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Abstract
This comprehensive review elucidates the complex interplay between gut 
microbiota and constipation in Parkinson’s disease (PD), a prevalent non-motor 
symptom contributing significantly to patients’ morbidity. A marked alteration in 
the gut microbiota, predominantly an increase in the abundance of Proteobacteria 
and Bacteroidetes, is observed in PD-related constipation. Conventional treatments, 
although safe, have failed to effectively alleviate symptoms, thereby necessitating 
the development of novel therapeutic strategies. Microbiological interventions 
such as prebiotics, probiotics, and fecal microbiota transplantation (FMT) hold 
therapeutic potential. While prebiotics improve bowel movements, probiotics are 
effective in enhancing stool consistency and alleviating abdominal discomfort. 
FMT shows potential for significantly alleviating constipation symptoms by 
restoring gut microbiota balance in patients with PD. Despite promising 
developments, the causal relationship between changes in gut microbiota and PD-
related constipation remains elusive, highlighting the need for further research in 
this expanding field.
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©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

https://www.f6publishing.com
https://dx.doi.org/10.3748/wjg.v30.i3.225
mailto:liuzhou@gdmu.edu.cn


Yuan XY et al. Microbes and PD-related constipation

WJG https://www.wjgnet.com 226 January 21, 2024 Volume 30 Issue 3

Core Tip: This comprehensive review explores the intricate relationship between gut microbiota and constipation, a prevalent 
non-motor symptom observed in Parkinson’s disease (PD). Notably, we discuss the significant alterations in gut microbiota, 
particularly the increase in the abundance of Proteobacteria and Bacteroidetes, associated with PD-related constipation. 
Although currently available treatments are safe, their effectiveness in providing symptom relief remains suboptimal, 
necessitating the development of innovative therapeutic approaches. This review delves into the potential of therapies based 
on microbiological interventions such as prebiotics, probiotics, and fecal microbiota transplantation, in alleviating these 
symptoms.

Citation: Yuan XY, Chen YS, Liu Z. Relationship among Parkinson’s disease, constipation, microbes, and microbiological therapy. 
World J Gastroenterol 2024; 30(3): 225-237
URL: https://www.wjgnet.com/1007-9327/full/v30/i3/225.htm
DOI: https://dx.doi.org/10.3748/wjg.v30.i3.225

INTRODUCTION
Parkinson’s disease (PD) is a neurodegenerative disorder with an increasing incidence worldwide[1]. The doubling of PD 
cases between 1990 and 2016 is expected to result in more than 12 million patients globally by the year 2050[2,3]. PD is 
characterized by both motor symptoms (e.g., bradykinesia, resting tremor, and rigidity) and non-motor symptoms (e.g., 
constipation, depression, impaired olfaction, and rapid eye movement sleep behavior disorder)[4]. Constipation is 
considered one of the most common precursor symptoms of PD and persists throughout the clinical stages of the disease, 
with its prevalence increasing as the disease progresses[5,6]. For patients with PD, constipation significantly reduces their 
ability to carry out daily activities and their overall quality of life[7]. Hence, effective therapeutic approaches to control 
PD-related constipation are urgently required. The pathological mechanisms of PD-related constipation remain unknown, 
but they may be associated with recto-anal dysfunction or smooth muscle dystonia in the gastrointestinal tract[8,9]. The 
role of intestinal microorganisms has attracted increasing research attention in recent years. Accumulating evidence 
reveals a relationship between gut microbiota and PD-related constipation[10-12]. Consequently, traditional treatment 
options are shifting toward microecological interventions[13-16]. This review summarizes currently available evidence 
supporting the roles of gut microbiota in the pathogenesis and treatment of PD-related constipation.

MICROBIOTA-GUT-BRAIN AXIS
The role of intestinal microbes in the central nervous system (CNS) has garnered increasing interest recently. The gut 
microbiota is a complex ecological community comprising hundreds of millions of microbes that live in the gut and 
regulates both normal physiology and disease susceptibility through its collective metabolic activities and host 
interactions[17]. A growing body of research linking PD to the microbiota-gut-brain axis suggests that gut microbiota and 
microbial metabolites have an important role in PD pathogenesis by influencing neuroinflammation, barrier function, and 
neurotransmitter activity[18,19]. The microbiota-gut-brain axis includes the autonomic nervous system, the enteric 
nervous system (ENS), the hypothalamic-pituitary-adrenal axis, and the intestinal microbes[18]. The gut microbiota and 
the brain can communicate directly through various signaling molecules or indirectly through the gut-brain axis; 
similarly, the brain can influence the microbes directly or indirectly through alterations to the gut microbiota envir-
onment[20].

