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MOLECULAR PHYSIOLOGY OF HEPATOCELLULAR

TRANSPORT PROTEINS
Basolateral transport systems
Na+-dependent bile salt uptake  Uptake of bile salts
into the liver was first characterized in experimental
models such as the isolated perfused rat liver[1],
isolated hepatocyte cultures and basolateral plasma
membrane vesicles[2-4]. These studies indicated that
more than 80% of taurocholate uptake but less than
50% of cholate uptake into hepatocytes is sodium-
dependent[5-11]. Whereas unconjugated bile salts are
uncharged molecules that can traverse membranes
by passive nonionic diffusion, conjugation with glycine
or taurine decreases their pKa values and necessitates
the presence of a specific carrier protein for
hepatocellular uptake[12].
        The chief uptake system for conjugated bile salts
in mammalian liver was isolated by expression and
molecular cloning strategies and has been called the Na
+ - taurocholate cotransporting polypeptide (gene symbol:
SLC10A1)[13-16]. Rat Ntcp consists of 362 amino acids
with an apparent molecular mass of 51 kD[17,18] and is
expressed exclusively at the basolateral membrane of
hepatocytes (Figure 1)[17]. Ntcp mediates sodium-dependent
uptake of taurocholate and other bile salts when expressed
in stably transfected COS-7, Chinese hamster ovary
(CHO) and hepatoblastoma (HepG2) cells or in

cRNA injected Xenopus laevis oocytes, with apparent
Km values between 17-42 µmol/L[10,13,17,19,20]. The only
non-bile salt substrates that are transported by Ntcp are
selected sulfated steroid conjugates such as estrone-3-
sulfate[21] and dehydroepiandrosterone sulfate (DHEAS)
[20]. In human liver, NTCP represents a 349-amino acid
protein[14]. NTCP is structurally related to the intestinal
bile salt transporter (IBAT), that also mediates the Na+-
dependent uptake of bile salts[22]and that is expressed
not only in ileum, but also in the kidney[23] and in
cholangiocytes[24].
        Na+-dependent taurocholate uptake is reduced in
experimental models of cholestasis such as bile duct
l igat ion [25],  endotoxinemia[26,27] and par t ia l
hepatectomy[28], is reduced in primary hepatocyte
cultures[29] and is absent in various hepatoma cell lines
[30,31]. These changes in hepatic Na+ dependent bile
salt uptake correlate with expression levels of Ntcp.
Thus, Ntcp mRNA and protein levels are decreased
in bile duct ligation[25,32], endotoxinemia[26,33] and
ethinyl estradiol induced cholestasis[34]. In patients
with a diagnosis of extrahepatic biliary atresia and
clinical evidence of cholestasis, NTCP mRNA levels
are also decreased[35].

Na+-independent hepatic uptake of amphipathic
substrates: the organic anion transporting
polypeptide family (OATP)  Whereas uptake of
conjugated bile salts into the liver is largely a Na+-
dependent process mediated by Ntcp, numerous
other endogenous and xenobiotic compounds
including non-bile salt organic anions and drugs are
cleared from sinusoidal blood by carrier-mediated
uptake into hepatocytes. Following hepatocellular
u p t a k e ,  m a n y  o f  t h e s e  c o m p o u n d s  a r e
biotransformed in two phases. Phase I is mediated
by cytochrome P450 enzymes and prepares the drug
for conjugation by creating polar groups. Phase II
conjugates drugs with a glucuronate, sulfate, glycine
or methyl group and represents a detoxification
step. The conjugates can then be excreted into bile
or urine.
         Na+-independent hepatocellular uptake of bile
salts and non-bile salt amphipathic compounds
cannot be attributed to the function of a single
transport protein, but is mediated by a family of
transport proteins called the “organic anion
transporting polypeptides” (Oatps) (Figure 1). In
rat hepatocytes, at least three members of the Oatp
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family have been identified, called Oatp1 (Slc21a1)
[36], Oatp2 (Slc21a5)[37] and Oatp4 (Slc21a10)[38].
Oatp1 is a 670 amino acid protein with an apparent
molecular mass of 80 kDa that is localized at the
basolateral membrane of hepatocytes[39-41] and at
the apical membranes of kidney proximal tubular
cells[39] and choroid plexus epithelial cells[42,43].
Many of the functional characteristics of Oatp1
indicate that it could represent the “multispecific
bile acid transporter” identified in previous
experimental  models [3,44].  Thus,  s tudies  in
numerous heterologous expression systems have
shown that Oatp1 mediates the hepatocellular
uptake of bile salts, bromosulphophthalein (BSP),
conjugated steroids, thyroid hormones, leukotriene
C4, bilirubin monoglucuronide, ouabain, ochratoxin
A, the anionic magnetic resonance imnaging agent
gadoxetate (Gd-EOB-DTPA), the angiotensin-
converting enzyme inhibitors enalapril  and
temocaprilat, the HMG-CoA reductase inhibitor
pravastatin, and even oligopeptides including the
thrombin inhibitor CRC-220, the endothelin
antagonist BQ-123 and the opioid receptor
agonis ts  [D-penic i l lamine-2 ,5]enkephal in
(DPDPE) and deltorphin II (for detailed review
of the substrate specificities of Oatps/OATPs see
reference[45]). The driving force for Oatp mediated
substrate transport is not fully understood,
although it has been shown that Oatp1 can mediate
bidirectional transport of BSP[46] and anion
exchange of taurocholate/HCO3

