspectives in colon cancer. World J Gastroenterol 2023; 29(4): 670-681
URL: https://www.wjgnet.com/1007-9327/full/v29/i4/670.htm
DOI: https://dx.doi.org/10.3748/wjg.v29.i4.670

INTRODUCTION
Colon cancer is one of the most intractable gastrointestinal diseases with increasing incidence 
worldwide[1,2]. For the past few years, human lifestyles and diets have changed markedly with the 
rapid development of the global economy, which further increases the risk of colon cancer. According to 
the global cancer statistics, the incidence and mortality of colon cancer were 6.1% and 5.8% in 2018[3], 
which ranked fourth and fifth among all cancers, respectively. The characteristics of colon cancer are 
mainly reflected in rapid energy metabolism and proliferation that enhance tumor invasion and 
metastasis. Therefore, colon cancer has become one of the major unresolved problems in medicine[4,5]. 
Conventional small molecule chemotherapeutic drugs (such as paclitaxel, doxorubicin, and 
camptothecin) are unsatisfactory because of their lack of targeting and solubility, and severe toxic side 
effects. Thus, there is an urgent need to develop novel and efficient therapeutic strategies for colon 
cancer. In the past decade, the emergence of nanomedicine has shown potential in cancer therapy. 
Compared with traditional chemotherapeutic drugs, nanomedicine has better tumor targeting because 
the vascular gaps in tumor tissue are wider than those of normal tissue, so that nanomedicine can 
penetrate tumor tissue through these vascular gaps but not into normal tissue. Because of the lack of 
lymphatic reflux in the tumor region, nanomedicine can remain in the tumor tissue, and this mechanism 
of nanomedicine-based tumor targeting is called the enhanced permeability and retention (EPR) effect
[6]. Additionally, various nanoscale drug delivery systems can load the chemotherapeutic drugs to 
enhance their solubility, which improves their utilization. Finally, nanomedicine is able to combine 
multimodal therapies to enhance the antitumor effect. Above all, nanomedicine has shown numerous 
advantages and potential for multimodal therapy of colon cancer.

In this review, we summarize recent progress of nanomedicine-based multimodal colon cancer 
therapy. First, we introduce all types of organic and inorganic nanomedicine and explore their drug 
loading, drug release, and tumor targeting. Moreover, the biosafety of nanomedicine is also discussed. 
Then, we introduce various therapeutic strategies for colon cancer including chemotherapy, 
phototherapy [photothermal therapy (PTT) and photodynamic therapy (PDT)], radiotherapy, gas 
therapy, chemodynamic therapy (CDT), and immunotherapy (Figure 1). The therapeutic mechanisms of 
these approaches are also discussed. Among them, nano drug delivery systems (NDDSs) are widely 
used to improve the therapeutic effect due to their characteristics of improving the water solubility of 
chemotherapy drugs, prolonging the blood circulation time, targeted drug delivery, few side effects, 
and reversing multi-drug resistance. PDT is a new treatment for colon cancer that uses specific 
wavelengths of light to excite photosensitizers. In the excited state, the photosensitizers transfer energy 
or electrons to the surrounding oxygen, thus producing singlet oxygen and killing cancer cells. 
Radiation therapy can cause DNA strand break of tumor cells under X-ray irradiation, and produce 
high cytotoxic free radicals to damage colon tumor cells. Compared with other reactive oxygen species 
(ROS) therapies, CDT has stronger in situ catalytic ROS generation, higher tumor specificity, and deeper 
tissue penetration, and does not require additional stimulation, providing a new idea for the future 
treatment of colon cancer. Gas therapy can enhance drug release, and when used with chemotherapy 
and synergistic therapy with other therapies, it can improve therapeutic effects, but its application in 
colon cancer requires extensive studies. Immunotherapy has been widely used in the treatment of colon 
cancer. The immunogenicity of tumor cells is activated by means of photothermal and ROS, and 
immunoadjuvant is used to reduce the immunosuppression in the tumor microenvironment and 
enhance the immune effect. These strategies provide new insights into the clinical treatment of colon 
cancer. Finally, the main limitations and challenges in the development of nanomedicine for colon 
cancer are addressed, and future research directions proposed. It is believed that nanomedicine-based 
multimodal therapy will play an important role in colon cancer.

https://www.wjgnet.com/1007-9327/full/v29/i4/670.htm
https://dx.doi.org/10.3748/wjg.v29.i4.670
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Figure 1 Schematic illustration of nanomedicine-based multimodal therapies for colon cancer. PTT: Photothermal therapy; PDT: Photodynamic 
therapy.

