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Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) affects approx-
imately 25% of the world's population and has become a leading cause of chronic 
liver disease. In recent years, an increasing amount of data suggests that MASLD 
is associated with aging. As the population ages, age-related MASLD will become 
a major global health problem. Targeting an aging will become a new approach to 
the treatment of MASLD. This paper reviews the current studies on the role of 
aging-related factors and therapeutic targets in MASLD, including: Oxidative 
stress, autophagy, mitochondrial homeostasis, bile acid metabolism homeostasis, 
and dysbiosis. The aim is to identify effective therapeutic targets for age-related 
MASLD and its progression.

Key Words: Metabolic dysfunction-associated steatotic liver disease; Aging; Mitochondrial 
homeostasis; Bile acid homeostasis; Dysbiosis
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Core Tip: Aging is closely associated with metabolic dysfunction-associated steatotic 
liver disease (MASLD). We will focus on the main features of age-related MASLD, the 
mechanisms by which age-related factors, such as oxidative stress, autophagy, mitoc-
hondrial homeostasis, bile acid metabolism and bacterial dysbiosis induce MASLD, as 
well as the study of related therapeutic targets.
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INTRODUCTION
Aging is broadly defined as the time-dependent decline in function that affects most organisms. López-Otín et al[1], in 
conjunction with recent research findings, has revised the concept of “aging hallmarks” by incorporating an additional 12 
aging features, including macroautophagy deficiencies, chronic inflammation, and dysbiosis. Owing to advancements in 
living standards, economic growth, and healthcare infrastructure, population aging has emerged as the primary 
demographic phenomenon globally. Currently, the proportion of elderly people over the age of 60 worldwide is about 
one ninth, with projections indicating that by the year 2050, this ratio will escalate to one-fifth[2]. Human aging is charac-
terized by molecular, structural, and functional alterations in various organ systems, including the liver. Within the 
intensifying milieu of aging, age-associated liver dysfunction has become a compelling clinical challenge that demands 
urgent attention and resolution.

Cellular damage, if left unattended or irreparable, can lead to cellular apoptosis or senescence, which is the fund-
amental cellular process employed by the organism in its defense against cancer. Similarly, following exposure to damage 
and stress signals, aging can irreversibly arrest the G0/G1 phase of the cell cycle. This phenomenon restricts the prolif-
erative potential of damaged cells[3], ultimately leading to changes in the microenvironment and tissue homeostasis. 
Upon entering a state of cellular senescence, cells undergo morphological transformations characterized by permanent 
cell cycle arrest, displaying distinctive traits such as altered secretion profiles, macromolecular damage, and metabolic 
shifts. These alterations include an upregulated expression of senescence-associated β-galactosidase, acquisition of the 
senescence-associated secretory phenotype (SASP), elevated levels of P16INK4a (P16) and P21Cip1/Waf1 (P21), and 
increased levels of reactive oxygen species (ROS)[4]. In particular, the senescence of hepatic cells can potentially 
contribute to intracellular lipid accumulation, fibrosis, and inflammation, while concurrently secreting age-associated 
inflammatory mediators.

In 2023, the global hepatology community renamed nonalcoholic fatty liver disease (NAFLD) as metabolic dysfun-
ction-associated steatotic liver disease (MASLD). MASLD is the most common chronic liver disease worldwide. Patients 
presenting hepatic steatosis and at least one of five cardiometabolic risk factors are diagnosed with MASLD. Generally, 
the initial hepatic steatosis observed in MASLD is considered reversible. However, persistent metabolic disturbances can 
lead to aberrant liver cell metabolism, resulting in the accumulation of lipids, such as fatty acids, cholesterol, and other 
lipid metabolites. This, in turn, induces the onset of MASLD. Excessive lipid accumulation in the liver can lead to 
lipotoxicity, mitochondrial dysfunction, increased ROS levels, and inflammation. These events signify the transition from 
MASLD to metabolic dysfunction-associated steatohepatitis (MASH) or the progression to more severe stages[5]. 
Younossi et al[6] conducted an extensive analysis involving 8515431 samples from 22 countries and demonstrated that the 
global prevalence of MASLD was 25.24%. The highest rates of prevalence were identified in the Middle East and South 
America, with Africa exhibiting the lowest prevalence. Notably, MASLD exhibited strong associations with the 
components of metabolic syndrome, including obesity, diabetes, and dyslipidemia. The median age of the MASLD 
population in the United States in 2015 was 50 years old. Researchers predict that it will increase to 55 years old by 2030. 
This indicates that with an increase in population aging, the incidence of MASLD-related liver diseases and mortality 
rates will increase in the United States[7].