-[47]. An important
driving force for organic anion uptake via Oatp1
appears  to be countertransport  of  reduced
glutathione[48].
         Oatp2 is a 661 amino acid protein with an apparent
molecular mass of 92 kD at the basolateral plasma
membrane of hepatocytes[41]. Oatp2 has also been
detected in the retina[49], in endothelial cells of the
blood brain barrier[43] and at the basolateral plasma
membrane of choroid plexus epithelial cells[43].
Oatp2 is a close homologue of Oatp1 and transports
bile salts, the cardiac glycosides ouabain and
digoxin, and cyclic peptides[37,41]. An important
difference between Oatp1 and Oatp2 is their acinar
localization in the liver.  Whereas Oatp1 is
distributed homogeneously within the liver acinus
[41,50], Oatp2 exhibits a heterogeneous lobular
distribution with predominant expression in
perivenous hepatocytes excluding the innermost 1-
2 cell layers surrounding the central vein[41,51].
Interestingly, treatment of rats with phenobarbital,
a known inducer of microsomal drug metabolizing
P450 enzymes[52] and of hepatocellular ouabain,
digoxin and thyroxine uptake[53-57], resulted in a
significant increase in Oatp2 expression and in the
appearance of positive immunofluorescence signals
even in the innermost  layer of  perivenous
hepatocytes[58].

        Oatp4 (Slc21a10) can also mediate Na+-independent
uptake of bile salts  in rat  hepatocytes and
represents a full-length isoform of the so-called
“liver-specific transporter 1” or rlst-1[38,59]. Oatp4
transports numerous organic anions including
t au rocho la t e ,  BSP ,  con juga t ed  s t e ro id s ,
prostaglandin E-2, leukotriene C4, the thyroid
hormones T3 and T4, and gadoxetate[38]. Oatp4 is
43% and 44% identical on the amino acid level with
Oatp1 and Oatp2, respectively.
        In human liver, at least four OATPs have been
identified to date, called OATP-A (SLC21A3),
OATP-B (SLC21A9), OATP-C (SLC21A6) and
OATP8 (SLC21A8). OATP-C (also called OATP2
and LST-1)[60-62] and OATP8[63] are exclusively
expressed at  the basolateral  membrane of
hepatocytes and exhibit 80% mutual identity. The
closest homologue expressed in rat liver is Oatp4,
which is 64% and 66% identical with OATP-C and
OATP8, respectively. Accordingly, the substrate
specificities of human OATP-C and OATP8 and rat
Oatp4 are very comparable [38,64].  Transport
substrates of OATP-C include taurocholate (Km ~
14-34 µM)[60,61], bilirubin monoglucuronide, DHEAS,
estradiol-17β-glucuronide (Km~ 8 µM)[62], estrone-
3-sulfate, prostaglandin E2, thromboxane B2,
leukotriene C4, leukotriene E4, T3 (Km~3 µM), T4

(Km~3 µM)[60], pravastatin (Km~35 µM)[61] and BSP
(Km~0.3 µM)[64].  OATP8 exhibits a closely
overlapping substrate specificity compared with
OATP-C but additionally transports the cardiac
glycoside digoxin (similar to rat Oatp2) and is
particularly efficient in transporting the oligopeptides
BQ-123 (endothelin receptor antagonist), DPDPE
(opioid receptor agonist) and cholecystokinin
(Km~11 µM)[64,65].
        OATP-B (SLC21A9) is also strongly expressed in
human liver, with additional expression in spleen,
placenta, lung, kidney, heart, ovary, small intestine and
brain[64]. OATP-B is a 709 amino acid protein with an
apparent molecular mass of 85 kDa that is localized at
the basolateral plasma membrane of hepatocytes[64].
Compared to OATP-C and OATP8, OATP-B exhibits a
limited substrate specificity for the organic anions BSP
(Km~0.7 µM), estrone-3-sulfate (Km~6 µM) and
DHEAS.
       The fourth OATP known to be expressed in
hepatocytes, albeit at relatively low levels, is OATP-A
(SLC21A3)[66].Although OATP-A was originally
isolated from human liver, it is predominantly expressed
in human cerebral endothelial cells[67]. OATP-A is a
670 amino acid protein that transports bile salts, BSP
(Km~20 µM), estrone-3-sulfate (Km~59 µM)[68],
DHEAS (Km~6.6 µM)[69], the magnetic resonance
imaging agent Gd-B 20790[70], the opioid receptor
agonists DPDPE (Km~202 µM) and deltorphin II (Km~
330 µM)[67], the antihistamine fexofenadine[71],
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and the amphipathic organic cations APD-ajmalinium,
rocuronium, N-methyl-quinine (Km~5 µM) and N-
methyl-quinidine (Km~26 µM)[72]. Thus, in contrast to
the preference of OATP-B, OATP-C and OATP8 for
organic anions, OATP-A additionally transports
amphipathic organic cations indicating that it can mediate
substrate uptake into hepatocytes charge independently.
Overall, the Oatp/OATP family of transporters plays a
central role in hepatocellular organic anion and drug
clearance.

