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Abstract

AIM To test the hypothesis to block VEGF
expression of SMMC-7721 hepatomacells may
inhibit tumor growth using the rat hepatoma
model.
METHODS  Amplifiy the 200 VEGF cDNA
fragment and insert it into human U6 gene
cassette in the reverse orientation transcribing
small antisense RNA which could specifically
interact with VEGF165, and VEGF121 mRNA.
Construct the retroviral vector containing this
antisense VEGF U6 cassette and package the
replication-deficient recombinant retrovirus.
SMMC-7721 cells were transduced with these
virus and positive clones were selected with
G418. PCR and Southern blot analysis were
performed to determine if U6 cassette
integrated into the genomic DNA of positive
clone. Transfected tumor cells were evaluated
for RNA expression by ribonuclease protection
assays. The VEGF protein in the supernatant of
parental tumor cells and genetically modified
tumor cells was determined with ELISA. In vitro
and in vivo growth properties of antisense VEGF
cell clone in nude mice were analyzed.
RESULTS Restriction enzyme digestion and PCR
sequencing verified that the antisense VEGF RNA
retroviral vector was successfully constructed.
After G418 selection, resistant SMMC-
7721 cell clone was picked up. PCR and
Southern blot analysis suggested that U6
cassette was integrated into the cell genomic

DN A .  S t a b l e  S M M C - 7 7 2 1  c e l l  c l o n e
transduced with U6 antisense RNA cassette
could express 200 bp small antisense VEGF
RNA and secrete reduced levels of VEGF in
culture condition. Production of VEGF by
antisense transgenea2expressing cells was
65 ± 10 ng/L per 106 cells, 420 ± 45 ng/L
per 106 cells in sense group and 485 ± 30 ng/
L per 106 cells in the negative control group,
(P<05). The antisense-VEGF cell clone
appeared phenotypically indistinguishable
from SMMC-7721 cells and SMMC-7721 cells
transfected sense VEGF. The growth rate of
the antisense-VEGF cell clone was the same
as the control cells. When S.C. was implanted
into nude mice, growth of antisense-VEGF cell
lines was greatly inhibited compared with
control cells.
CONCLUSION  Expression of antisense VEGF
RNA in SMMC-7721 cells could decrease the
tumorigenicity, and antisense-VEGF gene
therapy may be an adjuvant treatment for
hepatoma.

INTRODUCTION
Neovascularization is critical for supporting the rapid
growth of solid tumors[1]. Tumor angiogenesis
appears to be achieved by the expression of
angiogenic agents within solid tumors that stimulate
host vascular endothelial cell mitogenesis and
possibly chemotaxis. One such protein, vascular
endothelial growth factor (VEGF) or vascular
permeability factor[2-5], is a selective endothelial cell
mitogen and angiogenic agent .Many tumor cell lines
secrete VEGF in vitro, suggesting that this diffusible
molecule is a mediator of tumor angiogenesis. The
clinical results showed  high levels of VEGF
expression in primary hepatoma, elevated levels of
flt-1, the receptors of VEGF in hepatoma blood
vessels, and the relationship between VEGF levels
and hepatoma invasion and transfer[6]. These data
indicated that VEGF and its receptors play important
roles in the development of hepatoma vasculature
and progressive growth of hepatoma.
        In this study, we used the SMMC-7721
hepatoma cell line which has a high expression of
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VEGF, as established model for human hepatoma. The
strategy of exogenous expression of antisense VEGF
transcribed by POL III promoter in the SMMC-7721
cell line was applied to assess the feasibility of disrupting
the VEGF/VEGF receptor pathway of angiogenesis and
decreasing their tumorigenicity in vivo.

MATERIALS AND METHODS
Materials
Bam HI, T4 DNA ligase was purchased from Promega
Company. RNase A and RNase T1 were the products
of MBI Fermentas, G418 was purchased from Sigma
Company and SMMC-7721 cell line from Chinese
Academy of Cell Biology.

Methods
Construction of vectors  VEGF antisense vector
to generate the VEGF anti-sense vector, a DNA
fragment containing 250 bp of human VEGF cDNA,
was ligated in reverse orientation in the sal I, xho I
sites of the U6 cassette, and subcloned into the Bam
H I site of pLXSN vector. Expression of the antisense
molecule in pLXSN was driven by POLIII promoter
of U6 cassette. The pLXSN vector also contained
the G418 resistance gene driven by the simian virus
(SV40) promoter. To generate infectious virions,
PA317 packaging cells were transfected with pLXSN-
U6-as-VEGF and selected in the culture medium
containing 500 mg/L G418. Virus-containing
supernatants were harvested and used to infect
SMMC-7721 cells.