RELATIONSHIP BETWEEN AGING AND MASLD
The aging phenotype exhibits remarkable stability, displaying resistance to mitotic stimuli and apoptosis[8]. In healthy 
cells, senescence may be triggered primarily by factors such as oxidative stress, mitochondrial imbalance, and chronic 
inflammation either independently or synergistically. The progressive accumulation of senescent cells can elicit bystander 
effects, ultimately leading to organ aging and functional impairments[4]. Age dependence is the main risk factor for 
chronic liver diseases, including MASLD and MASH. The accumulation of aging cells drives liver steatosis, and liver cell 
aging is closely related to the progression of MASLD[9]. The intricate mechanisms governing the pathogenesis of MASLD 
are not completely clear. Elevated hepatic lipid accumulation is a significant risk factor for MASLD, with hepatic cell 
senescence playing a contributory role in the development of hepatic steatosis. This can be best described by the “two-
hit” hypothesis. “First hit” denotes the initial occurrence of excessive hepatic lipid accumulation due to alterations in lipid 
metabolism, which leads to the development of nonalcoholic fatty liver (NAFL). The “second hit” entails the induction of 
hepatic cell damage, including oxidative stress, inflammatory cytokine release, and mitochondrial dysfunction, building 
upon the backdrop of hepatic lipotoxicity. This second hit can precipitate the progression of NAFL towards MASH and, 
in more severe cases, fibrosis, cirrhosis, hepatocellular carcinoma, and even death[10]. In recent years, the “multiple-hit” 
hypothesis has emerged as a more elaborate concept for elucidating the pathogenesis of MASLD. This theory underscores 
the pivotal roles played by gut microbiota (GM), insulin resistance, and adipose tissue-derived adipokines. These factors, 
through their interconnected relationships along the gut–liver axis, interact synergistically and causally, contributing to 
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the progression of MASLD[11].

Oxidative stress
In response to oxidative stress, organisms generate substances, including ROS or free radicals, that can inflict damage on 
cellular constituents such as the cell membrane, proteins, and DNA. This damage can ultimately lead to cellular 
senescence or even apoptosis. The acceleration of oxidative stress due to hepatocyte aging reportedly augments lipid 
accumulation in the liver, suggesting the pivotal role of oxidative stress in the etiology and progression of MASLD. 
Oxidative stress initiates DNA damage, as well as instigates autophagy and the secretion of SASP. These processes are 
concomitant with the activation of the p53-p21 and p16-Rb pathways, leading to premature cellular senescence. Concur-
rently, oxidative stress exacerbates disruptions in lipid metabolism, promotes inflammatory responses, and induces 
hepatocyte damage[4]. During the normal aging process of the liver, hepatic stellate cells help drive macrophage differen-
tiation towards the M1 phenotype, exerting anti-tumor effects. Conversely, a study has found that p53-knockout hepatic 
stellate cells promote macrophage differentiation towards the pro-tumor M2 phenotype, thereby inducing the 
progression of liver fibrosis, cirrhosis, and even HCC[12].

MASLD is characterized by increased levels of senescent cells compared with the control group. Additionally, patients 
with MASLD demonstrate significantly higher telomere shortening, along with increased cell cycle arrest, which 
coincides with an increased expression of p21[13]. Reportedly, Krüppel-like factor 16 (KLF16) can bind to the promoter of 
peroxisome proliferator-activated receptor alpha (PPARα), thereby activating it. Upregulation of KLF16 expression 
expedites fatty acid β-oxidation and mitigates oxidative stress responses in db/db and high-fat diet (HFD) mice. This, in 
turn, results in a reduction in hepatic lipid accumulation and an improvement in MASLD[14]. Oxidative stress induced 
cellular aging can alter the liver microenvironment, leading to disease progression from simple steatosis to inflammation 
and fibrosis, as well as hepatocellular carcinoma.