BRAAK’S HYPOTHESIS
The pathological hallmarks of PD are loss of dopaminergic neurons together with abnormal accumulation of α-synuclein (
α-syn) in the substantia nigra and the striatum[21]. Braak et al[22] and Hawkes et al[23] noticed α-synuclein-containing 
inclusion bodies in the intestines of patients with sporadic PD and hypothesized that the pathology of Lewy body in PD 
might begin in the gastrointestinal tract and then spread to the brain through the vagal nerve. Human α-syn fibrils were 
injected into the gut tissue of healthy rodents and transported through the vagus nerve to the dorsal motor nucleus of the 
vagal nucleus in the brainstem. These results provide the first direct experimental proof that α-syn can propagate from 
the gut to the brain[24]. Vagotomy has protective effects on the subsequent development of PD, as it can attenuate the 
pathological spread of α-syn, dopaminergic neuronal degeneration, and motor dysfunction. The vagus nerve is an 
important route for the transmission of pathological α-syn into the CNS[25-28]. These findings demonstrate that a-syn 
detection in the ENS could provide an opportunity to identify early PD neuropathology before the disease spreads to 
other regions and motor symptoms become evident. Shannon et al[29] reported a-syn detection in the neurites of the 
colonic submucosa in colonic biopsies collected 2-5 years before motor symptom onset in patients with PD[29]. This 
evidence suggests that a-syn detection in colonic mucosal biopsy samples could serve as a presymptomatic biomarker for 
PD. Additional evidence revealing a-syn accumulation in colonic biopsies for up to 8 years before motor symptom 

https://www.wjgnet.com/1007-9327/full/v30/i3/225.htm
https://dx.doi.org/10.3748/wjg.v30.i3.225


Yuan XY et al. Microbes and PD-related constipation

WJG https://www.wjgnet.com 227 January 21, 2024 Volume 30 Issue 3

manifestation further supports the potential of enteric a-syn as a diagnostic biomarker for PD[30]. Pouclet et al[31] 
performed a comparative analysis of a-syn deposition using biopsy samples collected from the rectum, descending colon, 
and ascending colon of 26 patients with PD and 9 control subjects. The authors discovered that 23%, 42%, and 65% of 
patients with PD had a-syn deposition in the rectum, descending colon, and ascending colon, respectively, while control 
subjects had no a-syn deposition. These findings indicate that enteric α-syn detection has the potential to be used as a 
sensitive, PD-specific, and clinically useful biomarker for early PD detection.

CONSTIPATION IN PD
Constipation, a prevalent non-motor symptom of PD, has been observed in as many as 90% of patients and is a notable 
early manifestation and risk factor for PD[32-34]. It is nearly three times more prevalent in patients with PD than in 
healthy individuals[8,35]. Research indicates that the severity of PD-related constipation helps diagnose the PD stage, 
with 67% sensitivity and 90% specificity[36]. A Taiwanese study revealed that constipation severity correlates with the 
probability of PD development[37]. A meta-analysis supported this finding, indicating a 2.27-times higher risk of PD in 
individuals with constipation[33]. Constipation has a significant 76.56% effect on PD and is mediated by gut microbial 
changes, as a result of altered gut conditions caused by constipation[12,38]. These changes may result in intestinal inflam-
mation and PD symptoms[38]. Causes of PD-related constipation include delayed colon transit and outlet obstruction[8,
39]. The clinical course of PD worsens with constipation, resulting in evident severe motor and non-motor symptoms[7,
40]. The severity and frequency of constipation also increase as PD advances[41,42]. A unique correlation between gut 
health and cognitive function has been documented in patients with PD[43]. Studies from Spain suggest a link between 
constipation and cognitive decline in PD[44]. The presence and severity of constipation are associated with rapidly 
progressive dementia and reduced subcutaneous fat [45,46].