MULTIMODAL THERAPIES FOR COLON CANCER
Chemotherapy
Chemotherapy is the core method in current cancer treatment, and various drugs such as 5-fluorouracil 
(5-FU), platinum drugs, irinotecan, and epirubicin, are widely used[7-11]. However, there are still some 
problems in conventional chemotherapy: (1) Free small-molecule drugs have a limited half-life in vivo 
and lack of tumor targeting, leading to severe side effect; (2) Poor aqueous solubility of drugs limits 
their clinical effect; (3) Dense solid tumor tissue hinders drug delivery, resulting in insufficient drug 
dose in tumor tissue; and (4) Tumor microenvironment, such as hypoxia, low pH, and high H2O2 
concentration, leads to multidrug resistance. To improve the therapeutic effect of chemotherapy, NDDSs 
have received extensive attention because of their properties such as improving the aqueous solubility 
of drugs, prolonging the blood circulation time, achieving targeted delivery to tumors, and few side 
effects. Various NDDSs have been designed to enhance tumor targeting and aqueous solubility of 
drugs, leading to improved therapeutic effect[12-15].

Most drugs exhibit poor aqueous solubility and low bioavailability. To solve this problem, Chen et al
[16] adopted a cucurbituril-based supramolecular chemical strategy to improve the aqueous solubility 
and long-term circulation of the drugs for enhancing the therapeutic effect of oxaliplatin on colon 
cancer. Chen et al[17] prepared fisetin micelles using monomethyl poly(ethylene glycol)-poly(ε-
caprolactone) copolymers. Compared with free fisetin, the micelles exhibited excellent aqueous 
solubility and cytotoxicity. Additionally, Xiao et al[18] used the intermolecular noncovalent interaction 
of curcumin and irinotecan to self-assemble into nanoparticles, which enhanced the aqueous solubility 
of curcumin, reduced the side effects of irinotecan, and showed better targeting and therapeutic effect. 
To prolong the blood circulation of drugs, Jiang et al[19] designed OxPt/SN38 nanoparticles to hitchhike 
on low-density lipoprotein (LDL) particles and accumulate at the tumor site through LDL-receptor-
mediated endocytosis, which showed excellent antitumor efficacy in murine tumor models. Liu et al[20] 
developed an active targeting strategy to specifically combine glucose-regulated protein 78 overex-
pressed on the surface of colon cancer cells with PEGylated WL8 peptide, which enhanced the 
enrichment of doxorubicin in the tumor region.

Inflammation is an important reason for promoting tumor proliferation, invasion, metastasis, and 
drug resistance. Therefore, anti-inflammatory drugs such as aspirin and dexamethasone can improve 
the therapeutic effect of antitumor drugs[21,22]. Natural products such as curcumin and fisetin, which 
show good anti-inflammatory and antitumor properties, have also been widely used as chemothera-
peutic drugs[23-26]. Wang et al[27] found that the anti-inflammatory drug dexamethasone significantly 
enhanced the antitumor activity of carboplatin and gemcitabine and increased their accumulation in 
tumors, providing a basis for dexamethasone as a chemosensitizer. Ma et al[28] developed a pH- and 
redox-responsive peptide-dexamethasone conjugate (L-SS-DEX) that reduces inflammation and 
modulates the tumor microenvironment for an effective antitumor effect.