Autophagy
In hepatic cells, autophagy is subject to modulation by both individual and organ-level aging processes, with pronounced 
attenuation of hepatic autophagy evident in the aging state[15]. The process of aging decreases the quantity and efficiency 
of autophagosomes, subsequently causing a buildup of lipid droplets and resultant liver damage. Autophagy inhibition is 
posited as a potential risk factor in the progression of age-related MASLD. An animal study has revealed that the 
administration of plasma from younger mice restores autophagic activity in aged mice, effectively mitigating liver aging, 
lipid accumulation, and fibrosis[16]. Using Atg7-deficient mice, researchers have substantiated that the autophagic 
impairment in liver sinusoidal endothelial cells not only accelerates liver inflammation and fibrosis in the early phases of 
MASLD but also exacerbates hepatic inflammation and fibrosis during the advanced stages[17].

Mice deficient in Omi/HtrA2 exhibit premature aging symptoms and age-related autophagy inhibition, which results 
in hepatic dysfunction[18]. Therefore, augmenting autophagy may mitigate aging and hepatic steatosis, thus alleviating 
MASLD. Mice overexpressing Omi/HtrA2 have demonstrated enhanced autophagic activity, diminished hepatic steato-
sis, and elevated hepatic fatty acid β-oxidation, which ameliorated HFD-induced MASLD along with hepatic inflam-
mation[19]. P62/sequestosome 1 facilitates the phosphorylation of unc-51 Like autophagy activating kinase 1, thereby 
promoting autophagy activation and triggering NFE2L2/NRF2 activation. This protects mouse liver cells against 
lipotoxic damage[20]. AMPK activation is a regulator of autophagy and aging-related changes in AMPK activation may 
impact autophagic processes, which results in decreased formation of autophagosomes and further hastening of the aging 
process[21]. In hepatic cells, PPARδ activates the autophagy-lysosome pathway via the AMPK/mammalian target of 
rapamycin (mTOR) signaling to induce fatty acid β-oxidation, which reduces hepatic lipid levels[22]. Autophagy changes 
may be an important target for the treatment of age-related MASLD.

Mitochondrial homeostasis
In mouse liver, increased mitochondrial ROS levels are linked with the aging process. Oxidative stress triggers mutations 
in the mitochondrial DNA, leading to the accumulation of mitochondrial DNA fragments within the cell nucleus. This 
accumulation subsequently contributes to mitochondrial dysfunction[23]. It has been shown that the absence of the gene 
encoding the nonhomologous end-joining enzyme known as DNA ligase IV (DNL4) exacerbates linear mitochondrial 
DNA (mtDNA) aggregation in the nucleus. Cheng et al[24], proposed that linear nuclear mtDNA fragments accelerate 
aging in yme1-1 mutant cells by affecting nuclear DNA replication, recombination, repair, and transcription. In addition, 
mice deficient in the antioxidant enzyme superoxide dismutase 1 (SOD1) demonstrate premature aging, along with 
hepatic damage. Investigations have unveiled that SOD1-deficient (SOD1-/-) mice display shifts in the composition of 
their GM, including alterations in the ratio of Firmicutes and Bacteroidetes, a significant reduction in lactobacilli, 
increased hepatic metabolites, and manifestation of a systemic aging phenotype[25]. Moreover, cellular senescence results 
in mitochondrial dysfunction, which induces respiratory chain disturbances, membrane potential anomalies, and 
concomitant ROS generation, all of which further induce the development of MASLD[26].

Free fatty acids in the liver are primarily metabolized via two pathways: mitochondrial β-oxidation and esterification 
into triglycerides. The preservation of mitochondrial homeostasis is a pivotal factor in hepatic lipid metabolism. 
However, excessive free fatty acids burden the process of mitochondrial β-oxidation, subsequently leading to an 
imbalance in mitochondrial homeostasis. This imbalance further exacerbates the accumulation of lipids within the hepatic 
cells, ultimately contributing to the development of MASLD[27]. Omi/HtrA2 is a mitochondrial serine protease and a 
pro-apoptotic factor that plays a pivotal role in maintaining mitochondrial homeostasis[28]. Within the liver, Omi/HtrA2 
mediates mitochondrial stability and autophagy, thus contributing to the amelioration of MASLD. Reportedly, the 
overexpression of HtrA2/Omi in the mouse liver enhances the expression of genes related to mitochondrial fatty acid β-
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oxidation, reduces hepatic lipid accumulation, and regulates glucose homeostasis[19]. KLF16 tightly links hepatic lipid 
metabolism to mitochondrial homeostasis by regulating the transcriptional activity of PPARα. Knockdown of hepatic 
KLF16 also leads to increased mitochondrial stress and promotes the development of hepatic steatosis and insulin 
resistance in mice, whereas hepatic-specific PPARα overexpression effectively ameliorates hepatic steatosis induced by 
KLF16 deficiency and improves mitochondrial imbalance and insulin resistance[14]. The mitochondrial homeostasis is 
closely related associated with hepatic lipid metabolism and exacerbates the development of MASLD.