Evidence suggests an association between gastrointestinal dysfunction and PD medication[47]. Compared to patients 
with PD who have a normal colonic transit, those with a slow colonic transit require a considerably higher levodopa 
equivalent daily dose[48]. This indicates that slow colonic transit may delay peak plasma concentration and cause a 
reduction in the clinical efficacy of levodopa. Long-term PD-related constipation can lead to an abnormal overgrowth of 
bacterial decarboxylases in the gut[49]. Du et al[11] reported a significant increase in the abundance of the order Lactoba-
cillales in the intestines of patients with PD-related constipation. Levodopa plasma availability has a negative association 
with Lactobacillus abundance[50], particularly as several bacterial species of the genus Lactobacillus contain genes encoding 
tyrosine decarboxylase[51]. This enzyme can convert levodopa, a common drug used for PD treatment, into dopamine, 
affecting blood dopamine levels and potentially causing motor fluctuations. This may necessitate more frequent adminis-
tration of levodopa and decarboxylase inhibitor treatments[51]. Complex interactions occur between anti-PD medications 
and gastrointestinal symptoms[52]. Healthy rats treated with PD medication for 14 days exhibited significantly reduced 
gut motility and altered microbiota composition, including increased abundance of Bifidobacterium and Lactobacillus and 
decreased abundance of the families Prevotellaceae and Lachnospiraceae[50]. Alterations in microbiota composition may 
lead to microbial metabolite changes, leading to constipation. A comprehensive meta-analysis demonstrated that 
pramipexole administration increased constipation risk relative to placebo[53]. Evidence suggests that constipation 
marginally increased after 1 year in patients with PD on dopaminergic medication, particularly levodopa[54]. Another 
randomized, double-blind trial showed that pramipexole extended release led to a higher constipation likelihood versus 
placebo in patients with early PD[55]. A high levodopa equivalent dose increases constipation risk, which nearly doubles 
with the combination of levodopa and a dopamine agonist[56].

Slow colon transit
Approximately 80% of patients with PD exhibit a slow colon transit, often twice as long as that recorded in healthy 
control subjects[39,57,58]. This delayed motility is a sign of impaired peristalsis, which depends on the ENS, a network of 
two plexuses (myenteric and submucosal) within the gut walls[59]. A significant number of these plexus neurons express 
vasoactive intestinal peptide (VIP) and nitric oxide synthase — both being crucial for muscle relaxation and vasodilation
[60]. PD-associated Lewy bodies are present in VIPergic neurons of the ENS, implying that a slower intestinal transit 
could primarily result from impaired reflex relaxation caused by the loss of inhibitory motor neurons[61]. Evidence 
indicates Lewy body-containing neurons in the sympathetic ganglia are immunoreactive to tyrosine hydroxylase, 
implying that the slow transit could be directly linked to the involvement of colonic myenteric plexus in the PD course
[62]. Additionally, the loss of dopaminergic neurons in the ENS likely contributes to slow-transit constipation. Studies 
have found that dopamine inhibits the release of acetylcholine and slows intestinal motility through presynaptic D2 
receptors[63]. Age-related loss of excitatory cholinergic neurons in the colon may also be a factor for the slow colonic 
transit in PD[64,65]. The type of constipation influences the risk of PD development, and people with slow-transit 
constipation have a very high likelihood of developing PD[66]. Therefore, individuals aged over 65 years with newly 
diagnosed slow-transit constipation should be considered for PD screening[66].

Outlet obstruction
More than 60% of patients with PD experience pelvic floor dyssynergia, an uncoordinated action of defecation muscles 
leading to outlet obstruction[67]. Normal defecation requires the relaxation of pelvic floor and sphincter muscles and a 
swift return of muscle activity post-defecation. The increase in intra-abdominal pressure, aided by the contraction of 
glottic, diaphragmatic, and abdominal wall muscles, acts synergistically with the inhibition of pelvic floor and external 
anal sphincter muscles[68]. In patients with PD, constipation often correlates with a paradoxical contraction of the 
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puborectalis muscle. This abnormal muscle behavior results in defecation obstruction, a decrease in the anorectal angle, 
and paradoxical perineum ascent[39,69]. PD-related constipation is indicative of significantly weaker gastrointestinal tract 
function, with slow transit suggesting colonic ENS involvement and outlet obstruction (dystonia) suggesting direct 
muscle involvement in PD[39]. The severity and duration of PD are closely associated with the degree of constipation[70].