Multidrug resistance is another reason for the failure of chemotherapy. The multidrug-resistance-
related proteins such as P-glycoprotein (P-gp) of tumor cells result in significant drug excretion[29,30]. 
Currently, some NDDSs have been designed to co-deliver P-gp inhibitors or microRNAs to suppress 
multidrug resistance and enhance the drug sensitivity of tumor cells[31,32]. Sivak et al[33] overcame 
multidrug resistance by simultaneously delivering doxorubicin and the P-gp inhibitor (reversin 121) 
into cancer cells. The neurokinin-1 receptor antagonists inhibited expression of P-gp to enhance the 
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chemotherapy effect[34].
Studies have shown that the development of colon cancer is closely related to the gut microbiota, 

which is involved in regulating the sensitivity of tumor cells to chemotherapy. As a Gram-negative 
anaerobic bacterium, Fusobacterium nucleatum (F. nucleatum) is enriched in colon cancer patients, adheres 
to the intestinal mucosa, and invades epithelial cells to induce carcinogenesis. It can combine with E-
cadherin on the surface of colon cancer cells to form a tumor immunosuppressive microenvironment, 
promote tumor proliferation, and enhance drug resistance of colon cancer cells[35-38]. Therefore, 
inhibiting the activity of F. nucleatum is important for enhancing the efficacy of colon cancer 
chemotherapy. Lauric acid has a specific inhibitory effect on F. nucleatum. Yan et al[39] used poly-
glycidyl ether as a nanodrug carrier, introduced the antibacterial agent lauric acid and oxaliplatin 
through esterification, selectively inhibited the biological activity of F. nucleatum, and improved the 
resistance of colon cancer cells to oxaliplatin. The antibiotic metronidazole and the chemotherapy drug 
5-FU were mixed into the metal polyphenol network coated mesoporous silica nanoparticles (MSNs), 
and then added with carboxymethyl cellulose to obtain anti-colorectal cancer gel to eliminate F. 
nucleatum in colon cancer and inhibit the drug resistance, and proliferation and metastasis of colon 
cancer cells[40].

Phototherapy
Phototherapy is an emerging strategy to kill tumor cells by stimulating photosensitizers under light 
irradiation. In recent years, phototherapy, as a noninvasive treatment, has attracted widespread 
attention because of its specificity, low toxicity for normal tissues, and excellent antitumor effect. PTT 
and PDT are two common methods in colon cancer treatment[41-44]. PTT utilizes photosensitizer 
accumulated in tumor tissue to convert light energy into heat for killing tumor cells under light 
irradiation (generally near-infrared, NIR), which shows spatiotemporal controllability, high selectivity, 
and low cost. Recently, NDDSs have been designed to delivery photothermal agents for enhancing 
tumor targeting. For example, Ren et al[45] designed CT26 cell membrane-coated Bi nanoparticles, 
which had good long-term circulation and tumor homologous targeting ability in vivo compared with Bi 
nanoparticles. In addition, it is reported that epidermal growth factor receptor (EGFR) is abundantly 
expressed on the surface of some colorectal cancer cells. Shih et al[46] combined cetuximab (EGFR 
inhibitor) with the organic NIR dye IR780 to target colon cancer cells with high EGFR expression for 
PTT. Excessive H2S (0.3-3.4 mmol/L) produced by colon cancer cells can promote the proliferation of 
colon cancer cells and angiogenesis in the tumor area[47,48]. Biocompatible iron oxide nanospindles 
have been developed, which can efficiently remove endogenous H2S gas in colon tumor tissues and 
inhibit tumor growth, and generate FeS in situ for magnetic resonance imaging (MRI) and PTT under 
NIR irradiation[49-51].