Bile acid-mediated metabolism homeostasis
Metabolic irregularities serve as both inducers and outcomes of the aging process and are intricately intertwined in the 
development of various diseases[29]. Hepatic metabolism declines with aging and is accompanied by a reduction in 
enzymatic activity, owing to which the elderly are more susceptible to lipid accumulation. Bile acids (Bas), in conjunction 
with their homologous receptors such as the farnesoid X receptor (FXR) and Takeda G-protein-coupled receptor 5, play 
integral roles in numerous signaling pathways that are closely linked with MASLD. These pathways encompass BA self-
regulation, glucose and lipid metabolism, energy modulation, cell proliferation, detoxification, and immune regulation
[30]. BA analogs targeting FXR, TGR5, or both have been shown to effectively mitigate the progression of MASH[31].

BAs regulate metabolism by interacting with nuclear receptors and tightly modulating the diversity and relative 
abundance of the GM. The GM, along with their metabolic byproducts, may mediate MASLD by inducing endotoxemia, 
triggering insulin resistance, increasing short-chain fatty acids, elevating endogenous ethanol production, altering choline 
and BA metabolism, and impacting the host’s immune response[32]. Therefore, the disruption of intracellular BA 
homeostasis may be a pivotal factor influencing the development of MASLD.

Dysbiosis
Aging results in the restructuring of the GM and is characterized by a decreased Firmicutes-to-Bacteroidetes ratio and 
reduced overall microbial diversity[33]. The lipopolysaccharide (LPS)/toll-like receptor 4 (TLR4) signaling pathway plays 
a crucial role in mediating the pathological mechanisms of MASLD. Patients with MASLD demonstrate an overgrowth of 
intestinal bacteria, which disrupts the intestinal barrier function. This altered gut barrier permeability leads to the translo-
cation of LPS that triggers the activation of the LPS/TLR4/nuclear factor-κB (NF-κB) signaling pathway. That mediates 
the progression of MASLD to MASH[34]. A study has demonstrated that TLR4-deficient mice showed amelioration in 
insulin resistance and hepatic steatosis induced by HFD[35]. However, another study revealed that TLR5-deficient mice 
exhibited characteristics of metabolic syndrome, such as obesity, insulin resistance, and hepatic steatosis. Furthermore, 
transplanting the GM from TLR5-deficient mice into healthy mice exhibited the performance of metabolic syndrome in 
healthy mice[36].

Reportedly, GM additionally stimulates the generation of endogenous ethanol[37]. Dysbiosis within the gut 
microbiome can lead to the overgrowth of ethanol-producing bacteria, resulting in an increase in endogenous ethanol 
levels and subsequent induction of MASH. This has been demonstrated by Yuan et al[38], who isolated a high-alcohol-
producing strain of Klebsiella pneumoniae (HiAlc Kpn) from the fecal samples of patients with Auto-brewery 
syndrome(ABS)/MASH and found that orally administering the strain to healthy sterile mice induced hepatic steatosis. 
Their results revealed that HiAlc-Kpn induced mouse MASLD model, the high-alcohol-producing strain of K. pneu-
moniae, upon colonization in the mouse gut, induced endogenous ethanol production that subsequently impaired the 
intestinal mucosal barrier. This resulted in heightened intestinal permeability in mice, which exacerbated inflammation in 
MASLD. Additionally, the transplantation of GM from younger mice to older mice could reverse age-related changes in 
the gut, eyes, and brain. Aged mice receiving young donor microbiota had reduced cortical and callosal microglia, 
reduced expression of inflammatory complement protein C3 in the retina, and reduced circulating concentrations of 
lipopolysaccharide (LPS)-binding protein (LBP), to levels comparable to young mice[39]. Furthermore, Hoyles et al[40] 
transplanted GM from patients with MASLD into mice maintained on a normal diet and found that the mice developed 
hepatic steatosis and their gut microbial characteristics realigned to those observed in MASLD.

