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Abstract
BACKGROUND 
Increasing evidence has demonstrated that N6-methyladenosine (m6A) RNA 
modification plays an essential role in a wide range of pathological conditions. 
Impaired autophagy is a critical hallmark of acute pancreatitis (AP).

AIM 
To explore the role of the m6A modification of ZKSCAN3 in the regulation of 
autophagy in AP.

METHODS 
The AP mouse cell model was established by cerulein-treated mouse pancreatic 
acinar cells (MPC-83), and the results were confirmed by the levels of amylase and 
inflammatory factors. Autophagy activity was evaluated by specific identification 
of the autophagy-related microstructure and the expression of autophagy-related 
genes. ZKSCAN3 and ALKBH5 were knocked down to study the function in AP. A 
m6A RNA binding protein immunoprecipitation assay was used to study how the 
m6A modification of ZKSCAN3 mRNA is regulated by ALKBH.

RESULTS 
The increased expression of amylase and inflammatory factors in the supernatant 
and the accumulation of autophagic vacuoles verified that the AP mouse cell 
model was established. The downregulation of LAMP2 and upregulation of LC3-
II/I and SQSTM1 demonstrated that autophagy was impaired in AP. The 
expression of ZKSCAN3 was upregulated in AP. Inhibition of ZKSCAN3 increased 
the expression of LAMP2 and decreased the expression of the inflammatory 
factors, LC3-II/I and SQSTM1. Furthermore, ALKBH5 was upregulated in AP. 
Knockdown of ALKBH5 downregulated ZKSCAN3 expression and restored 
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decreased autophagic flux in AP. Notably, the bioinformatic analysis revealed 23 potential m6A modification sites 
on ZKSCAN3 mRNA. The m6A modification of ZKSCAN3 mRNA was significantly decreased in AP. Knockdown 
of ALKBH5 increased the modification of ZKSCAN3 mRNA, which confirmed that ALKBH5 upregulated ZKSCAN3 
expression in a m6A-dependent manner.

CONCLUSION 
ALKBH5 inhibits autophagic flux through m6A demethylation of ZKSCAN3 mRNA in AP, thereby aggravating the 
severity of the disease.

Key Words: Acute pancreatitis; Autophagy; ZKSCAN3; N6-methyladenosine; ALKBH5

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Acute pancreatitis (AP) is a common emergency in digestive system. Impaired autophagy is one of important 
pathogenic mechanisms of AP, however, its regulatory mechanism remains unclear. N6-methyladenosine modification and 
ZKSCAN3 are crucial regulatory factors of autophagy, but their roles in AP are not well-defined. This study confirmed that 
the demethylase ALKBH5 can inhibit autophagy flux by upregulating ZKSCAN3, thereby exacerbating the inflammatory 
severity of AP. The findings of this study provided new insights into the autophagy regulation mechanism and offered a 
novel direction for early intervention in AP.

Citation: Zhang T, Zhu S, Huang GW. ALKBH5 suppresses autophagic flux via N6-methyladenosine demethylation of ZKSCAN3 
mRNA in acute pancreatitis. World J Gastroenterol 2024; 30(12): 1764-1776
URL: https://www.wjgnet.com/1007-9327/full/v30/i12/1764.htm
DOI: https://dx.doi.org/10.3748/wjg.v30.i12.1764

INTRODUCTION
Acute pancreatitis (AP) is one of the most common digestive emergencies. The global prevalence and incidence of AP are 
approximately 76/100000 and 34/100000, respectively, and the number of new cases is increasing at an annual rate of 3%
[1-3]. With the progression of therapeutic concepts and interventions, the prognosis of AP has significantly improved. 
However, due to the unclear pathogenesis of AP, clinicians are still unable to effectively intervene specifically in local or 
systemic inflammation. The pathogenesis of AP is complex and multifactorial and induces significant and sustained 
pathological disruption[4,5]. Therefore, further study of the mechanism underlying the progression of AP will provide 
insight into the development of future therapeutic strategies.