Na+-independent hepatic uptake of hydrophilic
organic anions and organic cations: the organic
ion transporter family (OAT/OCT)  In addition to
NTCP and OATPs, the basolateral hepatocyte
membrane possesses a third family of transport
proteins mediating substrate uptake, called the organic
anion transporter (OAT) family[73]. This family
comprises the OAT, the organic cation transporter
(OCT)[74,75] and the organic cation transporter novel
type (OCTN)/carnitine transporter families[73].
Whereas Oat1 is expressed only in rat kidney[76,77],
Oat2 is  expressed exclusively[78] and Oat3
predominantly[79] in rat liver. In human liver, only OAT2
(SLC22A7) has been isolated (Figure. 1). Oat2
mediates sodium-independent transport of α -
ketoglutarate and salicylates, whereas Oat3 transports
para-aminohippurate (PAH), estrone-3-sulfate, and
the cationic compound cimetidine.
         The first organic cation transporter, called OCT1,
was cloned from rat kidney[80] and is expressed at
the basolateral membrane of hepatocytes, small
intestinal enterocytes and cells of the renal proximal
tubule S1 segment[74]. In man, hOCT1 (SLC22A1)
is expressed specifically in the liver (Figure 1) and
mediates the hepatic clearance of small type I
ca t ions  such  as  t e t rae thy lammonium,  N-
methylnicotinamide, dopamine and choline[81,82]. No
studies investigating the role of the OAT/OCT/
OCTN transporter family in human liver disease
have been performed to date.

Basolateral efflux pumps The basolateral
membrane also possesses several members of the
multidrug resistance protein family (MRPs)
belonging to the superfamily of ATP-binding
cassette (ABC) transporters (Figure 1). MRP1
(ABCC1) mediates the ATP-dependent efflux of
glutathione S-conjugates[83], leukotriene C4, steroid
conjugates such as estradiol-17β-D-glucuronide and
glucuronidated or sulfated bile salt conjugates[84].
MRP1 is normally expressed at very low levels in
hepatocytes, but expression levels are increased in
human hepatoblastoma HepG2 cells and SV40 large
T antigen-immortalized human hepatocytes[85].
MRP3 (ABCC3) is expressed at the basolateral
hepatocyte membrane[86] and mediates basolateral

efflux of the organic anions estradiol-17β-D-
glucuronide and S-(2,4-dinitrophenyl) glutathione,
the anticancer drugs methotrexate and etoposide
[87,88] and even of monovalent bile salts[89]. MRP5
(ABCC5) appears to be an anion transporter,
however its expression level in the adult liver is very
low[90]. MRP6 (ABCC6) is localized at the lateral
membrane of hepatocytes and transports the cyclic
pentapeptide and endothelin antagonist BQ-123[91-

93]. Interestingly, mutations in the MRP6 gene have
been shown to be the cause of pseudoxanthoma
elasticum[94].

Canalicular transport systems
Bile  salt  excret ion Canal icular  excret ion
represents the rate-limiting step in the overall
secretion of bile salts from blood into bile. Whereas
bile salt concentrations within the hepatocyte are
in the micromolar range, canalicular bile salt
concentrations are more than 1000fold higher,
necessitating active transport across the canalicular
hepatocyte membrane. Characterization of ATP-
dependent taurocholate transport in canalicular
membrane vesicles indicated the presence of a
specific carrier system for monovalent bile salts[95,

96],  with an apparent Km for ATP-dependent
taurocholate transport of ~ 2-20 µM[95-98].
       The chief transport system that mediates the
canalicular excretion of monovalent bile salts is the
so-called “bile salt export pump” or Bsep (ABCB11),
first cloned from pig[99] and subsequently from rat
[100] and mouse liver[101,102]. Rat Bsep is a 1321 amino
acid protein with 12 putative membrane-spanning
domains, four potential -N-linked glycosylation sites,
a molecular mass of ~ 160 kDa and with the structural
features of the ABC-transporter superfamily[100]. The
amino acid sequence is more homologous with the
MDR family of transporters (~50%) than with MRPs.
In membrane vesicles from transfected Sf9 insect
cells, rat Bsep transports taurocholate with a Km of
~5 µM which is comparable to ATP-dependent
transport in canalicular rat liver plasma membrane
vesicles[100]. Bsep is expressed on the surface of
canalicular microvilli as indicated by electron
microscopic studies. In addition to taurocholate, rat
Bsep also mediates ATP-dependent transport of
glycocholate, taurochenodeoxycholate (Km ~ 2 µM)
and tauroursodeoxycholate (Km ~ 4 µM).
         The locus of the mouse Bsep gene on chromosome
2, band 2C1.3[101], corresponds to the locus of human
BSEP on chromosome 2q24[103]. This region has been
linked to the Lith1 gene near D2Mit56 that confers
genetic gallstone-susceptibility in the C57L/J mouse
strain[104-106]. These mice overexpress Bsep[107] and
exhibit relative hypersecretion of cholesterol into bile
with subsequent cholesterol supersaturation[108]. The
exact significance of overexpression of Bsep in these
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mice is unclear, since it has been shown that functional
ATP-dependent taurocholate transport activity in
canalicular membrane vesicles is approximately 3fold
lower compared to AKR/J gallstone-resistant mice,
despite 3fold higher protein levels[109]. The functional
decrease in canalicular bile salt excretion could be the
cause of increased gallstone susceptibility in C57L/J
mice.
        The human BSEP gene locus has been identified
as the positional candidate for progressive familial
intrahepatic cholestasis type 2 (PFIC2), a progressive
liver disease characterized by low biliary bile salt
concentrations[103]. In PFIC2, BSEP is absent from the
canalicular membrane and biliary bile salt concentrations
are less than 1% of normal[110].