PDT is a new method for colon cancer therapy that utilizes light of a specific wavelength to excite a 
photosensitizer, and the photosensitizer in the excited state transfers energy or electrons to the 
surrounding oxygen, thereby producing singlet oxygen to kill cancer cells[52]. Various NDDSs have 
been designed to deliver PDT-based photosensitizers to colon tumors. By adjusting the size of the 
NDDSs and modifying with hydrophilic groups, the photosensitizers can be passively targeted to the 
tumor area through the EPR effect. Besides the EPR effect, biomimetic membrane or tumor-specific 
affinity ligands-modified NDDSs have also been extensively studied for tumor targeting. Xie et al[53] 
designed a translocator protein (TSPO)-targeted photosensitizer (IR700DX-6T) for tumor targeting of 
photosensitizers via combination with overexpressed TSPO in colon cancer cells. Additionally, because 
of the high expression of EGFR in colon cancer cells, EGFR antibody has been used to target delivery of 
the photosensitizer IR700, which effectively eradicated colon cancer cells[54]. Traditional pho-
tosensitizers have high fluorescence quantum yields in dilute solutions, which leads to weaker 
fluorescence in the aggregated state. Aggregation of photosensitizers during delivery can lead to 
reduced ROS yields, so it is crucial to develop novel nanocarriers that efficiently load photosensitizers 
and prevent their aggregation. Covalent organic frameworks as a class of organic polymers, have 
attracted much attention because of their excellent biocompatibility and biodegradability. Gan et al[55] 
showed enhanced phototherapeutic effects by adsorbing the NIR dye indocyanine green (ICG) onto the 
covalent organic framework via π–π interaction to prevent its aggregation. In addition to this, 
aggregation-induced emission luminescence agents have been used to enhance PDT because the agents 
exhibit enhanced fluorescence emission in the aggregated state[56]. Hypoxia is one of the main reasons 
for the poor effect of PDT. Thus, researchers have developed a variety of oxygen generators such as 
hemoglobin, MnO2, and perfluorocarbon, to increase oxygen in the tumor to enhance the effect of PDT
[57-59]. For example, He et al[60] designed gold nanocages coated with MnO2 and hyaluronic acid (HA) 
for tumor targeting, and MnO2 was designed to react with the overproduced H2O2 in the tumor to 
relieve tumor hypoxia and enhance the effect of gold nanocage-based PDT.

Radiotherapy
Radiotherapy is a local cancer treatment that is widely applied in clinical therapy. The mechanism of 
action of radiotherapy is to cause DNA strand breaks in tumor cells and generate highly cytotoxic free 
radicals under X-ray irradiation to damage tumor cells[61-65]. Radiosensitizers are usually used to boost 
the effect of radiotherapy against colon cancer[66]. 7-Dehydrocholesterol is utilized as a radiosensitizer, 
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which can react with ROS to promote lipid peroxidation, double-strand breaks, and mitochondrial 
damage in cancer cells, enhancing the radiotherapeutic effect[67]. As we know from the mechanism of 
action of radiotherapy, tumor hypoxia limits the efficacy of radiotherapy; thus, relief of hypoxia by 
nanomedicine can improve the therapeutic effect. MnO2 can react with excess H2O2 in the tumor to 
generate oxygen, which can relieve the hypoxic microenvironment, eliminate tumor resistance to 
radiotherapy, and reshape the immunosuppressive microenvironment. Zhang et al[68] designed bovine-
serum-albumin-coated MnO2 as a radiosensitizer. MnO2 can decompose excess H2O2 in the tumor into 
oxygen to relieve tumor hypoxia and convert tumor-promoting M2 tumor-associated macrophages into 
antitumor M1-type macrophages to reshape the immunosuppressive microenvironment and eliminate 
tumor resistance to radiotherapy. In addition, perfluorocarbon is a good oxygen carrier that can be used 
to delivery oxygen to tumors and reverse hypoxia, leading to enhancement of radiotherapy[69].

CDT
CDT is a promising therapeutic strategy that utilizes endogenously overexpressed H2O2 in tumors to 
generate toxic hydroxyl radicals (·OH) through Fenton/Fenton-like reactions catalyzed by metals (Fe2+, 
Cu+, Mn2+, Mo4+, W4+, Ti3+, etc.)[70-73]. Compared with other ROS therapies, CDT has the advantages of 
stronger in situ catalytic ROS generation, tumor specificity, and deep tissue penetration, which does not 
require additional stimulation. However, the effect of CDT is still limited by its high dependence on 
tumor endogenous H2O2 concentration (10-100 μM) and slow ion release from inorganic nanoparticles
[74,75]. The problem of low levels of H2O2 in tumor tissue can be solved by directly loading H2O2 or 
encapsulating H2O2-producing drugs such as glucose oxidase and calcium peroxide. However, 
nanocarriers directly encapsulating exogenous H2O2 have the risk of leakage causing damage to normal 
tissues. Therefore, new strategies are urgently needed to address the challenges associated with CDT. Su 
et al[76] used a microfluidic method to prepare a nanogel (DOX@Mn-Alg) composed of alginate (Alg), 
Mn2+, and doxorubicin as an ideal CDT/chemotherapy synergistic therapeutic nanoplatform, because 
doxorubicin can activate NADP oxidases to convert oxygen to ·O2