Autophagy is a highly conserved catabolic process in which abnormal biomolecules and organelles are degraded and 
degradation products are recycled. Autophagy plays an important role in maintaining cellular homeostasis. The entire 
autophagy process is defined as autophagic flux, and disrupted integrity of the process is called impaired autophagy[6]. 
Studies have shown that impaired autophagy plays an important role in the development of various diseases, such as 
neurodegeneration, inflammation, infection, tumors, and metabolic disorders[7-9]. In recent years, the important role of 
autophagy in AP has been gradually recognized. The basal level of autophagy in the mouse exocrine pancreas is 
significantly greater than that in the endocrine pancreas and other organs[10]. In experimental pancreatitis, interfering 
with the expression of upstream regulatory molecules or autophagy-related genes can induce inflammatory changes in 
exocrine pancreatic cells[11]. Impaired autophagy in AP manifests as activation of the initial stage but blockade of the 
degradation stage, resulting in harmful factors such as abnormal zymogen granules and disrupted organelles that cannot 
be effectively degraded[10]. Although impaired autophagy can mediate abnormal zymogen activation, inflammation, and 
cell death in pancreatic acinar cells[12], the specific regulatory mechanism involved is still unclear.

ZKSCAN3 is a zinc finger DNA-binding protein that simultaneously contains KRAB and SCAN domains; it is also a 
recognized inhibitory factor of autophagy[13,14]. Studies have shown that ZKSCAN3 can inhibit the transcription of 
numerous autophagy-related genes, such as LC3 and WIPI2, thereby suppressing a series of autophagy steps in various 
diseases[15,16]. However, the role of ZKSCAN3 in autophagy in AP has not yet been determined.

The N6-methyladenosine (m6A) modification of RNA plays an important role in the autophagy regulatory network. 
This process is reversible and involves mainly methyltransferases, demethylases, and methylated RNA-binding proteins
[17,18]. ALKBH5 is a crucial demethylase that plays a key role in various diseases[19,20]. In ovarian cancer, the overex-
pression of ALKBH5 promotes the formation of the BCL-2-Beclin1 complex, and inhibits autophagy[21]. In silica-related 
pneumonia, ALKBH5 can mediate autophagic flux blockade through the Slam7 pathway[22]. However, in myocardial 
ischemia-reperfusion injury, ALKBH5 plays a role in promoting autophagic flux[23]. Although the role of m6A 
modification in impairing autophagy has been demonstrated in various tumors and inflammatory diseases, there is no 
experimental research on m6A modification in AP. Recent bioinformatics studies have shown that decreased m6A levels 
are related to the occurrence of severe AP[24], but whether this change is related to ALKBH5-mediated impaired 
autophagy in AP is unclear.

https://www.wjgnet.com/1007-9327/full/v30/i12/1764.htm
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Clarifying the regulatory mechanism of autophagy in AP is crucial for early intervention. However, research on the 
autophagy and its regulatory mechanism in AP has not been illustrated. Therefore, in this article we aimed to explore the 
role and mechanism of action of ALKBH5 in ZKSCAN3 regulated autophagy. We verified the results at the cellular level 
through a series of molecular biology experiments, which provided a novel perspective on the research of pathogenesis 
and molecular mechanism of AP and highlighted new targets for therapeutic intervention.

MATERIALS AND METHODS
Cell culture
Mouse pancreatic acinar cells (MPC-83) were cultured in RPMI-1640 supplemented with 10% FBS, 100 U/mL penicillin, 
and 100 mg/mL streptomycin in a 37 °C incubator with 5% CO2. The control groups were not treated, and the AP groups 
were pretreated with cerulein (10 nM) for 24 h.

Cell transfection
MPC-83 cells were seeded in 6-well plates and maintained at 37 °C and 5% CO2. ALKBH5 and ZKSCAN3-siRNA (50 nM) 
(RiboBio, Gunagzhou, China) were transfected into MPC-83 cells. After 48 h of transfection, the cells were treated with 
cerulein (10 nM) for 24 h.

Quantitative real-time RT-PCR
Total RNA was extracted from cells using the TRIzol method. All mRNAs were reverse transcribed using the 
PrimeScript™ RT reagent Kit (Perfect Real Time) (TaKaRa, Kyoto, Japan). Reverse transcription and quantitative real-
time RT-PCR were performed with SYBR® Premix Ex Taq™ (TaKaRa, Kyoto, Japan). The results were normalized to that 
of β-actin and calculated via the relative quantification (2-ΔΔCt) method. The primers used were purchased from Sangon 
Company (Table 1).