Excretion of non-bile salt organic anions The
excretion of non-bile salt organic anions into bile is
mediated by the canalicular multidrug resistance protein
2, MRP2[111]. MRP2 (ABCC2) has a molecular mass
of 190 kD and the human protein exhibits 46% amino
acid identity to human MRP1. Both rat and human
MRP2 are expressed predominantly in the liver with
exclusive localization in the canalicular membrane
(Figure 1)[112-115]. The spectrum of organic anions
transported by MRP2 is qualitatively similar to that of
MRP1[84] and includes glutathione conjugates,
glucuronides, leukotriene C4 and divalent bile salts, but
not monovalent bile salts[114,116]. A role for MRP2 in
the canalicular excretion of reduced glutathione (GSH),
a major driving force for the maintenance of bile salt-
independent bile flow, has also been demonstrated[117].
Various structurally and functionally unrelated
xenobiotics such as probenecid, glibenclamide,
rifampicin, vinblastine, indomethacin and cyclosporin
A were shown to inhibit excretion of the anionic
fluorescent dye carboxy-2’,7’-dichlorofluorescein (CF)
by primary human hepatocytes, thus suggesting that
organic anion excretion by human liver may be impaired
by various drugs[118]. Mutations in the MRP2 gene that
lead to the synthesis of a truncated, non-functional
protein, have been identified as the pathogenetic basis
of hereditary chronic conjugated hyperbilirubinemia,
discussed further below.

Phospholipid excretion The major lipid that is
cosec re t ed  i n to  b i l e  w i th  cho l e s t e ro l  i s
phospha t idy l cho l ine  (PC) .  The  cons t an t
replenishment of PC molecules from the inner to
the outer hemileaflet of the canalicular membrane
is mediated by the concerted action of  ATP-
dependent[119] and ATP-independent[120-122] PC
“flippases”. The ATP-dependent flippase has been
identified as a class III multidrug resistance (MDR)
P-glycoprotein, Mdr2 in mice and MDR3 in humans
(ABCB4) (Figure 1)[123-125], a 170 kD canalicular
protein. Mouse Mdr2 and human MDR3 are present

in high concentrations in the canalicular membrane of
hepatocytes. Mice lacking this protein are unable to
secrete phosphatidylcholine (PC) into bile[123].
Conversely, in fibroblasts from transgenic mice
expressing the human MDR3 gene under a vimentin
promoter, the transfer of radiolabeled PC from the inner
to the outer leaflet of the plasma membrane is stimulated
[124]. In addition, expression of mouse Mdr2 in secretory
vesicles from the yeast mutant sec6-4, results in a time-
and temperature-dependent enhancement of PC
translocation to the inner leaflet of the membrane[126].
These data indicate that both mouse Mdr2 and human
MDR3 function as physiological phospholipid
translocators.

Copper excretion The liver is the central organ of
copper homeostasis with a great capacity to store and
excrete this metal. The degree of biliary copper
excretion is directly proportional to the size of the
hepatic copper pool, indicating that hepatocytes can
sense the copper status in the cytoplasm and regulate
copper excretion into bile accordingly[127]. The biliary
excretion of heavy metals such as copper is an
important detoxifying mechanism of the liver. Copper
excretion is mediated by a copper transporting P-type
ATPase called ATP7B that is expressed predominantly
in the liver[128-130] (Figure 1). This 160 kD protein is
localized to the trans-Golgi network[131] where it
mediates the incorporation of copper into
cuproenzymes such as ceruloplasmin. A truncated 140
kD isoform of ATP7B is localized to mitochondria[132],
possibly explaining the abnormalities of mitochondrial
morphology in Wilson’s disease. Immunohistochemical
studies in human liver indicate additional weak
staining of ATP7B at the canalicular membrane[133].
A green fluorescent GFP-ATP7B fusion construct
transfected into human hepatoma Huh7 cells localizes
neither to the trans-Golgi network nor to the
canalicular membrane, but to so-called late endosomes
[134]. Copper incorporated into late endosomes is
probably transported to lysosomes and subsequently
excreted into bile by a process known as biliary
lysosomal excretion[134].
       Copper is presumably taken up into human
hepatocytes via the copper transporters hCTR1 and
hCTR2[135]. As the copper concentration of the
hepatocyte increases, ATP7B redistributes from the
trans-Golgi network to a cytoplasmic vesicular
compartment[131] and to pericanalicular vacuoles[136]

(Figure 1). After copper depletion, ATP7B returns
to the trans-Golgi network. Thus copper can induce
trafficking of its own transporter from the trans-
Golgi network to the apical membrane, where it
may mediate biliary copper excretion. Copper-
induced redistribution of ATP7B may provide a
mechanism to preserve copper when it is scarce  and to
prevent copper toxicity when levels become too high.



ROLE OF HEPATOCELLULAR TRANSPORTERS IN LIVER

DISEASE
Hereditary defects of hepatocellular transporters
Progressive familial intrahepatic cholestasis
Progressive familial intrahepatic cholestasis (PFIC)
describes a group of autosomal-recessive disorders.
The onset is usually during the first months of life,
with severe and progressive intrahepatic cholestasis,
proceeding to cirrhosis by the second decade.
Diagnosis is based on the following criteria: 
progressive intrahepatic cholestasis and liver cell
failure, after the exclusion of other causes of liver
disease;  lack of bile duct pathology (intrahepatic
and extrahepatic);  a normal number of interlobular
bile ducts[137]. Other signs and symptoms include
pruritus, jaundice, hepatomegaly, wheezing and
nosebleeds, cough, fat-soluble vitamin deficiency,
cholelithiasis, short stature and delayed sexual
development[138].
        Three types of PFIC have been described[139]