– and then superoxide dismutase 
further catalyzes ·O2

– to generate endogenous H2O2 via a disproportionation reaction. Subsequently, the 
elevated H2O2 can be converted into a sufficient amount of ·OH through a Mn2+-mediated Fenton-like 
reaction. Ultimately, DOX@Mn-Alg can rationally combine doxorubicin chemotherapy with Mn2+-
mediated CDT and immunotherapy for synergistic cancer treatment. Chen et al[77] selected Pd 
nanoparticles as a CDT reagent, and showed that the ultra-small Pd nanozyme as the core had high 
catalytic activity and pH selectivity. Under acidic conditions, it exhibited peroxidase activity to produce 
OH and 1O2, while under neutral conditions, it promoted the decomposition of H2O2 to produce O2 
through catalase activity. In terms of biological activity, the bidirectional anisotropic nanocluster not 
only directly inhibited tumor cells through ROS production, but also induced H2O2 production in CT26 
cells, which enhanced the therapeutic effect. The nanoparticles inhibited tumor growth in CT26 mice, 
and improved tumor hypoxia and enhanced the therapeutic effect.

The intracellular glutathione in tumor cells can eliminate the oxidative activity of ·OH through 
powerful reducing activity. Lin et al[78] devised a strategy to enhance CDT by inhibiting expression of 
glutathione in tumors and remodeling the reductive state of the tumor microenvironment, indicating 
that inhibition of glutathione can improve the effect of CDT. Wang et al[79] reported a degradable 
MnSiO3 nanosystem for CDT/chemical synergistic therapy. First, MnSiO3 nanoparticles were 
synthesized, and then the surface-initiated living radical polymerization of monomer of SN38 and 
oligo(ethylene glycol) methacrylate was conducted to obtain the product of CAMNSN@PSN38. 
Nanoparticles delivered to tumor tissues were gradually biodegraded by glutathione over time, during 
which SN38 and Mn2+ were gradually released. The released SN38 showed a favorable chemothera-
peutic effect and increased accumulation of H2O2. The interaction of CAMNSN@PSN38 with glutathione 
depleted glutathione in tumor tissues and led to Mn2+ release for CDT and MRI-guided therapy. 
CAMNSN@PSN38 had a good inhibitory effect on colon tumor growth and assisted MRI-guided 
imaging through ROS accumulation in vivo. Unlike other tumor types, colon tumor shows high 
expression of H2S (0.3-3.4 mmol/L), whose reductive activity is stronger than that of glutathione[80,81]. 
Therefore, in the treatment of colon cancer, the effect of CDT is also limited by endogenous H2S. Liu et al
[82] constructed CuFe2O4 nanoparticles to explore the potential of endogenous H2S depletion to enhance 
CDT for colon cancer. CuFe2O4 nanoparticles remodel endogenous H2S in colon cancer and enhance the 
Fenton or Fenton-like reaction of Cu(I) and Fe(II) by a photothermal effect to generate more ·OH. The 
results suggest that CuFe2O4 nanoparticles effectively enhance the effect of CDT by depleting H2S. In 
addition, H2S-responsive therapeutic nanoplatforms have been designed. Xiao et al[18] synthesized a 
copper-based metal-organic framework named HKUST-1 as a smart therapeutic platform. PTT and CDT 
were activated in the presence of H2S in colon cancer cells. H2S-triggered nanosystems can minimize 
side effects on surrounding normal tissues and precisely inhibit colon cancer growth. Above all, CDT 
shows potential for colon cancer treatment.