GUT MICROBIOTA AND PD
In the context of gut microbiota and PD, functional gut changes in a PD mouse model appear well before the onset of 
motor symptoms, suggesting a potential gut origin for PD[71]. Alteration in gut function could influence PD progression 
by modifying gut microbiota composition[72]. Several studies have proposed that gut microbiota alteration could trigger 
PD development[73,74] and incite immunological activation[75]. Persistent immune responses in the gut can increase 
intestinal permeability, allowing microbial products and inflammatory mediators to escape from the gut, thereby 
stimulating systemic immune responses[76]. This proinflammatory immune activity and related conditions can elevate 
levels of α-synuclein (α-syn) in the gut[77]. Pathologic levels of α-syn can propagate in a prion-like manner from the gut to 
the brain through the vagus nerve[27,78,79]. One study suggested that oral administration of Proteus mirabilis stimulates α
-synuclein aggregation in the brain and colon, resulting in PD symptoms[80]. Another research indicated that the 
abundance of specific bacterial families could identify patients with PD[36].

GUT MICROBIOTA AND PD-RELATED CONSTIPATION
Mechanism of action between gut microbiota and PD-related constipation
Current evidence suggests a delayed colon transit and outlet obstruction, both linked to alpha-synuclein-related neurode-
generation in the ENS, are primary factors for PD-related constipation[36,81]. However, emerging research points out to 
the imbalance in gut flora as a significant player in the development and progression of PD-related constipation[82]. 
Studies have found that excessive pre-synaptic α-synuclein production in the colonic myenteric ganglia could cause early 
defecation impairment[83]. This finding is supported by the fact that transgenic mice overexpressing α-synuclein show 
impaired colonic transit[84,85]. Moreover, α-synuclein overexpression in the CNS can alter gut function[86,87]. Notably, 
transplantation of PD microbiota into humanized mice worsened motor symptoms and intestinal dysfunction, implying 
that α-synuclein overexpression and microbiota imbalance both contribute to disease progression[72]. Research also 
suggests that gut microbiota may significantly influence gut motor function[88,89]. This finding was confirmed in a study 
in which aryl hydrocarbon receptor expression induced by the gut microbiota in enteric neurons affected gut motility
[90]. In a mouse model of PD induced by rotenone, gut microbiota was seen to influence gastrointestinal dysfunction, 
indicating its possible role in PD[91]. Distinct differences in gut microbiome between patients with PD and individuals 
without PD have been identified[92]. A study of 197 patients with PD demonstrated that higher microbial diversity in the 
gut correlated positively with stool firmness, implying a link between higher microbial diversity and constipation[93]. 
Furthermore, most PD studies have reported a decrease in the abundance of the families Prevotellaceae and Lachnospiraceae, 
accompanied by an increase in the abundance of the family Verrucomicrobiaceae (including the genus Akkermansia)[94-97]. 
This suggests a complex interplay between gut microbiota and PD-related constipation.