POTENTIAL THERAPEUTIC TARGETS FOR MASLD
Regarding MASH treatment, this article predominantly focuses on clinical trials assessing agents targeting metabolic 
pathways, cellular stress responses, and interactions with GM.

Drugs targeting metabolism
FXR agonists: FXR plays a pivotal role in regulating lipid metabolism, BA homeostasis, and glucose equilibrium. The 
dysregulation of FXR function has been implicated in the pathogenesis of MASLD, cholestasis, and chronic inflammatory 
disorders that affect the liver and gastrointestinal tract. Despite a multitude of clinical trials targeting FXR for the 
management of MASLD/MASH, to date, only obeticholic acid has received approval for the treatment of primary biliary 
cholangitis. MET409[41] is another agent that has a unique non-BA composition and sustained pharmacokinetic/
pharmacodynamic properties. A study has assessed the efficacy of oral MET409 administered once daily over 12 wk in 
patients with MASH. By the end of the 12-week treatment cycle, MET409 remarkably reduced hepatic fat levels, with an 
average reduction of 55% (80 mg) and 38% (50 mg) compared with the 6% reduction observed with placebo (P < 0.001). 
Vonafexor (EYP001a) is a second-generation synthetic, non steroidal, non-bile salt, orally active carboxylic acid FXR 
agonist currently in development. In patients with MASH and suspected fibrosis, vonafexor has demonstrated efficacy in 
reducing hepatic fat content and improving liver enzymes. Specifically, 50.0% and 39.3% of patients treated with VONA-
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100 mg and VONA-200 mg once daily, respectively, demonstrated a reduction in hepatic fat levels of > 30%, whereas only 
12.5% of patients treated with placebo demonstrated this effect[42].

PPARs agonists: PPARs represent a subgroup of nuclear transcription factors activated by ligands and are categorically 
classified within the nuclear receptor superfamily. Post activation, PPARs form heterodimers with retinoid X receptors 
(RXRs). The resultant PPARγ–RXR heterodimer binds to peroxisome proliferator response elements that are situated 
upstream of target gene promoters, consequently modulating the transcription of these specific target genes. The PPARs 
comprise PPARα, PPARβ/δ, and PPARγ that function as sensitive receptors for fatty acids and their derivatives, exerting 
crucial roles in lipid metabolism[43]. Notably, they can effectively mitigate hepatic steatosis, inflammation, and fibrosis in 
preclinical models of MASLD, thus underscoring their potential as promising targets for MASLD treatment. Selective 
agonists targeting PPARα and PPARγ have already demonstrated clinical efficacy, while clinical trials are currently 
assessing PPARγ agonists such as pioglitazone; dual PPARα/δ agonists such as chiglitazar, saroglitazar magnesium, and 
elafibranor; and pan-PPAR agonists such as lanifibranor. The activation of intestinal PPARα signaling plays a role in 
upregulating the expression of fatty acid-binding protein 1, thus facilitating intestinal fatty acid uptake and potentially 
contributing to the progression of MASH[44]. Elafibranor can improve steatosis, mitigate inflammation, and attenuate 
fibrosis in rodent models of MASLD/MASH[45]. Moreover, human liver in vitro models have unveiled that PPAR 
agonists can effectively diminish the increase in lipid levels, quell the secretion of inflammatory chemokines, and 
modulate the expression of pro-fibrotic genes via diverse mechanisms[46].

Glucagon-like peptide-1 agonists: The discovery of glucagon-like peptide-1 (GLP-1) represents a pivotal milestone in the 
field of biology, as the molecule significantly affects the regulation of blood glucose levels and the management of body 
weight. Cotadutide, an agonist of GLP-1R/GcgR, improves MASH and liver fibrosis by regulating mitochondrial 
function and lipid biosynthesis. Notably, in C6BL29/J mice exposed to an Amylin liver MASH diet for 57 wk, cotadutide 
displayed greater efficacy in treating MASH than cotadutide combined with obeticholic acid[47]. Reportedly, the dual 
agonist GLP-1-Fc-FGF21 D1 exhibits notable and sustained hypoglycemic effects in diabetic mouse models. Moreover, in 
an HFD-induced ob/ob mouse model, GLP-1-Fc-FGF21 D1 has demonstrated robust anti-MASH properties via significant 
enhancements in liver function, alterations in serum and hepatic lipid profiles, and reduction in the MASLD activity 
score. Remarkably, its therapeutic efficacy surpasses that of singular FGF21 or GLP-1 analogs[48].

