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Abstract

AIM    To  study  the  molecular  mechanisms  of
retinoic  acid  (RA)  on  proliferation  and
expression  of  cyclin-dependent  kinase  inhibitors
(CKI),  i.e.  p16,  p21  and  p27  in  cultured  rat
hepatic  stellate  cells  (HSC)  stimulated  with
transforming  growth  factor  beta  1  (TGF-βββββ1).
METHODS  HSC  were  isolated  from  healthy
rat  livers  and  cultured.  After  stimulated  with
1mg/L  TGF-βββββ1,  subcultured  HSC  were  treated
with  or  without  1nmol/L  RA.  MTT  assay,
immunocytochemistry  (ICC)  for  p16,  p21,  p27
and  βββββ-smooth  muscle  actin  (βββββ-SMA)  protein,
in  situ  hybridization  (ISH)  for  retinoic  acid
receptor  beta  2  (RAR-βββββ2)  and  p16,  p21  and
p27  mRNA  and  quantitative  image  analysis
(partially)  were  performed.
RESULTS  RA  inhibited  HSC  proliferation  (41.
50%,  P<0.05),  decreased  the  protein  level
of  βββββ-SMA  (55.09%,  P<0.05),  and  induced  HSC
to  express  RAR-βββββ2  mRNA.  In  addition,  RA
increased  the  protein  level  of  p16  (218.75%,
P<0.05)  and  induced  p21  protein  expression;
meanwhile,  p27  was  undetectable  by  ICC  in  both
control  and  RA-treated  HSC.  However,  RA  had
no  influence  on  the  mRNA  levels  of  p16,  p21  or
p27  as  determined  by  ISH.

CONCLUSION  Up-regulation  of  p16  and  p21  on
post-transcriptional  level  may  contribute,  in
part,  to  RA  inhibition  of  TGF-β1  initiated  rat  HSC
activation  in  vitro.

INTRODUCTION
Hepatic  stellate  cells  (HSC)  play  crucial  roles  in  the
development  of  liver  fibrosis[1-6].  Stimulated  HSC
transform  from  vitamin  A-rich  quiescent  cells  to
myofibroblast-like  cells  characterized  by  the  expression
of  α-smooth  muscle  actin  (α-SMA),  loss  of  retinoids
and  diminished  retinoid  signaling[4-15].  Exogenous
retinoids  such  as  retinoic  acid  (RA)  may  recover
the  contents  of  retinoids  and  nuclear  retinoic  acid
receptors  (RAR)  in  HSC  and  therefore  suppress
hepatic  fibrogenesis,  but  the  mech  anisms  of  RA  on
HSC  inhibition  were  not  well  understood[3,16-27].
Recent  studies  on  other  cell  types  have  shown  that
modulation  of  cell  cycle  regulatory  proteins  might
contribute  to  RA-induced  inhibition  of  cell  prolifer
ation  and  differ-entiation[28-37]and  Kawada  et  al[38]

reported  that  expression  of  G1  cyclin  was  involved
in  cell  cycle  transition  of  HSC  from  G1  to  S.  The
present  study  was  designed  to  investigate  the  effects
of  RA  on  negative  cell  cycle  regulators  cyclin-
dependent  kinase  inhibitors  (CKI)  in  cultured  rat
HSC  stimulated  with  transforming  growth  factor  beta-1
(TGF-α1).  The  results  showed  that  RA  inhibited
HSC  activation  may  be  in  part  due  to  post-
transcriptional  up-modulation  of  p16  and  p21.

MATERIALS  AND  METHODS
Reagents
Collagenase  IV,  pronase  E,  Nycodenz,  RA  and  3-
(  4,   5-dimethylthiazol-2-yl  )-2,  5-diphenyl
tetrazolium  bromide  or  tetrazolium  (MTT)  were
purchased  from  Sigma  Chemical  Co.  (St.  Louis,
MO,  USA).  Recombinant  human  TGF-β1  was  from
Oncogene  Science  (Uniondale,  NY,  USA).
Dulbecco’s  modified  Eagle’s  medium  (DMEM)  was
Gibco/BRL-  product  (Life  Technologies,  Inc.
Grand  Island,  NY,  USA).  Newborn  calf  serum,
plastic  tissue  culture  flasks  and  multi-plates  were
from  Corning  Incorporated  (Corning,  NY,  USA).
Polyclone  anti-α-SMA  antibody  was  purchased  from
Dako  A/S  (Glostrup,  Denmark).  Antibodies  to
p16,  p21  and  p27  were  from  Santa  Cruz
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Biotechnology,  Inc.  (Santa  Cruz,  CA,  USA).  ABC
kit  and  DAB  were  from  R  &  D  Systems
(Minneapolis,  MN,  USA).  DIG  Nucleic  Acid  Label
and  Detect  Kit  and  Taq  DNA  polymerase  were  from
Roche  Diagnostics  GmbH  (Mannheim,  Germany).