Studies reveal that gut microbiota dysbiosis may reduce stool water content, and Prevotella enterotypes increases the 
stool water content[98,99]. Indeed, patients with Prevotella-enriched enterotypes showed less severe constipation[100]. 
Hydrogen sulfide secreted by Prevotella, known for protecting dopaminergic neurons, may decrease in concentration in 
patients with PD who have reduced Prevotella enterotypes, leading to constipation because of increased hydrogen sulfide 
absorption[101]. Hydrogen sulfide can inhibit colonic contractility by affecting cholinergic and tachykinergic excitatory 
pathways mediated by neurons[102]. Prevotellaceae and Lachnospiraceae, which produce short-chain fatty acids (SCFAs), 
can promote gastrointestinal peristalsis[103]. A correlation was found between the genus Akkermansia, particularly 
Akkermansia muciniphila, and colon transit time[104]. Uncontrolled growth of Akkermansia muciniphila may degrade the 
mucus layer, leading to drier or harder stools[105,106]. A study on 52 patients with PD found that Enterobacteriaceae, 
abundant in the colon of patients with PD, negatively correlated with stool frequency[107]. Enterobacteriaceae produce 
Curli, an amyloid protein that can promote the aggregation of α-syn in the intestine and brain[80,108]. Gut-restricted 
amyloid inhibitor treatment in mice alleviated motor and constipation-like symptoms[108]. Both commensal and 
pathogenic bacterial metabolites can influence gut functions[93,109] (Figure 1). SCFAs, glucagon-like peptide 1 (GLP-1), 
and peptide tyrosine tyrosine (PYY) can modulate gut sympathetic activity and gastrointestinal motility, highlighting the 
link between gut microbiota and neuronal function[110]. Additionally, SCFAs activate G-protein-coupled receptors on 
enteroendocrine cells, mediating GLP-1 and PYY secretion[111]. In vitro studies showed that SCFAs stimulate colonic 
contractions through an enteric reflex involving local sensory and cholinergic nerves[112] and regulate colonic motility 
through enteric neurons[113]. Changes in the cholinergic phenotype caused by butyrate have a prokinetic effect on 
colonic motility[99,113]. Alterations in dopamine, 5-HT4 receptors, and β3-adrenoceptors likely lead to colonic 
dysmotility and constipation in patients with PD[114]. The β3-adrenoceptor in colonic interstitial cells of Cajal inhibits 
colonic motility by inhibiting pacemaker potential[115]. Dopamine inhibits gastrointestinal motility by activating D1 
receptors[116,117], while 5-HT promotes gut motility primarily through the 5-HT4 and 5-HT3 receptors[118,119]. SCFAs 
can activate 5-HT4 receptors of intrinsic sensory neurons, triggering a peristaltic colonic reflex[120]. Butyrate, which 
modulates gastrointestinal motility by stimulating 5-HT3 receptors of the vagal sensory fibers[121,122], negatively 
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Figure 1 Changes in microbiota composition and metabolites have been associated with the pathogenic mechanisms of Parkinson’s 
disease-related constipation. Microbiota in patients with Parkinson’s disease exhibited a shift in colonic microbiota metabolism away from carbohydrate 
fermentation and toward proteolysis, resulting in decreased short-chain fatty acids (SCFAs) production and increased proteolytic metabolite levels. Reduced SCFAs 
production causes a delay in colon transit time. Enhanced proteolytic fermentation has been linked to increased colon transit time. GLP-1: Glucagon-like peptide 1; 
PD: Parkinson’s disease; PYY: Peptide tyrosine tyrosine; α-syn: α-synuclein; 5-HT4R: 5-HT4 receptors; 5-HT3R: 5-HT3 receptors; EECs: Enteroendocrine cells; 
GPCR: G protein-coupled receptors; LPS: Lipopolysaccharide; SCFAs: Short-chain fatty acids.

correlates with constipation severity[123] and increases mucin secretion[124]. Mucin acts as a lubricant, protecting the 
mucosa and aiding stool excretion[125]. Acetic acid is positively associated with defecation frequency in patients with PD
[126].

A study identified higher levels of the harmful amino acid metabolite p-cresol sulfate in the cerebrospinal fluid of 
patients with PD[127]. The protein degradation byproducts p-cresol and phenylacetylglutamine are also found elevated 
in the serum of patients with PD, with strong associations with stool consistency and constipation[93]. Glycerolipids, 
sphingolipids, and sterol lipids are positively associated with constipation in patients with PD[123]. Additionally, 
constipation positively correlated with pantothenic acid, D-ribose, L-lactic acid, D-alanine, and xanthine in the 
Luxembourg Parkinson’s Study[128]. In summary, the altered microbiota composition in PD-related constipation might 
lead to changes in microbial metabolites, especially SCFAs, suggesting the potential for manipulating SCFAs as a novel 
therapeutic strategy in PD-related constipation. Correlations between PD-related constipation, microorganisms, and their 
metabolites are summarized in Table 1.