Thyroid hormone receptor-beta agonist: Activation of hepatic thyroid hormone receptor-beta (THR-β) reduces systemic 
lipid levels, enhances BA synthesis, and promotes lipid oxidation. Resmetirom (MGL-3196) is a liver-targeted and 
selective THR-β agonist. Studies have demonstrated that administering resmetirom (MGL-3196) to mice with diet-
induced fibrotic DIO-MASH can lead to substantial reductions in liver weight, hepatic steatosis, plasma ALT levels, and 
hepatic and plasma cholesterol levels, as well as a decrease in blood glucose levels. Moreover, the treatment remarkably 
improved the MASLD activity score, with no discernible impact on body weight[49]. Compared with the placebo group, 
the resmetirom group was more effective in mitigating hepatic steatosis and ameliorating liver enzyme levels as well as 
inflammatory markers, resulting in a pronounced improvement in MASH as evidenced by liver biopsy assessments[50]. 
Furthermore, both 80 and 100 mg resmetirom result in favorable tolerability profiles, devoid of any severe or serious 
adverse events. The Phase 3 MASH clinical trial (NCT03900429) is now underway and is poised to enroll 900 volunteers 
with liver biopsy MASH with fibrosis grades I-III in a multinational, double-blind, randomized, placebo-controlled study 
to address the progression of MASH, cirrhosis, and/or hepatic decompensation (Figure 1).

Other agents: Sodium-dependent glucose co-transporter 2 (SGLT2) inhibitors are a novel class of antidiabetic drugs that 
inhibit glucose reabsorption in the proximal renal tubules, and have been shown to be effective in reducing hepatic fat 
content and AST/ALT levels and ameliorating hepatic fibrosis in several studies. Specifically, empagliflozin prevents 
MASLD progression in ApoE (-/-) mice by inducing autophagy via increased AMPK phosphorylation, reduced mTOR 
activity, and elevated LC3B expression. Furthermore, it mitigates endoplasmic reticulum stress and inhibits hepatocyte 
apoptosis[51]. Dapagliflozin, another SGLT2 inhibitor, has been found to activate AMPK and reduce mTOR 
phosphorylation in Zucker diabetic fatty rats. This effect has additionally been replicated in LO2 cells and HepG2 cells 
stimulated with palmitic acid. Consequently, the activation of AMPK promotes fatty acid oxidation and induces 
autophagy, ultimately improving hepatic steatosis[52]. Reportedly, fructose is catalyzed by ketohexokinase to produce 
fructose-1-phosphate, a metabolite that is primarily metabolized within the liver. Inhibition of fructose metabolism using 
ketohexokinase inhibitors can mitigate hepatic injury and fibrosis in both murine models and human subjects[53]. High 
fructose intake induces de novo lipid biosynthesis in the liver. This process does not depend on ATP citrate lyase (ACLY) 
but rather on the intestinal microflora which metabolizes fructose to acetate and converts the latter to acetyl coenzyme A 
(acetyl-CoA). Altered intestinal permeability, gut dysbiosis, and increased fructose intake exacerbate hepatic lipid 
accumulation and contribute to the development of MASLD in elderly patients[54].

Cell stress and cellular senescence
ROS inhibition: Excessive oxidative stress culminates in hepatocyte senescence, thereby instigating the accrual of hepatic 
fat[55]. Furthermore, hepatic lipotoxicity triggers oxidative stress and the release of inflammatory cytokines, thereby 
fostering the progression of MASH and, in more severe cases, fibrosis. Senolytics are a class of selective drugs that kill 
aging cells and can be used for the targeted intervention of cellular senescence. Quercetin, as an example, can elevate 
hepatic levels of SOD, catalase, and glutathione, concurrently decreasing interleukin (IL)-1β, IL-6, tumor necrosis factor-α, 
and hepatic lipid accumulation in db/db mice. Furthermore, it can activate the FXR1/TGR5 signaling pathway, thereby 
contributing to the amelioration of MASLD[56]. In addition, quercetin demonstrates the ability to regulate GM dysbiosis 
and attenuate endotoxemia-induced upregulation of the TLR-4 pathway. This results in the inhibition of inflammasome 
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Figure 1 Signaling pathways of proliferator-activated receptor alpha and thyroid hormone receptor-beta and drugs targeting these 
pathways. PPAR: Proliferator-activated receptor; TG: Triglyceride; FFA: Free fatty acid; ACS: Acyl coenzyme A synthetase; FA CoA: Fatty acyl coenzyme A; TCA: 
Tricarboxylic acid cycle; RXR: Retinoid X receptor; PPRE: PPAR reaction element; THR: Thyroid hormone receptor-beta; LDL: Low-density lipoprotein; LDL-R: Low-
density lipoprotein receptor; VLDL: Very low-density lipoprotein.