Isolation  and  culture  of  HSC
Cells  were  isolated  from  healthy  Sprague-Dawley
male  rats  (weighing  400g-450g)  as  described  by
Weiner  et  al[26]  with  minor  modifications  by  the
laboratory[39],  seeded  onto  25cm2  plastic  tissue  culture
flasks  and  incubated  at  37   in  a  humidified  5%
CO2/95%  air.  The  medium  was  replaced  24h  after
seeding  and  every  48h  thereafter.  After  they  reached
confluence  (10d  after  planting),  activated  HSC  were
subcultured  onto  plastic  tissue  culture  multi-plates
with  or  without  coverslips.
         Experiments  were  performed  on  cells  between
serial  passage  1  and  3  using  three  independent  cell
lines.

Cell  treatments
Activated  HSC  were  depleted  of  serum  for  48h,
followed  by  incubation  with  1mg/L  TGF-α1  for
another  48h,  and  then  the  medium  was  removed
and  cells  maintained  in  DMEM  with  or  without
1nmol/L  RA  for  48h.  Preliminary  dose  dependence
experiments  indicated  that  1mg/  L  TGF-β1  or  1nmol/L
RA  had  significant  influence  on  HSC  proliferation.

Proliferation  assay
Cell  proliferation  was  measured  by  MTT  assay  as
previously  described[40]  with  minor  modifications.
Briefly,  during  the  last  4h  of  incubation  the  cells
were  loaded  with  10µL  of  freshly  prepared  and
filtered  MTT  (5g/L  in  PBS)  per  well.  The  medium
was  then  replaced  with  100µL  absolute  ethanol  and
the  cells  were  left  for  30min  for  color  development,
followed  by  reading  on  Vmax®R  Kinetic  Microplate
Reader  (Molecular  Devices  Corporation,  Sunnyvale,
California,  USA)  at  570nm  wavelength.

Immunocytochemistry  (ICC)
Cells  grew  on  coverslips  were  fixed,  permeabilized,
blocked  with  1%  serum  in  PBS,  and  then  incubated
with  primary  antibodies  to  either  α-SMA,  p16,  p21
or  p27.  ABC  assay  and  DAB  system  were  used  to
detect  the  proteins[41]  and  photomicrographs  were
taken  with  an  Olympus  microphoto-microscope
(Olympus  Optical  Co.  LTD.,  Shinjuku-ku,  Tokyo,
Japan).

In  situ  hybridization  (ISH)
cDNA  probes  for  human  RAR-β2  and  p16  were  gifts
from  the  Depar  tment  of  Biochemistry,  School  of
Basic  Medical  Sciences,  Fudan  University;  and
cDNA  fragments  for  rat  p21  and  p27  were  presented
as  gifts  by  Dr.  Chen  Guang-Ping.  Fragments  were
labeled  with  digoxigenin  using  random  priming
assay.

         ISH  was  performed  as  previously  described[39]

with  immunohistochemical  detection  using  an
alkaline  phosphatase  (AKP)conjugated  anti-
digoxigenin   monoclonal   antibody.   Hybridization
signal  was  visualized  through  the  substrates  of  AKP
(NBT  and  BCIP).  Photomicrographs  were  taken
with  an  Olympus  microphoto-microscope  again.

Image  analysis
Quantitative  analysis  of  protein  and  mRNA  were
performed  by  scanning  using  KS  400  Imaging  System
3.0  (Carl  Zeiss  Vision  GmbH,  Germany)  and
means  of  density  values  were  determined.

Statistical  analysis
Data  were  presented  as  mean  values  ±  S.D.  and
statistical  significance  w  as  assessed  by  Student’s  t  test.

RESULTS
RA  Inhibited  HSC  proliferation  and  ααααα-SMA
expression
As  shown  in  Figure  1,  there  were  fewer  (41.50%,
P<0.05)  HSC  in  RA-treated  cells  compared  with
control  cells.  In  addition,  RA  decreased  expression
of  α-SMA  (55.09%,  P<0.05;  Figure  2  and  Table  1).

RA  induced  RAR-β2  mRNA
To  evaluate  retinoid  signaling,  ISH  was  performed
to  determine  RAR-β2  gene  expression.  No  mRNA
was  detected  in  control  cells,  but  HSC  treated  with
RA  did  express  RAR-β2,  indicate  RA  induced
expression  of  RAR-β2  in  HSC-(Figure  3),  and
therefore  enhanced  retinoid  signaling.