Gut microbiota in PD-related constipation
Research indicates that the primary microorganisms in patients with PD-related constipation are those belonging to 
Proteobacteria and Bacteroidetes[14]. According to a study, the most prevalent bacteria in the fecal microbiota of patients 
with PD-related constipation were from the phylum Bacteroidetes, genus Bacteroides, order Bacteroidales, class Bacteroidia, 
and family Bacteroidaceae. The study also noted a significantly higher abundance of Bacteroides and a considerably lower 
abundance of Faecalibacterium in patients with PD-related constipation than in healthy controls[129]. Additionally, Du et al
[11] reported that Bifidobacteriales, Lactobacillales, Bacillales, Peptostreptococcales Tissierellales, Desulfovibrionales, and Coriobac-
teriales were the most abundant microorganisms in the gut of patients with PD-related constipation. These patients also 
exhibited significantly higher levels of Bacillus, Alistipes, Bifidobacterium, Romboutsia, Adlercreutzia, Desulfovibrio, Butyrici-
coccus, Bilophila, Intestinibacter, Holdemania,UCG_002 Actinomyces, Lachnospiraceae_UCG_008, Gordonibacter, Raoultibacter, 
Odoribacter, Oscillibacter, Eubacterium_nodatum_group, and uncultured species than healthy individuals[11]. Interestingly, 
the gut microbiota of patients with chronic constipation is predominantly characterized by reduced abundance of 
bifidobacteria and lactobacilli and increased abundance of Bacteroidetes[130-133].
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Table 1 Correlation between Parkinson’s disease-related constipation and microorganisms and their metabolites

Positive Negative Ref.

Microbial 
diversity

Alpha diversity [93,100]

Gut 
microbiota

Dorea, Oscillospira, Ruminococcus, Lactobacillus plantarum subgroup, Bifidobacterium, 
Verrucomicrobiaceae, Bradyrhizobiaceae

Faecalibacterium, Roseburia, Enterobac-
teriaceae cluster, Atopobium cluster

[36,93,100,
107,128]

Metabolites p-cresol and its sulfated form, phenylacetylglutamine, xanthine, D-alanine, L-lactic 
acid, D-ribose, pantothenic acid. glycerolipids, sphingolipids, sterol lipids

Butyrate, acetic acid [93,128,
123,126]

Enterotype Firmicutes Prevotella [100]

MICROBIAL TREATMENT FOR PD-RELATED CONSTIPATION
The current treatments for PD-related constipation mainly include prokinetics and laxatives. While these traditional 
therapies can be safe and effective, they are often limited in fully relieving clinical symptoms, indicating a need for more 
effective treatments[134,135]. Recent insights into the association between gut microflora and PD-related constipation 
have led to research exploring how altering gut microflora through prebiotics, probiotics, and fecal microbiota 
transplantation (FMT) might provide a cure. These interventions could supplement traditional treatments for PD-related 
constipation.

Prebiotics
Prebiotics are selectively utilized substrates that confer health benefits to host microorganisms[136]. Reports suggest that 
prebiotic fibers can alleviate constipation and improve bowel movements[137]. In particular, diets rich in insoluble fiber 
improved constipation in patients with PD[138], and a study reported that psyllium is useful in treating constipation in 
patients with PD, noting that it increased stool frequency and weight, with, on average, three bowel movements per week
[139].

Probiotics
Probiotics are live microorganisms that confer health benefits to the host when administered in sufficient amounts and 
are thought to be another potential treatment for PD-related constipation. They can strengthen the gut barrier and restore 
normal intestinal microbiota[140], suggesting its potential as a novel treatment strategy for PD-related constipation[141,
142]. Initial studies have shown promising results; For instance, patients with PD who took Lactobacillus casei Shirota for 
5 weeks showed improved stool consistency[16], and those who took probiotics containing Lactobacillus acidophilus and 
Bifidobacterium infantis for 3 months experienced reduced abdominal pain and bloating[10]. Further research showed an 
increase in the number of complete bowel movements in patients with PD-related constipation after drinking fermented 
milk containing multiple probiotic strains and prebiotic fiber for 4 weeks[143]. A subsequent study reported that taking a 
multi-strain probiotic combined with prebiotic fiber for 8 weeks improved whole-gut transit time and the frequency of 
bowel opening in patients with PD-related constipation[144]. Additionally, a randomized controlled trial of 72 patients 
with PD-related constipation showed that multi-strain probiotics significantly improved weekly spontaneous bowel 
movements frequency and quality of life scores associated with constipation[15]. Du et al[11] reported that multi-strain 
probiotics effectively improved constipation symptoms and stool consistency in patients with PD, even altering the 
composition of their gut microbiota.