ELISA
The supernatant of MPC-83 cells was collected. The levels of interleukin 6 (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α 
were assessed using ELISA kits (Neobioscience, Shenzhen, China).

Western blot
Cell lysates were prepared using lysis buffer composed of 50 mmol/L Tris-HCl, 150 mmol/L NaCl, 0.5% sodium 
deoxycholate, 0.1% SDS, and 1% NP-40. The lysates were centrifuged to collect the supernatants. An equal amount of 
protein was denatured in SDS sample buffer and separated on 8% or 10% polyacrylamide gels based on the molecular 
weight of the target proteins. The separated proteins were then transferred to a PVDF membrane. The membranes were 
blocked with 5% nonfat milk in TBST (TBS containing 0.05% Tween 20), incubated with primary antibodies, and 
subsequently incubated with secondary antibodies conjugated to alkaline phosphatase. Protein expression was detected 
by chemiluminescence. The antibodies used were against ALKBH5 (ab195377, Abcam, Britain), ZKSCAN3 (ab223477, 
Abcam, Britain), LC3 (Proteintech, Wuhan, China), LAMP-2 (Proteintech, Wuhan, China) and SQSTM1 (Proteintech, 
Wuhan, China).

Immunofluorescence
After cell fixation, the cells were treated with 0.2% Triton X-100 at room temperature. The cells were then blocked with 
blocking solution. Subsequently, the cells were treated with primary and secondary antibodies. DAPI dye was added to 
the cells, which were subsequently incubated in the dark. The cells were mounted on slides using anti-fade mounting 
medium, and fluorescence was observed using a fluorescence microscope. The antibodies used were against LC3 
(Proteintech, Wuhan, China) and LAMP-2 (Proteintech, Wuhan, China).

Transmission electron microscopy
The specimens were cut and fixed in a 2.5% glutaraldehyde solution with Millonig's phosphate buffer (pH = 7.3). The 
samples were washed three times with Millonig's phosphate buffer at 10-minute intervals. The dehydration process was 
performed at room temperature using a graded series of acetone (50%, 70%, and 90%) at 10-min intervals, followed by 
two washes with 100% acetone at 15-min intervals. The samples were then soaked and embedded in a mixture of acetone 
and resin (1:1) for 12 h, followed by polymerization overnight at 37 °C using 100% resin. To solidify the sample resin, the 
specimens were further polymerized at 37 °C overnight, followed by an additional 12 h at 60 °C. Ultrathin sections of 50-
100 nm were obtained from the specimens using an ultramicrotome and a diamond knife. The sections were then stained 
with 3% uranyl acetate and lead nitrate, after which they were examined and photographed using a Hitachi HT-7700 
electron microscope.

M6A RNA binding protein immunoprecipitation assay
The M6A RNA binding protein immunoprecipitation kit was purchased from RiboBio. RNA was fragmented using RNA 
fragmentation buffer. Magnetic beads for m6A were prepared using magnetic beads A/G and an anti-m6A antibody. RNA 
immunoprecipitation was conducted by mixing the fragmented RNA with anti-m6A magnetic beads. The RNA was 
washed with elution buffer to remove it from the magnetic beads.
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Table 1 Primer sequences for qPCR

Genes Sequence
ALKBH5 Forward 5’- CTTTGCTTCGGCTGCAAGTT -3’

Reverse 5’- CCGGCGTTCCTTAATGTCCT -3’

ZKSCAN3 Forward 5’- CAGAGTAGGGTGGAAAGCC -3’

Reverse 5’- AAGGTATGAAGGTCGGGTG -3’

Primer 1 Forward 5’- CCAGGCGGTTCTATTGC -3’

Reverse 5’- TGGCTTTCCACCCTACTCT -3’

Primer 2 Forward: 5’- CAGAGTAGGGTGGAAAGCC-3’

Reverse 5’- AGGTATGAAGGTCGGGTG-3’

Primer 3 Forward 5’- TGGTTCGGGATGGCTAG-3’

Reverse 5’- AACAGCACTGCCTTGGAG-3’

β-actin Forward 5’- GTGGCCGAGGACTTTGATTG-3’

Reverse 5’- CCTGTAACAACGCATCTCATATT-3’

Website for m6A site prediction
Potential m6A binding sites on ZKSCAN3 mRNA were analyzed via a website (http://www.cuilab.cn/sramp/).