Expression  of  CKI
To  further  clarify  the  mechanisms  of  RA  on  cell
cycle  regulation  in  HSC,  prote  in  and  mRNA  levels
of  CKI  were  determined.  As  shown  in  Figure  4,  p27
was  undetectable  by  ICC  in  both  control  and  RA-
treated  HSC.  In  addition,  RA  increased  the  protein
levels  of  p16  (218.75%,  P<0.05)  and  p21  protein
was  detected  in  HSC  treated  with  RA  (Figure  4  and
Table  1).
        ISH  results  showed  that  the  mRNA  level  of
p16,  p21  or  p27  was  not  influenced  by  RA  (Figure  5
and  Table  1).

Figure  1     RA  inhibited  HSC  proliferation.  TGF  -β1-stimulated  rat
HSC  were  cultured  and  treated  with  or  without  1nmol/ L RA  for
48h,  followed  by  MTT  assay  as  described  in  MATERIALS  AND
METHODS.  aP<0.05  vs  control.
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Table  1  Effects  of  RA  on  α-SMA  and  CKI  expression  in  HSC

       p16  P21           p27
Group          α-SMA            RAR-β2

        (protein)            (mRNA)              Protein      mRNA           Protein              mRNA         Protein     mRNA
Control     0.285±0.050               ND              0.160±0.024         0.377±0.043                  ND               0.285±0.043        ND       0.165±0.021
RA            0.157±0.042a        0.227±0.24        0.350±0.029a        0.353±0.023        0.0339±0.034        0.277±0.027        ND        0.179±0.023

ND:  not  determined;  aP<0.05  vs  control

Figure 2      RA  decreased  the  protein  level  of  α-SMA.  TGF-β1-stimulated  HSC  were  treated  with  (A)  as  described  in
                       Figure 1, and then immunocytochemistry was performed to detect α-SMA protein. ABC×200 (B) or without RA
Figure 3          Expression of RAR-β2 in RA-treated HSC. In situ hybridization with DIG-labeled RAR-β2 cDNA probe was used to determine
                      RAR-β2 mRNA expression in HSC. NBT/BCIP×200
Figure 4           Expression of CKI protein. Immunocytochemical study was performed to detect CKI, i.e. p16 (A,), p21 (B,). ABC×200 (C) expression in
                      control (A) or RA-treated HSC
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DISCUSSION
TGF-β1  is  one  of  the  most  fibrogenetic  cytokines
on  HSC,  which  initiates  HSC  activation  characterized
by  loss  of  retinoids,  proliferation,  and  expression  of
α-SMA  and  extracellular  matrix[2,6,42-45].  Our  results
showed  that  even  48h  depletion  of  serum  could  not
completely  suppress  the  expression  of  α-SMA,
implying  that  serum  depletion  can  not  reversibly
suppress  TGF-β1-initiated  activation  of  rat  HSC  in
culture.
        RA  may  modulate  cell  growth  and  differ-
entiation  through  retinoid  signaling[30,46-49],  mainly  by
nuclear  retinoid  X  receptors  and  RAR.  Present
study  showed  that  RA  inhibited  HSC  proliferation
and  down-regulated  α-SMA  protein,  demonstrating
that  RA  may  suppress  HSC  activation  induced  by
TGF-β1.  Our  results  showed  that  RA  induced  RAR-
β2  mRNA,  which  may  then  modulate  expression  of
some  other  genes  including  CKI[28-37,50-52].  In
addition,   cells   in   controls   displayed   no   RAR-β2
mRNA,  agreeing  with  its  insufficient  to  completely
suppress  HSC  activation  again.
         The  protein  level  of  p16  was  increased  in  RA-
treated  HSC  with  detectable  p21  protein,  while  RA
had  no  influence  on  those  mRNA  levels,  suggesting

Figure  5     mRNA  expression  of  CKI.  mRNA  of  p16  (A,),  p21  (B,)  (C,)  or  p27  (D,)  was  determined  with  ISH  in  control  (E,)
                     or  RA-treated  HSC  (F,).  NBT/BCIP×200

RA  may  up-regulate  p16  and  p21  gene  expression  on
the  post-transcriptional  level.  p16  or  p21  can  inhibit
cyclin-CDK  complexes  and  then  prevent  G1
transition[53-58  ];  therefore,  our  study  indicates  that
RA  induced  inhibition  of  TGF-β1-initiated  HSC
activation  may  be  in  part  due  to  up-modulation  of
p16  and  p21  on  the  post-transcriptional  level,  and
reveals   a   new   mechanism   of   RA   induced   HSC
inhibition.
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