Gas therapy
As an emerging treatment method, gas therapy has attracted research interest in recent years[83-86]. Gas 
therapy refers to use of H2S[87], NO[88], CO, etc. to kill tumor cells[89]. Liu et al[90] designed a 
nanoplatform (PEG/SCNPs@DMSN-SNO-g-C3N4) to release NO under X-ray irradiation, and then NO 
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reacted with superoxide anions to generate ONOO– toxic free radicals, leading to apoptosis through 
mitochondrial damage. NO has been proven to activate innate and adaptive responses of the immune 
system against tumors. Previous in vivo results showed that all NO-treated colon tumor-bearing (CT26 
model) mice were resistant to secondary CT26 cell inoculation. Nonsteroidal anti-inflammatory drugs 
(NSAIDs) are prototypical anticancer agents. NO and H2S are gaseous mediators with physiological 
relevance and NSAIDs that possess an H2S- and NO-releasing moiety have shown beneficial effects. 
Chattopadhyay et al[91] synthesized and characterized a new class of anti-inflammatory NO- and H2S -
releasing compounds. This induced apoptosis, inhibited cell proliferation, and reduced colon tumor 
growth in a mouse xenograft model. Zhang et al[92] designed gas-generating MSNs, which can load 
ammonium bicarbonate and doxorubicin in the pores, and ICG coated on a polydopamine layer and 
modified with RGD peptides on the outer surface [M(ABC)-DOX@PDA-ICG-PEG-RGD] for triggering 
drug release and targeted chemotherapeutic photothermal combination treatment. At high temperature 
and low pH, the encapsulated ammonium bicarbonate can effectively generate CO2. The CO2 can 
damage the polydopamine layer and accelerate the release of doxorubicin. The results proved the 
excellent antitumor effect of gas therapy and chemotherapy, as well as good biosafety. Therefore, the 
gas therapy showed potential for colon cancer therapy.

Immunotherapy
Immunotherapy exhibits potential against colon cancer because it relies on the autoimmune system to 
attack malignant tumors. Immunotherapy for colon cancer is mainly divided into the following 
categories: (1) Activation of tumor immunogenicity; (2) Relief of tumor microenvironment immunosup-
pression; (3) Design of antitumor neoantigen vaccines and novel immune adjuvants; and (4) Design of 
therapeutic strategies using macrophages as target cells. However, only a subset of cancer patients 
responds to current immunotherapies because of the low immunogenicity of tumor cells and the 
immunosuppressive tumor microenvironment. Therefore, new strategies are needed to activate tumor 
immunogenicity and relieve the immunosuppression of the tumor microenvironment to improve the 
effect of immunotherapy. Fan et al[93] reported pH-responsive core-shell nanoparticles (HCLO NPs) for 
co-delivery of oxaliplatin intermediate and cytosine-guanine-containing oligodeoxynucleotide (CpG) for 
colon cancer treatment, and the oxaliplatin intermediate intratumoral injection induced in situ antigen 
production via immunogenic cell death. Subsequently, CpG enhanced antigen presentation and 
promoted production of cytotoxic T lymphocytes (CTLs). The results indicated that the HCLO NPs 
enhanced the toxicity of oxaliplatin intermediate for CT26 cells and upregulated expression of 
calreticulin, which exhibited significant immunity and antitumor effect. Hu et al[94] integrated HA, 
pheophorbide A heterodimer, and NLG919 into a supramolecular nanocomposite, which generated 
ROS under NIR laser irradiation to kill tumor cells, stimulated antitumor immunogenicity, and 
enhanced intratumoral infiltration of CTLs. The immunosuppressive tumor microenvironment was 
reversed by NLG919-mediated inhibition of indoleamine 2,3-dioxygenase 1. The results showed that 
this strategy could effectively kill CT26 colon tumors. Ding et al[95] designed liposome-encapsulating 
phosphatidylinositol 3-kinase γ inhibitor IPI-549 and photosensitizer Ce6 for immunotherapy of colon 
cancer. When the liposomes were internalized into CT26 cells, ROS were generated under laser 
irradiation, causing immunogenic tumor cell death. IPI-549 transported by liposomes promoted 
apoptosis of myeloid-derived suppressor cells and reduced the immunosuppressive activity of CD8+ T 
cells to inhibit growth of CT26 tumors. Checkpoint inhibitors, such as antibodies that block the 
programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) pathway, are among 
the most promising immunotherapies for metastatic cancer. However, the responses rates remain low. 
To solve this problem, Yu et al[96] developed nanoparticles with PD-L1 blocking ability, which 
integrated PTT, antitumor immunity, and PD-1/PD-L1 blockade to enhance antitumor efficacy. In the 
mouse CT26 bilateral tumor model, intravenously injected nanoparticles accumulated at the tumor site 
and mediated a strong photothermal effect, eliminated the primary tumor by inducing immunogenic 
cell death, and elicited strong antitumor immunity. Growth of untreated distant tumors was inhibited 
by the synergistic effect of systemic antitumor immune activation and PD-L1 blockade. This strategy 
provided a promising approach for the treatment of metastatic cancer.