(Table 1). PFIC type 1 (PFIC1, Byler’s disease) is
caused by a mutation in the coding sequence of the FIC1
gene (ATP8B1, chromosome 18q 21-22)[140], that is
expressed predominantly in liver and small intestine. The
FIC1 gene product is a P-type ATP-ase putatively
involved in the transport of phosphatidylserine and
phosphatidylethanolamine from the outer to the inner
leaflet of plasma cellular membranes[141]. Patients with
a defective FIC1 protein encounter bouts of jaundice
that later become permanent, severe pruritus, chronic
watery diarrhea, high serum bile salts, but normal γ-GT
and cholesterol levels in serum. Histologically, cholestasis
is found with progression to cirrhosis, but without ductular
proliferation.
        PFIC type 2 (PFIC2, Byler syndrome) is caused
by mutations in the BSEP gene (located on chromosome
2q24)[142] that lead to an absence of the bile salt export
pump from the canalicular hepatocyte membrane[110].
Defective canalicular bile salt excretion results in an
accumulation of bile salts within the hepatocyte and toxic
damage. PFIC2 resembles PFIC1 clinically,
biochemically and histologically, although the initial
presentation is more severe with permanent jaundice
from onset, and liver failure occurs more rapidly.
        PFIC type 3 (PFIC3) is caused by homozygous
mutations in the MDR3 gene[143], that lead to an
absence of the phospholipid export pump MDR3 from
the canalicular membrane and to an absence of the
major biliary phospholipid, phosphat-idylcholine, from
bile. This results in toxic bile salt induced injury of the
biliary epithelium. PFIC3 is characterized by elevated
serum γ-GT levels, ductular proliferation, and an
inflammatory infiltrate in the early stages which
progresses to biliary cirrhosis[143,144]. Mice with a
homozygous disruption of the Mdr2 gene (which
corresponds to MDR3 in man) represent an animal model of
PFIC3[123].  Overall, the analogy between the

murine knockout model and human cholestatic liver
disease indicates that the nonsuppurative cholangitis
observed in Mdr2/MDR3 deficiency is caused by the
high luminal concentration of free bile salts that are not
sequestered in mixed micelles in the absence of
phospholipids.
         The appearance of lipoprotein X in the plasma of
cholestatic mice has been attributed to the function of
Mdr2. Bile duct ligation in control mice induced a
dramatic increase in plasma cholesterol and phospholipid
concentrations, mainly as lipoprotein X[145]. In bile duct
ligated Mdr2 - / - mice, cholesterol and phospholipid
concentrations were also increased but plasma
fractionation revealed a complete absence of lipoprotein
X. Plasma levels of cholesterol and phospholipid during
cholestasis correlated very closely with the expression
level of Mdr2, indicating first that the shift of
hepatocellular lipid secretion from bile to plasma during
cholestasis depends upon the formation of lipoprotein X,
and second that the concentration of lipoprotein X is
modulated by the activity of Mdr2. Thus, the elevation
of serum cholesterol that is a common feature of
cholestasis in man, could also be dependent upon the
function of MDR3.
         Benign recurrent intrahepatic cholestasis (BRIC)
is also caused by a mutation in the FIC1 gene
(ATP8B1) (Table 1). It is characterized by recurrent
bouts of cholestasis in the adult, with symptom-free
intervals lasting from months to several years. Unlike
PFIC1, BRIC is not associated with progressive liver
damage. Serum bile salt concentrations are elevated
as the earliest markers of cholestasis. FIC1 is also
expressed in the small intestine, where it appears to
play a role in intestinal bile salt absorption. It is of
interest that in non-symptomatic BRIC patients, fecal
loss of bile salts due to intestinal malabsorption is
increased[146].

Dubin-Johnson syndrome The Dubin-Johnson
syndrome is an autosomal recessive disorder that is
caused by impaired biliary excretion of certain
cholephilic organic anions such conjugated bilirubin
(Table 1). It is characterized by conjugated
hyperbilirubinemia, increased urinary excretion of
coproporphyrin I, deposits of a black pigment in
centrolobular hepatocytes, and prolonged BSP
retention[147]. In contrast to PFIC, hepatic function is
preserved. The syndrome is produced by the absence
of MRP2 protein from the canalicular hepatocyte
membrane[148] due to mutations of the MRP2 gene
(ABCC2)[111,147,149]. Recently, the MRP2Delta(R,M)
mutation, which describes the deletion of Arg1392 and
Met1393, was shown to cause disturbed maturation
and trafficking of the protein from the ER to the Golgi
complex and impaired sorting of this glycoprotein to
the apical membrane[150]. Absent MRP2 function may be
compensated for by increased expression of MRP3
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at the basolateral hepatocyte membrane, as suggested
by immunofluorescence studies on liver sections from a
Dubin-Johnson patient[86].

Wilson’s disease Wilson’s disease is an autosomal
recessive disorder characterized by copper
accumulation in the liver, brain, kidney and cornea
secondary to inadequate biliary copper excretion.
Under physiologic circumstances, biliary excretion
represents the sole mechanism for copper excretion,
and thus affected individuals have progressive copper
accumulation in the liver. When the capacity for hepatic
storage is exceeded, cell death ensues with copper
release into the plasma, hemolysis, and tissue deposition
[127]. The age at onset ranges from 3 to 40 years, with
highly variable clinical manifestations. Hepatic
dysfunction is the most common initial presentation in
childhood, progressing from mild elevation of serum
transaminases in asymptomatic individuals to chronic
active hepatitis and cirrhosis. In some cases, severe
chronic liver disease or fulminant hepatic failure may
be the initial manifestations. The laboratory diagnosis
of Wilson’s disease is confirmed by decreased serum
ceruloplasmin, increased urinary copper content, and
elevated hepatic copper concentration.
       Wilson’s disease results from the absence or
dysfunction of the ATP7B gene product, a copper
t r anspo r t i ng  P - type  ATPase  encoded  on
chromosome 13. Molecular genetic analysis is
complex, as more than 100 unique mutations have
been identified and most individuals are compound
heterozygotes. A database of Wilson’s disease
mutations can be retrieved online at http://www.
medgen.med.ualberta.ca. Of these mutations, the
H1069Q mutation accounts for more than 40% of

the alleles in affected Northern European patients,
whereas the A778L mutation is observed in 30% of
alleles of Oriental patients[127]. Expression of the
H1069Q mutant in a copper transporter-deficient cell
line reveals that this mutation causes a defect in
protein folding that results in mislocalization to the ER
and rapid degradation[151]. The histidine residue at
amino acid position 1069 appears to be essential for
trafficking from the trans Golgi network in response
to copper[151] (Figure 1).