Fecal microbiota transplantation
FMT is a novel treatment approach that alleviates constipation by restoring the intestinal microenvironment. This method 
is based on the premise that alterations in the microbiome may affect gut motility through the production of different 
microbial-derived metabolites, and correcting these disruptions might improve the clinical symptoms[145]. FMT has 
shown promising results in treating PD-related constipation, as evidenced by increased abundance of Firmicutes and 
decreased abundance of Proteobacteria and Bacteroidetes in treated patients, leading to effective relief of constipation and 
tremors[14]. More recent studies support the beneficial role of FMT in improving PD-related constipation symptoms[13]. 
One study highlighted that FMT significantly reduced Bacteroidetes and increased Prevotella and Blautia in patients with 
PD-related constipation. Surprisingly, after FMT, the abundance of several other bacterial groups also increased at 
different times, accompanied by significant decreases in the patients’ Wexner constipation scores and resolution of their 
constipation symptoms[129]. Such findings underline the therapeutic potential of FMT in rebuilding the gut microbiota of 
patients with PD-related constipation. Microbial alterations in PD-Related constipation after microbial treatments are 
summarized in Table 2.

CONCLUSION
In prodromal PD, abnormalities related to α-syn can be detected in the colon. Subsequently, α-syn spreads from the gut to 
the brain through the vagus nerve, which may lead to the development of PD. Constipation is considered one of the 
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Table 2 Microbial alterations in Parkinson’s disease-related constipation after microbial treatments

Microbial alterationsMicrobial 
treatments

Study 
design Participant Duration

Increased Decreased
Results Ref.

Probiotics Randomized 
controlled 
clinical trial

46 12 wk g_Christensenella_sp._Marseille-
P2437

g_Eubacterium_oxidoreducens
_group, g_Eubacterium_hallii_
group, 
s_Odoribacter_sp._N54.MGS-14 
and Prevotellaceae

The probiotics group 
increased the average 
number of complete 
bowel movements per 
week as compared to the 
control group. The 
improvement rate of 
constipation in the 
probiotics group was 
significantly higher than 
that in the control group

[18]

FMT Case report 1 3 d Firmicutes Proteobacteria, Bacteroidetes After FMT, patients 
successfully defecated 
within 5 min and 
maintained daily 
unobstructed defecation 
until the end of follow-
up

[14]

FMT A 
prospective, 
single-center 
study

11 1 d Blautia, Prevotella Bacteroidetes The PAC-QOL and 
Wexner constipation 
scores both decreased 
significantly

[129
]

FMT: Fecal microbiota transplantation; PAC-QOL: Patient assessment of constipation quality of life.

precursor symptoms of PD, potentially stemming from α-syn pathology in the ENS. The exact mechanisms driving PD-
related constipation are still largely unknown, with potential causes ranging from outlet obstruction to delayed colon 
transit. Current evidence shows a correlation between PD-related constipation and changes in gut microbiota, suggesting 
a complex interplay between the gut microbiome and PD-related constipation. However, whether the onset of PD-related 
constipation precedes intestinal dysbiosis or vice versa is still unknown. Despite the unclear cause-effect relationship, 
studies indicate that gut microbiota dysbiosis can exacerbate constipation and that restoring the gut microbiota can 
mitigate these symptoms, suggesting gut microbiota as a potential therapeutic target for PD-related constipation. 
Microbiological intervention treatments for PD-related constipation, including prebiotics, probiotics, and FMT, can prove 
beneficial and possibly more effective than traditional treatments.

This review covered longitudinal studies on gut dysbiosis in PD-related constipation. However, it has a few 
weaknesses. The limited number of studies may not have accurately captured the full longitudinal changes in the 
microbiota associated with PD-related constipation. Furthermore, there is a scarcity of clinical studies examining 
intestinal flora specifically in PD-related constipation, making it difficult to infer the particular microbial taxa linked to 
this condition. In addition, as most studies have been conducted at the phylum and genus levels, further research at the 
species and strain levels could provide greater mechanistic insights. Therefore, future studies should focus on identifying 
specific bacterial species that promote PD-related constipation development. Finally, pinpointing the causative microbes 
could enable targeted microbial therapies for PD-related constipation in the future. However, more rigorous clinical 
studies are needed to elucidate the precise microbiota compositional and functional changes underlying PD-related 
constipation before such therapeutic approaches can be applied. However, this is a nascent field of research with various 
limitations and challenges and hence requires future extensive research.
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