The reported immunoadjuvants have many limitations, such as poor cellular uptake and biocompat-
ibility, excessive particle size, single function, and unsatisfactory therapeutic effect. Ding et al[97] 
prepared mesoporous silica-coated upconversion nanoparticles (UCMSs) and used them as a novel 
immune adjuvant. UCMSs had significant loading of the photosensitizer merocyanine 540, chicken 
ovalbumin, and tumor cell fragments. The UCMSs exhibited the best synergistic immune enhancement 
under 980 nm NIR irradiation, with the strongest Th1 and Th2 immune responses, and the highest 
frequencies of CD4+, CD8+, and effector memory T cells. In addition, nanovaccine UCMSs inhibited 
tumor growth more effectively and improved survival of tumor-bearing mice compared with PDT or 
immunotherapy alone, indicating that UCMSs have higher immunotherapeutic efficacy and clinical 
potential. As a new tumor vaccine based on zymosan shell particles[98], GP-Neoantigen can stimulate 
the body to generate a strong antigen-specific CD8+ T cell immune response and an immune response to 
a variety of neoantigen peptides, and thereby be used for effective tumor treatment. The vaccine 
induced strong specific CD8+ T cell immune responses and humoral immune responses in vivo, which 
also showed strong tumor growth inhibitory activity in the CT26 colon cancer model. Binding to Toll-
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like receptor agonists PolyI:C and CpG 2395 enhanced the antitumor effect and achieved complete 
tumor clearance. These results provide broad possibilities for further clinical promotion and person-
alized vaccine therapy.

M2 macrophages are polarized by stimulatory factors in the tumor microenvironment and promote 
tumor growth. They are involved in limiting T cell function, tumor angiogenesis, and tumor invasion 
and metastasis. Increasing the ratio of M1/M2 macrophages in the tumor microenvironment is a 
promising cancer immunotherapy strategy. An erythrocyte membrane nanoparticle encapsulating 
Porphyromonas gingivalis can modulate the ratio of M1/M2 macrophages for cancer immunotherapy[99], 
and such nanoparticles inhibited the growth of primary and secondary tumors of CT26 colon cancer 
under the action of laser and anti-PD-1. Immunotherapy based on nanomedicine has been widely used 
in cell and animal models, and has shown good anti-tumor efficacy. It is expected to become one of the 
most potential therapeutic means in cancer treatment.

CONCLUSION
Several advanced nanomedicine applications have been developed for colon cancer therapy, which 
overcome the poor tumor targeting and efficacy of conventional drugs. This review presents various 
organic- and inorganic-based nanomedicines applied in colon cancer therapy using CT26 cells as the 
tumor model. We have introduced the mechanism of nanomedicine-based therapeutic strategies 
including chemotherapy, phototherapy (PTT and PDT), radiotherapy, gas therapy, CDT, and immuno-
therapy. These multimodal therapeutic strategies based on nanomedicine against colon cancer have 
shown excellent antitumor effect and potential.

Although the nanomedicine-based multimodal therapies have shown a superior effect against colon 
cancer, several limitations need to be overcome in future development. The first limitation is the unsatis-
factory tumor penetration of nanomedicine. Drug delivery in vivo includes circulation, accumulation, 
penetration, internalization, and release. Poor tumor penetration has become a long-standing problem 
for the development of nanomedicine, which leads to the survival of tumor stem cells in deep tumor 
sites. The reason is the serious hinders of dense extracellular matrix and elevated tumor interstitial 
pressure. Thus, there is an urgent need to develop novel strategies to enhance tumor penetration of 
nanomedicine. The second limitation is obstruction of various therapies by the tumor microenvir-
onment. For example, tumor hypoxia limits oxygen-dependent therapy such as PDT and radiotherapy. 
Additionally, M2 tumor-associated macrophages construct the tumor immunosuppression 
environment, which limits the effect of immunotherapy. Not only that, the immune checkpoint protein 
on the tumor cell inhibits the recognition and combination of cytotoxic T cells. Therefore, reversing the 
adverse effects of the tumor microenvironment is the key to improving the therapeutic effect of 
nanomedicine. It is expected that nanomedicine-based multimodal therapeutic strategies will have 
potential for clinical translation into colon cancer therapy.
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