Acquired defects of hepatocellular transporters
Extrahepatic cholestasis Extrahepatic cholestasis is
produced by an obstruction of the hepatic or
common bile duct secondary to cholelithiasis,
neoplasms, or sclerosing cholangitis. A major risk
factor for hepatocellular injury during bile duct
obs t ruc t ion  i s  the  increased  in t race l lu la r
concentration of potentially toxic bile salts[152]. This
can be partly counteracted by the decrease in Ntcp
expression that occurs in bile duct ligated rats[25,

3 2 ] .  T h e  h u m a n  N T C P  m R N A  i s  a l s o
downregulated in cholestasis, as evidenced in 23
patients with a diagnosis of extrahepatic biliary
atresia[35]. At the canalicular pole, the expression
of the bile salt export pump, Bsep, is reduced to
50% of controls on the protein and to 32% on the
RNA level[153]. Bsep expression is thus preserved
relatively well compared to the marked decrease
in expression of the canalicular multispecific
organic anion transporter Mrp2[154]. The relative
preservation of Bsep expression during bile duct
ligation serves to maintain the canalicular efflux
of  b i l e  sa l t s  tha t  has  been  demons t ra ted
experimentally[155].

Figure 1 Hepatocellular transport proteins involved in bile salt, drug and organic substrate clearance by human liver.
Abbreviations: NTCP, Na+-taurocholate cotransporting polypeptide; OATPs, organic anion transporting polypeptides; OCTs, organic
cation transporters; OATs, organic anion transporters; ATP7B, Wilson ATPase; TGN, trans-Golgi network; MRP, multidrug resistance
protein; MDR, multidrug resistance gene product; BSEP, bile salt export pump; BS, bile salts; OA, organic anions; GS, glutathione.



Table 1 Role of hepatocellular transport proteins in the pathogenesis of liver disease

Species                   Transport protein Gene symbol Physiologic function Alteration in liver disease

Basolateral transport proteins

Rat/human Ntcp/NTCP     SLC10A1 Na+ dependent  bile salt uptake Decreased Ntcp expression in rat models of cholestasis[25,26,34]

Decreased NTCP expression in human cholestatic liver disease[35]

Rat Oatp1     Slc21a1 Multispecific uptake of organic anions Decreased Oatp1 expression in bile duct ligation[32] and in ethinyl

and amphipathic compounds estradiol induced cholestasis[34]

Oatp2     Slc21a5 Multispecific uptake of organic anions Not yet investigated

and of cardiac glycosides (digoxin)

Oatp4     Slc21a10 Multispecific uptake of organic anions Decreased Oatp4 expression in bile duct ligation and sepsis[59]

and amphipathic compounds

Human OATP-A     SLC21A3 Multispecific uptake of organic anions Increased mRNA levels in primary sclerosing cholangitis (PSC)[180]

and amphipathic compounds

OATP-B     SLC21A9 Multispecific uptake of organic anions Not yet investigated

and amphipathic compounds

OATP-C     SLC21A6 Multispecific uptake of organic anions Decreased mRNA levels in primary sclerosing cholangitis[181]

and amphipathic compounds Not yet investigated

OATP8     SLC21A8 Multispecific uptake of organic anions

and amphipathic compounds

Rat/human rOCT1/hOCT1     SLC22A1 Uptake of small hydrophilic organic Not yet investigated

cations (TEA, MPP, choline, dopamine)

Rat OAT2     SLC22A7 Uptake of glutarate, salicylates, Not yet investigated

methotrexate, PGE2 and PAH

Rat OAT3     SLC22A8 Uptake of PAH, estrone-3-sulfate, Not yet investigated

ochratoxin A, cimetidine

Rat/human Mrp1/MRP1     ABCC1 Efflux of cytotoxic cations and Increased expression in hepatoma cells[85] and sepsis[182]

non-bile salt organic anions

Rat/human Mrp3/MRP3     ABCC3 Efflux of organic anions, bile salts Increased Mrp3 expression in Eisai Hyperbilirubinemic Rats and

and anticancer agents in bile duct ligation[91]

Increased MRP3 expression in Dubin-Johnson syndrome and

primary biliary cirrhosis[86]

Rat/human Mrp6/MRP6 ABCC6 Efflux of BQ-123 Not yet investigated

Canalicular Transport Proteins

Mouse/rat/mBsep/Bsep/BSEP ABCB11 Canalicular efflux of bile salts Mutations in the BSEP gene and absence of the protein in patients

Human with PFIC2, characterized by low γ-GT levels and reduced biliary

bile acid excretion[103,110]

Cis-inhibition by cholestatic drugs such as cyclosporine A[172]

Trans-inhibition by the cholestatic estrogen metabolite estradiol-

17β−D-glucuronide[172,175]

Increased mBsep expression in C57L/J gallstone-susceptible

mice, despite reduced bile salt excretory capacity[107,109]