Statistical analysis
All the statistical analyses were performed in GraphPad Prism 8. Independent sample t tests were used to compare the 
means of two samples, while one-way ANOVA was used for analyzing and comparing the means of more than two 
groups of samples. P values < 0.05 were considered to indicate statistical significance. The experimental results are 
presented as the mean ± SD.

RESULTS
Impaired autophagy in the AP mouse cell model
To construct a cell model of AP, MPC-83 cells were treated with 10 nM cerulein for 24 h. The levels of amylase and the 
inflammatory factors IL-1β, IL-6, and TNF-α in the supernatant were measured via ELISA. The results showed that the 
levels of amylase and inflammatory factors were significantly greater in the cerulein-treated group (Figure 1A and B), 
indicating that the AP cell model was successfully established.

The expression levels of autophagy-related marker proteins were detected by western blotting, which showed that the 
ratio of LC3B-II/I was increased in the AP group, indicating an increase in autophagosomes. The expression of LAMP-2 
was decreased in the AP groups, indicating impaired lysosomal synthesis. The expression of the selective autophagy 
receptor SQSTM1 was increased, indicating inhibited substrate degradation (Figure 1C). Transmission electron 
microscopy (TEM) revealed the accumulation of circular autophagic vacuoles in the AP group, indicating impaired 
degradation and accumulation of autophagosomes and autolysosomes (Figure 1D). Furthermore, immunofluorescence 
staining revealed that LC3 was significantly increased in the AP groups (Figure 1E), while LAMP-2 expression was 
decreased (Figure 1F). These results demonstrated that autophagosome formation is activated, while lysosomal synthesis 
and function are impaired, leading to decreased substrate degradation efficiency and accumulation of autophagic 
vacuoles, suggesting impaired autophagy.

ZKSCAN3 is upregulated and promotes the release of inflammatory factors in AP
To investigate the role of ZKSCAN3 in AP, qPCR, and western blot were used to detect the expression levels of ZKSCAN3. 
The results showed that the mRNA and protein expression levels of ZKSCAN3 were significantly increased in the AP 
group (Figure 2A and B). Three different siRNAs were used to knock down the expression of ZKSCAN3, and siRNA-2 
had the most significant interference effect (Figure 2C and D). Subsequent experiments were performed using siRNA-2 to 
knock down ZKSCAN3. After the inhibition of ZKSCAN3, the cells were treated with cerulein to construct the AP cell 
model. The levels of inflammatory factors IL-1β, IL-6, and TNF-α in the knocking down (KD) group were significantly 
lower than those in the negative control (NC) group (Figure 2E). These results suggest that ZKSCAN3 is upregulated and 
promotes the release of inflammatory factors in the AP mouse cell model.

ZKSCAN3 impaired autophagic flux in AP
To investigate the role of ZKSCAN3 in autophagic flux in AP, western blot was used to detect the expression of 
autophagy marker proteins (Figure 3A). The LC3B-II/I ratio was decreased in the KD group, demonstrating the increased 

http://www.cuilab.cn/sramp/
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Figure 1 Impaired autophagy in a mouse acute pancreatitis cell model. A: The levels of amylase in the supernatant were detected by ELISA; B: The 
levels of inflammatory factors in the supernatant were detected by ELISA; C: The expression of autophagy-related proteins was detected by western blot; D: The 
microstructure of intracellular autophagy was observed by transmission electron microscopy; E: The expression of LC3 was detected by immunofluorescence 
(magnification × 800); F: The expression of LAMP-2 was detected by immunofluorescence (magnification × 800). aP < 0.05 vs saline group. TNF: Tumor necrosis 
factor; IL: Interleukin.