activation and stress pathway activation, which reinstates the equilibrium in lipid metabolism gene expression[57]. An 
ongoing clinical trial (NCT05506488) assessing a combination of dasatinib and quercetin for the clearance of senescent 
cells offers a potential avenue for addressing MASLD-associated fibrosis. N-acetylcysteine (NAC), an antioxidant with the 
capacity to reduce ROS levels and induce cellular apoptosis, can significantly reduce obesity, dyslipidemia, hepatic 
dysfunction, and GM dysbiosis induced by HFD in murine models. However, it is noteworthy that in these mice, using 
antibiotics for GM depletion resulted in a resurgence of hepatic steatosis and liver injury[58]. Another study has found 
that supplementing NAC to mice with diet-induced obesity and non-alcoholic steatohepatitis increases the CD4+ T cell 
population within liver tumor cells. Additionally, it elevates the levels of immunotherapeutic agents M30 and aOX40, 
thus effectively inhibiting the progression of liver tumors[59].

Myeloperoxidase inhibitor: Recent studies have revealed that patients with MASLD have elevated levels of plasma 
myeloperoxidase (MPO) and increased hepatic MPO expression compared with healthy controls. Notably, this elevation 
is more pronounced in patients with MASH. Studies have demonstrated that treatment with the MPO inhibitor AZM198 
results in significantly reduced MASH-induced liver damage and fibrosis as well as decreased serum ALT levels and 
amelioration of hepatic steatosis[60]. Specifically in the elderly population, MASLD was associated with notable 
alterations in GM abundance, which resulted in compromised gut barrier function and heightened susceptibility to 
intestinal inflammation and subsequent systemic inflammatory responses. The administration of AZM198 improved the 
Firmicutes-to-Bacteroidetes ratio and regulated GM composition. Reportedly, TXNIP-deficient mice demonstrated 
decreased expression of inflammatory factors, reduced LPS levels, improved liver health, and restored intestinal barrier 
function. Notably, TXNIP is significantly upregulated in the intestinal mucosa of MASH mice. Moreover, studies have 
demonstrated that inhibiting the activation of the TXNIP-NLRP3 axis can effectively reduce MPO activity and oxidative 
stress, leading to the restoration of intestinal barrier function in the context of MASH. MPO Inhibitors reduce liver lipid 
accumulation, inflammation, and fibrosis and ameliorate the development of MASH.

PTUPB inhibitor: PTUPB, a dual inhibitor of soluble epoxide hydrolase and cyclooxygenase-2, exerts its effects by 
suppressing the PI3K/AKT/mTOR pathway via the modulation of Sirt3[61]. This leads to increased autophagy and 
decreased hepatocyte senescence, thus inducing the progression of MASLD. Reportedly, PTUPB can mitigate liver injury 
in HFD-induced MASLD murine models by inducing collagen deposition and lipid accrual; reducing hepatic triglyceride 
levels; and suppressing the expression of liver aging-associated molecules, such as p16, p53, and p21. Aspirin, an oral 
irreversible inhibitor of the cyclooxygenases COX-1 and COX-2, prevents the development of MASLD and MASH-related 
HCC[62].