Genetic modification of SMMC-7721 cells The
SMMC-7721 cells were incubated with the viral stock
containing 8 mg/L polybrene. On the following day, the
cells were split and selected in 500 mg/L G418. Cultures
were added every 3-4 days with the fresh G418
supplemented media for 14 days. Resistant colonies were
expanded, and subcloned and the clone which produced
the reduced levels of VEGF was selected for further
research.

Ribonuclease protection assay  A 200bp VEGF PCR
product was cloned into T7,T3 vector pBlueScript-SK,
the plasmid was linearized by  Eco R V, treated with
proteinase K and purified. The α-32 P UTP sense VEGF
RNA was generated by addition of T7 polymerase.
Ribonuclease protection assays were made as follows,
20 µg of total cellular RNA was hybridized with RNA
probes overnight at 45 . The remaining single-stranded
probe RNA and unhybridized RNA were digested with
a mixture of RNase A and RNase T1, added yeast RNA,
extracted by phenol, precipitated by ethanol,  seperated
on 7M urea/polyacrylamide gels, and then exposed to
X-ray film.

PCR, southern blot analysis  PCR was performed on

genomic DNA isolated from human SMMC-7721 cells
and individual clones of transfected cells using a sense
primer corresponding to the U6 promoter (5’-
TATACTAAGTCGACTCCTATGTGCTGG-3’) and an
antisense primer corresponding to the VEGF cDNA (5’-
TAGAGAGGGCAGAATCATCACG-AAGTGG-3’).
Using the NeoR primer, the sense primer is 5’-
CAAGATGGAATTGCACGCAGG-3’, the reversal
primer is 5’-CCCGCTCAGAAAGAACTCGTC-3’. The
PCR was performed using the following protocol: 95
1min, 60  1min, 72  1min 30s; in the last cycle, extend
10 min at 72 . Southern blot, 20 µg genomic DNA was
digested overnight, electrophoresed on 1% agarose gels,
transferred onto Hybond N nylon membrane, and
hybridized with the DIG labeled NeoR probe at 68
for 6 h, the membrane was washed  in 2 × SSC for 5
min × 2, and 0.1 × SSC for 15 min. The fragments were
visualized by chemiluminescent, and exposed to X-ray
film.

Quantitation of VEGF  The supernatant of  parental
or transfected SMMC-7721 cells were measured by
ELISA. To generate the conditional medium, the cells
were seeded onto 3.0 × 105/well plates. The media was
changed next day to MEM /0.5% bovine serum albumin/
1% dialyzed fetal calf serum for another 24 h. The media
was then replaced by the fresh MEM and cells were
allowed to grow for another 48 h. The CM was
generated by centrifugation at 14 000rpm at 4  for 15
min, then for ELISA analysis according to the
manufacturer’s instructions.

In vitro growth rate  SMMC-7721 hepatoma cells and
cells transfected with antisense, and sense-VEGF were
cultured at 1 × 104 and grown under standard culture
conditions. Cell count was made every 24 h for a total
of 144 h. The total number of cells from duplicate
experiments was determined as a function of time.

Determination of in vivo tumor growth  Subcutaneous
inoculation and tumor growth measurements were carried
out, 1 × 106 cells of the parental SMMC-7721 cells or
antisense, sense expressing clones were injected into
the flank of normal BALB/C nude mice. Tumors were
measured in two dimensions every 5 days for 25 days.
Tumor volume was calculated using the formula v = l ×
w2/2, where v = volume (mm3), l = long diameter, and w
= short diameter.

RESULTS
Construction of the antisense-VEGF RNA
expression vector based on U6 POLIII promoter
All of the major transcriptional promoter elements
for U6 RNA polymerase III are upstream of the
transcription start, which has a potential advantage
of the less exogenous RNA  coding sequence.
Another advantage of the U6 promoter is that U6
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gene is heavily expressed in human cells. The U6
cassette contained the first 5’ initial 27 nucleotides
and 3’ stem 19 nucleotides for transcript terminator
and the U6+27 transcript was predicted to be most
stable because of  the γ-phosphomethyl-GTP cap. The
fragment of VEGF was cloned into U6 cassette
through sense or antisense direction, and verified by
DNA sequence. U6 cassette containing sense or
antisense VEGF was cleaved by Hind III, Pst I
digestion and cloned into pBlue-SK vector, and
subcloned into Bam HI restriction site of retroviral
expression vector. The positive plasmid was verified
by  Bam HI digestion (Figure 1).

Figure 1  Electrophoresis pattern of pLXSN-U6 sense, antisense
VEGF plasmid digested by Bam HI.
Lane 1: λ DNA Hind III Marker; Lane 2: pLXSN digested by Bam
HI; Lane 3: pLXSN-U6 sense VEGF digested by Bam HI; Lane 4:
pLXSN-U6 antisense VEGF digested by Bam HI.