Figure 2 The expression and function of ZKSCAN3 in acute pancreatitis. A: The expression of ZKSCAN3 mRNA was detected by qPCR; B: The 
expression level of ZKSCAN3 protein was detected by western blot; C: The expression level of ZKSCAN3 mRNA treated with three different siRNAs was detected by 
qPCR; D: The expression level of ZKSCAN3 protein in the MPC-83 cell line treated with three different siRNAs; E: After interfering with the expression of ZKSCAN3, 
the expression level of inflammatory factors in the mouse acute pancreatitis cell model was detected by ELISA. aP < 0.05 vs saline group; bP < 0.05 vs negative 
control group; cP < 0.05 vs cerulein group. NC: Negative control. TNF: Tumor necrosis factor; IL: Interleukin.
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Figure 3 ZKSCAN3 inhibits autophagic flux in acute pancreatitis. A: The expression of autophagy related proteins in the negative control group and 
knockdown group was detected by western blot; B: The extent of autophagy was observed by transmission electron microscopy; C: The expression of LC3 was 
detected by immunofluorescence (magnification × 800); D: The expression of LAMP-2 was detected by immunofluorescence (magnification × 800).

clearance of autophagolysosomes. The expression of LAMP-2 increased, suggesting a reduction in lysosomal biogenesis 
impairment, and the expression of SQSTM1 decreased, indicating an improvement in substrate degradation efficiency. 
TEM revealed a significant reduction in autophagosome accumulation in the KD group (Figure 3B). Immunofluorescence 
staining revealed decreased expression of LC3 in the KD group (Figure 3C) and increased expression of LAMP-2 
(Figure 3D). These results suggest that ZKSCAN3 inhibits autophagic flux in AP and that KD ZKSCAN3 expression can 
impair the blockade of autophagic flux.

ALKBH5 is upregulated in AP and promotes the release of inflammatory factors
M6A methylation is widely involved in autophagy and contributes to the pathogenesis of human disease. The expression 
and function of ALKBH5, a primary m6A demethylase in AP, have not yet been determined. We detected ALKBH5 
expression in the AP mouse cell model by qPCR and western blot analysis. The level of ALKBH5 was upregulated in the 
AP mouse cell model (Figure 4A and B). Furthermore, three different siRNAs were used to knock down ALKBH5 
expression in MPC-83 cells, and siRNA-3 had the most effective interference effect (Figure 4C and D); therefore, siRNA-3 
was used for subsequent experiments. The expression of the inflammatory factors IL-1β, IL-6, and TNF-α was 
significantly reduced (Figure 4E). These results suggest that ALKBH5 was upregulated in the mouse AP cell model and 
promoted the release of inflammatory factors.

ALKBH5 inhibited autophagic flux by promoting ZKSCAN3 expression
In the AP mouse cell model, knockdown of ALKBH5 downregulated the mRNA and protein expression of ZKSCAN3 
(Figure 5A), indicating that ALKBH5 promotes ZKSCAN3 expression. Furthermore, the expression of LC3B-II/I and 
SQSTM1 decreased, while LAMP-2 expression was increased (Figure 5B), indicating that the knockdown of ALKBH5 
rescued the blockade of autophagic flux in AP. TEM confirmed that autophagic vacuole accumulation was reduced after 
the expression of ALKBH5 was inhibited (Figure 5C). Immunofluorescence revealed that the immunoreactivity of the LC3 
protein decreased (Figure 5D), while the immunoreactivity of the LAMP-2 protein increased in the AP mouse cell model 
transfected with the ALKBH5 target siRNA (Figure 5E). These results suggested that ALKBH5 promoted ZKSCAN3 
expression, resulting in the blockade of autophagic flux in AP.

ALKBH5 regulated ZKSCAN3 expression in a m6A-dependent manner
Considering that ALKBH5 is a well-known m6A demethylase, we further investigated the role of m6A modification in the 
regulation of ZKSCAN3 by ALKBH5. Biological software analysis revealed 23 potential m6A binding sites on ZKSCAN3 
mRNA, including 6 highly credible sites, 7 highly credible sites, 6 moderately credible sites, and 4 sites with low 
credibility (Table 2, Figure 6A). Additionally, we constructed a secondary structure diagram of highly credible m6A 
binding sites (Figure 6B).