Mouse/rat/ Mdr2/Mdr2/MDR3  ABCB4 Biliary excretion of phospholipids Mdr2 -/- knockout mice exhibit an absence of phospholipids in bile

and develop progressive liver disease with portal inflammation,

bile duct proliferation and fibrosis[123]

PFIC3, characterized by high γ-GT levels and absent lipoprotein

X in serum, is caused by mutations in the MDR3 gene

(chromosome 7q21)[143]

MDR3 mutations in PFIC3 are associated with intrahepatic

cholestasis of pregnancy[171]

Rat/human Mrp2/MRP2 ABCC2 Canalicular excretion of organic anions Decreased Mrp2 mRNA and protein levels in bile duct ligation and

endotoxinemia[154,183]

Decreased canalicular density of Mrp2 transporter molecules in

endotoxinemia[183], taurolithocholate cholestasis[184]

and bile duct ligation[154]

Mutations in the rat Mrp2 gene cause hereditary conjugated

hyperbilirubinemia[112]

Mutations in the human MRP2 gene cause the Dubin-Johnson

syndrome with absent protein expression[147,149]

MRP2 function is inhibited by anabolic 17á-alkylated

steroids[185,186]

Decreased MRP2 mRNA but unchanged protein levels in PBC[187]

Decreased MRP2 mRNA levels in PSC[181]

Human FIC1 ATP8B1 Putative aminophospholipid P-type ATPase, positional candidate in genetic linkage analysis of

translocator PFIC1 (Byler’s disease) and BRIC[141]

Human AE2 SLC4A2 Canalicular Cl-/HCO3 
- exchange DecreasedAE2 expression on the luminal surface of cholangiocytes in

PBC (increased expression secondary to UDCA treatment)[188]

Abbreviations: Ntcp/NTCP, rat/human Na+-taurocholate cotransporting polypeptide; Oatp/OATP, rat/human organic anion
transporting polypeptide; rOCT1/hOCT1, rat/human organic cation transporter 1; OAT, organic anion transporter; Mrp/MRP, rat/
human multidrug resistance protein; mBsep/Bsep/BSEP, mouse/rat/human bile salt export pump; Mdr/MDR, rodent/human
multidrug resistance gene product; FIC1, familial intrahepatic cholestasis protein; AE2, anion exchanger 2; PSC, primary sclerosing
cholangitis; PFIC, progressive familial intrahepatic cholestasis; PBC, primary biliary cirrhosis; BRIC, benign recurrent intrahepatic cholestasis;
UDCA, ursodeoxycholic acid.
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        The molecular basis of reduced Ntcp expression
in cholestasis has not been resolved. The Ntcp gene
promoter appears to contain a response element for
the farnesoid X receptor (FXR), a nuclear receptor that
is responsive to bile salts[156-159]. This is suggested by
recent studies in FXR knockout mice, which are unable
to decrease Ntcp mRNA levels in response to bile acid
feeding[160]. Since intracellular bile salt levels are
elevated in bile duct ligation, decreased Ntcp expression
is probably caused by suppression of Ntcp transcription
via a cascade involving FXR. In the case of cholesterol
7á-hydroxylase (CYP7A1), the rate-limiting enzyme in
cholesterol catabolism to bile salts, repression of gene
transcription by bile salts has been extensively studied
(for review, see reference[161]). Elevated intracellular
bile salts activate FXR. This decreases levels of Ntcp
and increases those of Bsep[160]. FXR also induces
expression of the “short heterodimer partner” SHP, a
nuclear receptor that suppresses bile acid synthesis by
antagonizing the function of “liver receptor homolog-
1” or LRH-1, an orphan receptor required for
expression of CYP7A1[161]. Decreased expression of
rat Oatp1 in bile duct ligation may also be mediated by
FXR, since in FXR knockout mice bile acid feeding
induces expression of (mouse) Oatp1[160].  These
elaborate autoregulatory cascades ultimately serve to
maintain hepatic cholesterol catabolism, and coordinate
regulation of bile acid transporters and synthesizing
enzymes is likely.

Sepsis-associated cholestasis  Septic patients
frequently exhibit cholestasis, the primary clinical
manifestation of which is hyperbilirubinemia. In animal
models of sepsis, reduced hepatic clearance of bile
acids and organic anions is found[27,33,162]. The key
mediators of sepsis induced cholestasis are
inflammatory cytokines such as tumor necrosis factor
alpha (TNF-α) and interleukin-1β. These are liberated
in response to endotoxemic stimuli, which can be
induced experimentally by application of bacterial
lipopolysaccharide (LPS). Both Na+ dependent
basolateral and ATP-dependent canalicular bile salt
transport is reduced in hepatocyte plasma membrane
vesicles isolated from LPS treated rats[27,33]. Direct
administration of either LPS, TNF-α or interleukin-
1β causes a decrease in Ntcp mRNA levels[26]. The
decrease in Ntcp expression can be explained by
decreased binding activity of  the nuclear
transcription factor hepatocyte nuclear factor 1
(HNF1) and  a heterodimeric complex consisting
of the retinoic acid receptor (RARα) and the retinoid
x receptor (RXRα), to the Ntcp gene promoter[163,

164]. In the case of the human NTCP, dependence of
gene transcriptional activity upon the CCAAT/
enhancer binding protein, the α  form of which is
reduced in sepsis[165], has been shown[166].
       The reduction in bile flow that follows LPS

administration is caused primarily by an 86% decrease
in GSH secretion and a 25% decrease in HCO3 

- secretion
[167], two major driving forces of bile salt independent
bile flow. GSH is a substrate of Mrp2[117], the mRNA
and protein levels of which are also reduced following
treatment of rats with LPS[154]. The mechanism of
decreased Mrp2 expression appears to be similar to Ntcp,
since reduced binding of the RXRα:RARα complex to
the rat Mrp2 promoter secondary to IL-1β has been
shown[164].