Other agents: Lubiprostone functions by selectively stimulating type 2 chloride channels located on the apical cell 
membrane of gastrointestinal epithelial cells, leading to increased intestinal permeability. Research findings have 
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Figure 2 Targets related to lipids, bile acids, glucose homeostasis and intestinal microbiota in age-related metabolic dysfunction-
associated steatotic liver disease. GM: Gut microbiota; FXR: Farnesoid X receptor; RXR: Retinoid X receptor; FXRE: FXR reaction element; FGF19: 
Fibroblast growth factor 19; FGFR4: Fibroblast growth factor receptor 4; TGR5: Takeda G protein–coupled receptor 5; GLP-1: Glucagon-like peptide-1.

indicated that in patients with constipation and MASLD, lubiprostone reduces liver enzyme levels and exhibits favorable 
tolerability[63]. Heat shock protein (HSP) 47 is a collagen-specific molecular chaperone residing within the endoplasmic 
reticulum and plays a pivotal role in ensuring the correct folding, assembly, and extracellular secretion of collagen 
proteins within the extracellular matrix (ECM). The anomalous accumulation of collagen proteins within the ECM 
disrupts its structural integrity, thereby precipitating fibrotic processes[64]. These findings suggest that targeting HSP47 
is of paramount importance for the treatment of liver fibrosis[65].

Drugs targeting the gut–liver axis
Probiotics: The GM assumes a crucial role in MASLD. Dysbiosis of the GM, attributed to oxidative stress, lifestyle 
choices, and excessive antibiotic use, leads to impaired intestinal permeability. An increased permeability facilitates the 
induction of pro-inflammatory cytokines and interferon-mediated factors through the activation of pattern recognition 
receptors by microbiota, bacterial byproducts, and LPS, thereby significantly contributing to the pathogenesis of MASLD
[66]. Aging is concomitant with the deterioration of multiple physiological functions and the exacerbation of inflam-
matory processes. Age-related alterations in the gastrointestinal tract contribute to an elevated incidence of gastr-
ointestinal inflammatory disorders. Aging is associated with increased production of ROS, which leads to lipid accumu-
lation, DNA damage, and concomitant cellular functional impairments. Furthermore, modifications in GM composition 
result in the endogenous production of ethanol, which consequently compromises the integrity of the intestinal barrier 
and incites ROS accumulation in hepatic stellate cells and Kupffer cells[37]. Studies have shown that probiotics can 
restore homeostasis in the GM and mitigate oxidative stress[67]. Specifically, members of the Lactobacillus genus have 
demonstrated the ability to modulate the expression of inflammatory cytokines, including but not limited to IL-6, IL-1β, 
IL-1α, IL-12, and interferon-γ, both in serum and colonic tissues. This immunomodulatory effect is attributed to their 
capacity to inhibit NF-κB activation via the G protein-coupled receptor 109A pathway, thereby fostering improvements in 
immune function among aging mice[68]. In animal models of chronic liver injury, probiotics have demonstrated a 
protective role against hepatic steatosis and liver inflammation by modulating and potentially restoring the GM. Studies 
evaluating patients with MASH/MASLD have revealed that the probiotic formulation VSL3 displays inherent anti-
inflammatory properties and insulin-sensitizing effects, indicating its potential for the treatment of liver fibrosis[69]. 
Evidence suggests that GM can ameliorate an array of biomarkers associated with inflammation, blood glucose 
regulation, insulin resistance, lipid anomalies, obesity, and hepatic impairment, including reductions in liver enzymes, 
hepatic steatosis, and fibrosis. Probiotics exert their influence on the immune system, potentially improving MASLD 
outcomes, either by fortifying the intestinal barrier or preventing the formation of hepatotoxic metabolites[70] (Figure 2).

Weight loss surgery: Invasive weight loss surgeries may be associated with reduced tolerance among patients but 
demonstrate notable efficacy, particularly in severely obese individuals. A study assessing patients with severe obesity 
and MASH who underwent bariatric surgery revealed that 5 years post-surgery, 84% of the patients experienced 
resolution of inflammation, 70% demonstrated improvements in fibrosis, and 56% exhibited regression of liver fibrosis
[71]. Bariatric surgery further modifies the ileal milieu, thereby inducing alterations in the GM or its metabolic products, 
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ultimately ameliorating MASLD.

CONCLUSION
The escalating trend of population aging underscores the increasing importance of investigating age-related diseases. 
Although research on MASLD has proliferated in recent years, the intricate mechanisms underlying the condition remain 
only partially elucidated. The factors precipitating aging exhibit reciprocal interactions with the pathogenesis and 
progression of MASLD. Oxidative stress and dysbiosis of the GM, for instance, can trigger both the aging process and 
inducing MASLD, which is frequently encountered in the elderly population. It is conceivable that such convergent 
targets, including oxidative stress and GM, may hold promise in formulating strategies for the management of age-
related MASLD.
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