To confirm the role of m6A modification in the relationship between ALKBH5 and ZKSCAN3, MeRIP-qPCR was 
performed with specific primers aimed at identifying potential m6A sites, and the enrichment of m6A-modified ZKSCAN3 
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Table 2 m6A sites of ZKSCAN3 mRNA

Number Position Sequence context Confidence

1 34 GUGCCCCGCCCCCCGGGGUCGGACUUUCGACACUUUUGUGACUGC High

2 131 ACAGCUACAGUGAAACGGGAGAACUGCUUGGUUCGGGAUGGCUAG High

3 180 UCAAGGGAAAGCACAACCUUGGACUCACACUCUGCAGAGGACCAG Very high

4 198 UUGGACUCACACUCUGCAGAGGACCAGAUGGAGCUACUGGUCAUA High

5 229 AGCUACUGGUCAUAAAGGUGGAACAAGAAGAGGCCUCCCCCUUGG Moderate

6 534 GUGGCGCUGCUGGAGUACUUGGACAGGCAGCUGGAUGACACACCU High

7 589 CAGAUGAUGACGAUGGGCAGGAACUCCUUUGCUCCAAGGCAGUGC Moderate

8 824 CCCAGUCCUUUCCCCCAGAUGGACAGAGCAGGAUUCAUCUCAGAU Very high

9 849 GAGCAGGAUUCAUCUCAGAUGAACCUCUACAAAGAUGGAAUGCAG Moderate

10 906 AGCCUGGUUUCCCUGGAUCAGGACAUGCAGACUAAGGUUAGGGAC Very high

11 914 UUCCCUGGAUCAGGACAUGCAGACUAAGGUUAGGGACUUGCCUCG Moderate

12 927 GACAUGCAGACUAAGGUUAGGGACUUGCCUCGAGCUGAAGAAUAC Very high

13 954 CCUCGAGCUGAAGAAUACAGGGACCAAAAGCCUGAGCAGACAGUG High

14 971 CAGGGACCAAAAGCCUGAGCAGACAGUGUGCUUCCUGGGUGAAGA Low

15 993 ACAGUGUGCUUCCUGGGUGAAGACACUGUCCCGAUUCCUACAGGU Low

16 1347 GAAAAGCCCUACGAGUGUGAUGACUGUGGGAAAACCUUCACUCAG High

17 1387 CUCAGAGCUGCAGCCUCCUUGAACAUCACAGAAUUCACACUGGGG Low

18 1471 GGCGUAGCUCACAUCUUCUGAGACAUCAGAGGACCCAUACUGGGG Moderate

19 1633 GUAGGAUUACAAGCCUUAUUGAACACCAAAAAGUACACACUGGUG Low

20 1745 GAGAAGACACACGGGGAAGAAAACUUCUGUCACAGUGACCCCUGC Moderate

21 1803 GUUGGUGUUCAACUGUCAUUGAACUGAAGCCACUCUGUAGUUCUU High

22 1830 AGCCACUCUGUAGUUCUUAAUGACUGCAGAAGUCAUAGGCUGGGG Very high

23 1985 ACAAGAGUCCUCACCCAUUGGAACUAAAUGGGCUUCCUGACUGUC Very high

mRNA in the AP group was significantly lower (Figure 7). This finding suggested that ALKBH5 can decrease the m6A 
modification of ZKSCAN3.

DISCUSSION
This study is the first to reveal the regulatory roles of ZKSCAN3 and m6A modification in impairing autophagy in AP. We 
found that ALKBH5 upregulated ZKSCAN3 expression by demethylating ZKSCAN3 inhibited autophagy, and promoted 
the release of inflammatory factors in a mouse cell model of AP.

Impaired autophagy is one of the key pathogenic mechanisms in AP; this process affects the functions of various 
organelles, such as mitochondria and the endoplasmic reticulum, and disrupts the homeostasis of acinar cells[12,25]. 
Usually, autophagy degrades dysfunctional mitochondria during AP. Inhibition of autophagic flux by knocking out the 
ATG5 and ATG7 genes impaired the clearance of damaged mitochondria, further affecting generation the efficiency of 
ATP generation in acinar cells[26,27]. Moreover, autophagy maintains the stability of endoplasmic reticulum function. 
Knocking out the IκB kinase α gene leads to impaired autophagy, and the accumulated SQSTM1 further causes the 
accumulation of misfolded proteins in the endoplasmic reticulum, triggering endoplasmic reticulum stress and ultimately 
inducing AP[28]. Therefore, impaired autophagy may trigger or exacerbate other cellular pathological factors in AP. 
Furthermore, other pathological factors can also induce impaired autophagy. In arginine-treated mice, abnormal 
mitochondrial membrane leads to disrupted energy metabolism, which inhibits autophagic flux[29]. In ethanol-induced 
AP, endoplasmic reticulum stress causes folding and transport disorders of autophagy-related proteins[30]. Therefore, 
autophagy is interconnected with other pathological events during AP. Early autophagy-related intervention may help 
alleviate the malignant cycle caused by pathological factors.