Cholestasis of pregnancy  Intrahepatic cholestasis
of pregnancy (ICP) has a high prevalence in Sweden
and Chile and is characterized by pruritus and
biochemical cholestasis. It is the clinical correlate
of estrogen induced cholestasis. The familial
clustering, the higher prevalence among relatives of
patients with ICP and the susceptibility to oral
contraceptive-induced cholestasis in families with a
history of ICP implicates genetic factors in the
pathogenesis[168-170]. Mutations of the MDR3 gene
in women with PFIC type 3 seem to predispose to
ICP, although not all women with the mutation
develop cholestasis[143,171].
        The susceptibility to ethinyl estradiol in patients with
a history of ICP suggests a role for estrogen
metabolites in the pathogenesis. The cholestatic
estrogen metabolite estradiol-17β-D-glucuronide (E-
217G) has been shown to inhibit Bsep transport
function[172]. E-217G, which is an Mrp2 substrate[173],
probably trans-inhibits Bsep function from within the
canalicular lumen, since Mrp2-deficient rat strains that
are unable to secrete E-217G into the bile canaliculus
do not develop cholestasis[174]. A recent study has
confirmed that intact Mrp2 function is a prerequisite
for the development of Es217G induced cholestasis
[175]. The possible role of as yet unidentified genetic
polymorphisms of the BSEP gene in the development
of estrogen-induced cholestasis is currently under
investigation.

Drug-induced  cholestasis The liver is the major
site of drug metabolism and elimination from the
human body. The importance of drugs as hepatotoxins
lies not in the overall number of cases, which is
relatively small, but in the severity of some reactions
and in their potential reversibility provided the drug
etiology is promptly recognized. The most common
causative agents include NSAIDs, antibiotics, newer
antihypertensive agents, H2-receptor blockers and
psychotropic drugs. Drug induced hepatotoxicity can
be divided into the three categories cholestatic,
hepatocellular or mixed type injury, depending upon
serum biochemistry. Cholestasis with hepatitis is seen
with many drugs, notably chlorpromazine, psychotropic
agents, erythromycins, clavulanic acid and NSAIDs.  Pure
cholestasis without hepatitis is observed most



frequently with estrogens, oral contraceptive steroids and
17α-alkylated androgenic steroids and less frequently
with cyclosporine A, tamoxifen, griseofulvin,
glibenclamide and others. Steroid jaundice caused by
methyltestosterone and other C17-alkylated anabolic
steroids is dose-related but is also dependent upon the
individual susceptibility of the recipient. Whereas hepatic
dysfunction is seen in most recipients of steroids, jaundice
in seen in only few. A minor degree of hepatic dysfunction
in women taking oral contraceptives which contain C-
17 ethinyl estrogen and progesterone derivatives is
relatively frequent. As mentioned above, women with a
personal or family history of cholestatic jaundice of
pregnancy are particularly prone to develop jaundice
when taking oral contraceptives.
       The following alterations of hepatocellular
transporter function can be held responsible for the
development of drug induced cholestasis. Selective
interference of a drug or its metabolite with bile
secretory mechanisms has been shown for C17-
alkylated ethinylated steroids, the cholestatic bile acid
lithocholic acid, and experimentally for icterogenin. Cis-
inhibition of Bsep mediated [3H]-taurocholate transport
by cyclosporine A, rifamycin SV, rifampicin and
glibenclamide is the likely mechanism for itrahepatic
cholestasis caused by these agents[172]. Parenteral
administration of cyclosporin A in rats inhibits both bile
salt excretion and bile salt-independent bile flow,
resulting in cholestasis[176]. In addition, bile salt synthesis
decreases by about 50% and the total bile acid pool is
reduced in rats following orthotopic l iver
transplantation. Selective interference with the
sinusoidal -uptake of substances such as bilirubin and
bromosulphophthalein has been shown for the
tuberculostatic agents rifamycin SV and rifampicin.
Both are mainly eliminated by hepatic uptake,
metabolism and excretion into bile. Rifampicin increases
serum bile salt concentrations in 72% of patients after
the first dose[177], suggesting acute interference with
sinusoidal uptake of bile salts. In the Xenopus laevis-
oocyte expression system, rifampicin was shown to
inhibit Oatp2 but not Oatp1 mediated taurocholate
uptake. Both Oatp1 and Oatp2 were inhibited by 10
µmol/L rifamycin SV, whereas significantly higher
concentrations of rifamycin SV and rifampicin were
required to inhibit Ntcp[178].
          The nonsteroidal anti-inflammatory agent sulindac,
an established hepatotoxin, may also cause cholestasis
by interference with the canalicular excretion of bile
salts. Sulindac has been shown to follow the “cholehepatic
shunt” pathway and induce choleresis[179]. However,
when coinfused with taurocholate in the isolated
perfused rat liver, sulindac causes cholestasis by
reducing taurocholate secretion. Sulindac appears to
be secreted into the bile canaliculus in unconjugated form
via a canalicular bile salt export system and is passively
absorbed by the bile duct epithelium, thereby

inducing a bicarbonate-rich choleresis. Due to continuous
cycling within the cholehepatic shunt pathway, high local
concentrations of sulindac could be reached within the
hepatocyte that cause cholestasis by inhibition of
canalicular bile salt efflux[180-188].
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