SMMC-7721 cells expressing antisense-VEGF
Following transfection by recombinant antisense
VEGF or sense VEGF retrovirus, the SMMC-7721
cells were selected by antibiotic G418, the individual
clones were isolated and expanded. And the
selected clone expressed low VEGF for further
analysis and was referred to as anti-1. This clone
was evaluated for gene expression in ribonuclease
protection assays. In this assay, hybridization of
RNA with the complementary RNA probe protects
the probe from the subsequent digestion with RNase
A and RNase T1. From Figure 2, it can be seen
that 200 bp antisense VEGF RNA was only
expressed in SMMC-7721 transfected by pLXSN
U6 antisense VEGF.

Figure 2  Detection of antisense VEGF RNA expression by RNase
protection assay.
Lane 1: Hybridization with total RNA from SMMC-7721 antisense
clone showed 200 bp antisenseVEGF RNA; Lane 2: Hybridization
with total RNA from SMMC-7721 sense clone showed no positive
band; Lane 3: Hybridization with total RNA from SMMC-7721
cells showed no positive band.

         PCR analysis of DNA isolated from the antisense-
VEGF, sense VEGF clones showed  foreign gene
integration into the genomic DNA, and the results
of PCR using the specific primer, showed that the
antisense VEGF U6 gene cassette had inserted
the genomic DNA of SMMC-7721 cells. Southern
blot analysis was performed on genomic DNA of
these antisense VEGF, senseVEGF  clones to
verify again that there was foreign integrated
cDNA (Figures 3, 4).

Figure 3  PCR amplification of genomic DNA from SMMC-7721
antisense, sense VEGF clone.
Lane 1: Marker; Lane 2: SMMC-7721/sense VEGF clone showed of
neo gene 790 bp; Lane 3: SMMC-7721/antisense VEGF clone
showed neo gene 790 bp, U6 cassette 260 bp; Lane 4: SMMC-
7721/pLXSN clone showed neo gene 790 bp

Figure 4  Genomic analysis of SMMC-7721/ U6 antisense VEGF,
SMMC-7721/U6 sense VEGF clones.Lane 1: SMMC-7721/U6 sense
VEGF clone; Lane 2: SMMC-7721/U6 antisense VEGF clone.

Diminished production of VEGF by SMMC-7721
cells transduced with antisense VEGF cDNA
In order to determine if the expression of the antisense
VEGF transgene reduced production of secreted protein,
supernatant from control-transduced (SMMC-7721
sense VEGF) and antisense VEGF transduced cells
were assayed for VEGF by ELISA. Production of
VEGF by antisense transgene-expressing cells was 65
+ 10ng/L per 106 cells, as compared with 420 + 45 ng/L
per 106 cells in sense group and 485 + 30 ng/L per 106

cells in negative control group, P < 0.05.

In vitro growth rate of antisense-VEGF cell lines
The  an t i sense-VEGF ce l l  l ines  appeared
phenotypically indistinguishable from normal SMC-
7721 cells and SMMC-7721 transfected sense VEGF
cells. And growth rates of antisense-VEGF cell lines
were the same as the control cells (Figure 5).
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Figure 5  Proliferation curves of parental SMMC-7721 cells and
antisense-VEGF, sense-VEGF cell lines.

In vivo growth of the antisense-VEGF cell lines
Control SMMC-7721 cells and antisense-VEGF
SMMC-7721 cells were s.c. injected into nude mice,
tumor volumes were measured every 5 days. Tumor
growth was detectable and measurable for control
SMMC-7721 cells 5 days post-implantation, while the
antisense VEGF cell lines  gave rise to tumors.
Examination of mice at 25 days post-implantation
revealed that the  negative control SMMC-7721 group
produced tumors of 630.92 ± 85 mm3, sense-VEGF
SMMC-7721 group produced tumors of 601.07 ± 52
mm3, while the antisense VEGF SMMC-7721 group
produced tumors of 76.33 ± 20 mm3. This experiment
demonstrates that the reduced tumorigenicity of
antisense-VEGF SMMC-7721 cells in nude mice may
be attributed to the reduced expression of VEGF
(Figure 6).

Figure 6  Tumorgenicity of antisense VEGF SMMC-7721  in nude
mice.

DISCUSSION
Angiogenesis, the formation of new blood vessels
, is essential for both tumor growth and metastasis
[7-10]. Tumor angiogensis is a process controlled
by certain chemicals produced in cancer cells.
These chemicals stimulate endothelail cells to
form new blood vessels. Candidates as major
physiological stimulators include VEGF[11], bFGF.