ZKSCAN3 is currently recognized as a key autophagy inhibitor[15,31]. It affects the progression of various diseases by 
inhibiting autophagic flux. In hepatocellular carcinoma (HCC), ZKSCAN3 inhibits autophagy, leading to decreased 
degradation of local adhesion proteins and reducing the metastasis of HCC[32]. In addition, impaired autophagy 
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Figure 4 The expression and function of ALKBH5 in acute pancreatitis. A: qPCR was used to detect ALKBH5 mRNA expression in acute pancreatitis 
(AP) group and control group; B: The expression level of the ALKBH5 protein in AP group and control group was detected by western blot; C: qPCR was used to 
detect ALKBH5 mRNA expression in the MPC-83 cell line treated with different siRNAs; D: western blot was used to detect ALKBH5 protein expression in MPC-83 
cell line treated with three different siRNA; E: After interfering with the expression of ALKBH5, the expression level of inflammatory factors in the mouse AP cell line 
was detected by ELISA. aP < 0.05 vs saline group; bP < 0.05 vs negative control group; cP < 0.05 vs cerulein group. NC: Negative control; TNF: Tumor necrosis 
factor; IL: Interleukin.

Figure 5 ALKBH5 promoted the expression of ZKSCAN3 and inhibited autophagic flux. A: After interfering with ALKBH5 expression, the expression 
level of ZKSCAN3 mRNA was detected by qPCR; B: The expression levels of ZKSCAN3 protein and autophagy related proteins were detected by western blot; C: 
Autophagic microstructure was observed by transmission electron microscopy; D: LC3 was detected by immunofluorescence (magnification × 800); E: LAMP-2 was 
detected by immunofluorescence (magnification × 800). aP < 0.05 vs negative cerulein group. NC: Negative control.
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Figure 6 Prediction of m6A binding sites in ZKSCAN3. A: Potential m6A binding sites on ZKSCAN3 mRNA were analyzed via a website (http://www.cuilab.
cn/sramp/); B: Diagram of the secondary structure of highly credible m6A binding sites. m6A: N6-methyladenosine.

mediated by ZKSCAN3 is closely related to sepsis-induced immunosuppression[33]. However, the role of ZKSCAN3 in 
the pathogenesis of AP is still uncertain. Our study first confirmed the high expression of ZKSCAN3 in cerulein-treated 
MPC-83 cells and the inhibitory effect on autophagy.

ZKSCAN3 functions mainly through nucleoplasmic translocation; when activated, it moves into the nucleus to 
suppress the transcription of autophagy related genes[15]. However, the upstream regulatory mechanism of ZKSCAN3 is 
unclear. A study revealed that SIRT1 deacetylates the lysine residues of ZKSCAN3 and promotes its shuttling between the 
nucleus and cytoplasm[34]. PKC and BRAF inhibitors can activate the inhibition of ZKSCAN3 via phosphorylation[35,36]. 
Although a few studies have revealed the upstream molecular mechanisms of ZKSCAN3, there is no related research 
focusing on this gene in AP.

http://www.cuilab.cn/sramp/
http://www.cuilab.cn/sramp/
http://www.cuilab.cn/sramp/
http://www.cuilab.cn/sramp/
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Figure 7 Enrichment levels of m6A modifications on ZKSCAN3 mRNA. A: qPCR was used to detect the m6A modification level of ZKSCAN3 mRNA; B: 
Schematic diagram of the sequences of primers used for ZKSCAN3 mRNA. aP < 0.05 vs saline group.

As an important component of epigenetics, m6A modification plays an important regulatory role in autophagy. 
METTL3 promotes the binding of the RNA-binding protein HNRNPD to the precursor mRNA of TFEB, thus inhibiting 
autophagy[23]. In HCC, loss of METTL3 increases the stability of the FOXO3 mRNA 3'-UTR modification through a 
YTHDF1-dependent mechanism and activates autophagy[37]. Moreover, in testicular stromal cells, human chorionic 
gonadotropin activates autophagy flow by upregulating the expression of ALKBH5 and inhibiting the translation of the 
m6A-mediated protein PPM1A, thereby increasing testosterone secretion[38]. Therefore, m6A modification is widely 
involved in the regulation of autophagy in physiological and pathological processes. Among different types of diseases, 
the same type of m6A modification has different effects on autophagy, which is related to downstream molecular targets 
and the pathological and physiological stages of disease[39]. Currently, the regulatory role of m6A modification in 
autophagy has been well documented in various disorders[40], but its role in AP has rarely been studied. Bioinformatics 
study has shown that m6A-modified noncoding RNAs may participate in the pathological changes observed in AP, but 
there is still a lack of relevant experimental evidence[24]. This research is the first to demonstrate that ALKBH5 
upregulates the expression of ZKSCAN3 by demethylation, thereby inhibiting autophagy in AP.

This study has several limitations. First, the experimental subjects were cell models, and further in vivo animal 
experiments need to be conducted. In addition, there are significant differences in homology between animal and human 
tissues. However, due to the lack of human pancreatic exocrine cell lines and a stable extraction method, experimental 
research on AP cannot be performed in depth in human tissue[41,42]. In clinical practice, identifying pancreatic, peripan-
creatic or infected necrotic tissues is difficult due to pancreatic juice corrosion or infection. Therefore, human pancreatic 
exocrine cell lines and tissues are essential for mechanistic research on AP in the future.

CONCLUSION
In summary, we first revealed the important roles of ZKSCAN3 and m6A modification in AP. In cerulein-treated MPC-83 
cells, ALKBH5 upregulates ZKSCAN3 expression by demethylation, thereby inhibiting autophagic flux and aggravating 
the severity of AP. The results obtained in this study provide important insights into the mechanism of autophagy 
regulation in AP and offer reference value for future in-depth exploration and early intervention.

ARTICLE HIGHLIGHTS
Research background
The incidence of acute pancreatitis (AP) is increasing annually, and its mortality rate is high. Impaired autophagy is a key 
factor in the occurrence and development of AP. Therefore, it is crucial to clarify the regulatory mechanism of autophagy 
in AP.
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Research motivation
Evidence has shown that ALKBH5 and ZKSCAN3 can regulate autophagy in a variety of diseases, but there are no 
relevant studies on AP.

Research objectives
We aimed to explore the regulatory functions and mechanisms of autophagy mediated by ALKBH5 and ZKSCAN3 in AP.

Research methods
The AP mouse cell line was constructed with cerulein, and the levels of inflammatory factors were detected via ELISA. 
Similarly, the expression of ALKBH5, ZKSCAN3 and autophagy-related proteins was detected via qPCR, western blot, and 
immunofluorescence. Microscopic manifestations of autophagy in the cell model were observed via transmission electron 
microscopy. Additionally, RNA binding protein immunoprecipitation was used to analyze the interaction between 
ALKBH5 and ZKSCAN3.

Research results
The expression of ALKBH5 and ZKSCAN3 was upregulated in the AP model, and the trend toward increased expression 
of autophagy-related genes suggested that autophagic flux was blocked in AP. Autophagy was improved by inhibiting 
the expression of ALKBH5 and ZKSCAN3. ZKSCAN3 mRNA has m6A binding sites, and ALKBH5 can upregulate its 
expression by demethylating ZKSCAN3, which inhibits autophagic flux, thereby aggravating inflammation in AP.

Research conclusions
ALKBH5 suppresses autophagic flux by demethylating the m6A site on ZKSCAN3 mRNA, consequently promoting the 
onset and progression of AP.

Research perspectives
We proved that ALKBH5 inhibits autophagy by upregulating ZKSCAN3, thereby promoting the occurrence and 
development of AP and providing new ideas for future research on autophagy regulation and early drug intervention in 
AP.
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