VEGF, and its receptors play critical roles in tumor-
associated angiogenesis and represent good targets
for therapeutic intervention[12-15]. VEGF was initially
termed vascular permeability factor, its first function
was discovered by Dvorak and colleagues[16].
There are several VEGF isoforms, in which
VEGF121 and VEGF165 are readily secreted.
Unlike bFGF, VEGF is a very specific mitogen for
vascular endothelial cells. It also functions as a
potent pro-survival factor for endothelial cells in
nearby formed vessels and this may be one of its
most important functions[17,18].
        It is reported that VEGF is an angiogenic factor
most closely associated with the neovascularization
in solid tumors. VEGF is expressed by vast majority
of cancers at elevated levels and blocks its activity
by specific neutralizing antibodies to VEGF[19,20].
VEGF-toxin conjugates[21], aptamers[21] and small
molecule VEGF receptor antagonists[22] could inhibit
the growth of cancer in animal models. In human
hepatocellular carcinoma, abundant tumor vascularity
was observed. And vascular endothelial growth
factor gene and protein expression was analyzed by
m e a n s  o f  N o r t h e r n  h y b r i d i z a t i o n  a n d
immunohistochemistry, increased expression of
VEGF has been reported in hepatocellular carcinoma
cells (HCC)[23-26]. So VEGF gene expression is
significantly  associated with angiogenesis of HCC.
Tang Zhao You et al studied the angiogenesis induced
by liver cancer with different metastatic potentials
using corneal micropocket model in nude mice. It
was suggested that highly metastatic liver cancer
was more angiogenic than low metastatic cancer and
liver tissue[26]. In HCC with metastasis, mRNA of
VEGF is closely related to the growth of HCC as
well as its metastasis[27].
         In China, the hepatocarcinogenesis is closely related
with the hepatitis virus[28], the results of the researches
showed that, after viral infection,there is abnormal
expression of oncogene such as ras, bcl-2, especially
P53[29-33], and there is also a possible link between
oncogenes and tumor angiogenesis. Expression of
mutant ras can lead to a marked induction of a potent
paracrine stimulator of angiogenesis. In addition,
hypoxia stimulates expression of VEGF and tumor
angiogenesis[34-40]. The results of therapeutic
experiments showed that the chimeric protein consisting
of DT390-VEGF165 or DT390-VEGF exon7 can
efficiently kill the HepG2 and gastric carcinoma cells
and may kill vascular endothelial cells in the cancer[41,

42] and antiangiogenesis inhibitor TNP-470 plus lipiodol
greatly decreased the hepatoma growth in animal
models which depend on the reduction of microvessel
density[43].
         Blocking the interaction between the VEGF
and its receptor can inhibit the growth of tumor
through the antiangiogenesis effect[44-47]. From our
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previous experiment, we found VEGF expression in
hepatoma cell line SMMC-7721 cells. We there fore
sought to determine if inhibition of secretion of VEGF in
SMMC-7721 tumor cells would inhibit the growth of this
tumor in animal model.
          In order to improve the expression of the antisense
VEGF RNA in the target cell, we constructed the
retrovirus vector containing the human U6 promoter
cassette that had the POL III promoter to transcribe
the small therapeutic RNA in the nuclei of cells.
Compared with other transcriptional promoters such
as POL II, tRNA, there are two advantages of U6
promoter:  high expression in human cells, and 
the therapeutic RNA contains less unnecessary RNA
encoding the intragenic ptomoter. In the same time,
we amplified a common VEGF cDNA  and inserted
reversely into U6 cassette[48-52]. U6 promoter
transcribed a small antisense VEGF RNA fragment
that could specifically interacted with VEGF165 and
VEGF121 mRNA. Our previous results, verified that
U6 cassette could effectively express antisense VEGF
RNA molecules and decreased the expression of
mRNA VEGF165, and VEGF121. Then U6 cassette
that expressed antisense VEGF RNA  was inserted
into the retroviral construct. After packaging the
recombinant retrovirus, this cassette was introduced
into the SMMC-7721 cells. Ribonuclease protection
analysis using the RNA probe specific for antisense
VEGF demonstrated that there was antisense VEGF
RNA expression in the SMMC-7721 cells genetically
modified by antisense U6 cassette. The antisense clone
selected for further study showed radical decrease in
VEGF protein in supernatant compared with the sense
and negative SMMC-7721 cell group. Inhibition of
VEGF expression in SMMC-7721 cells resulted in
severely impaired growth of this tumor in vivo. This
may be related with the reduced levels of VEGF
produced by the antisense-VEGF-transfected SMMC-
7721 cell clone, and this resulted in a decrease of
number of tumor blood vessels. Our findings
demonstrate that the inhibition of VEGF is sufficient to
control the tumor growth in vivo. The antisense VEGF
srategy offers a way for gene therapy as an adjuvant
treatment for hepatoma.
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