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Abstract

AIM To evaluate the role of RARααααα  gene in mediating
the growth inhibitory effect of all-trans retinoic acid
(ATRA) on gastric cancer cells.

METHODS  The expression levels of retinoic acid
receptors (RARs) in gastric cancer cells were detected
by Northern blot.  Transient transfection and
chlorophenicol acetyl transferase (CAT) assay were used
to show the transcr iptional activity of βββββ retinoic acid
response element (βββββRARE) and AP-1 activity. Cell
growth inhibition was determined by MTT assay and
anchorage-independent growth assay, respectively.
Stable transfection was performed by the method of
Lipofectamine, and the cells were screened by G418.

RESULTS  ATRA could induce expression level of RARααααα
in MGC80-3, BGC-823 and SGC-7901 cells obviously,
resulting in growth inhibition of these cell lines. After
sense RARααααα gene was transfected into MKN-45 cells
that expressed rather low level of RARααααα  and could
not be induced by ATRA, the cell growth was in hibited
by ATRA markedly. In contrast, when antisense RARá
gene was transfected into BGC-823 cells, a little
inhibitory effect by ATRA was seen, compared with
the parallel BGC-823 cells. In transient transfection
assay, ATRA effectively induced transcriptional activity
of βββββRARE in MGC80-3, BGC-823, SGC-7902 and MKN/
RARααααα cell lines, but not in MKN-45 and BGC/aRARααααα
cell lines. Similar results were observed in measuring
anti-AP-1 activity by ATRA in these cancer cell lines.

CONCLUSION  ATRA inhibits the growth of gastric
cancer cells by up-regulating the level of RARααααα; RARααααα
is the major mediator of ATRA action in gastric cancer
cells; and adequate level of RARααααα is required for ATRA
effect on gastric cancer cells.
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INTRODUCTION
Retinoic acid (RA) exerts profound effects on the growth,
differentiation and apoptosis of normal, premalignant and
malignant epithelial cells in vivo and in vitro[1-7]. The effects of
retinoic acid are mainly mediated by two classes of nuclear
receptors, retinoic acid receptors (RARs) and retinoid X
receptors (RXRs)[8-13], which belong to steroid/thyroid receptor
superfamily, and are encoded by three distinct genes, α, β and
γ. RXRs form homodimers (RXR/RXR) and heterodimers (RAR/
RXR) with RARs receptively, then bind to specific RA response
elements (RARE), and regulate positively and negatively their
transcriptional activities of target genes[9,13-17]. These receptors,
thus, display distinct patterns and exert specific functions on
anti-cancer effects in various cancer cell lines.
       There have been sufficient evidences showing a link between
the alteration of RARs activity and some diseases[18-22]. t
(15;17) chromosomal translocation leads to the forming of PML-
RARα fusion and abnormal RARα transcription in acute
promyelocytic leukemia[23-26] . High frequency of the deletion
next to RARα gene in chromosome 3P is observed in human
lung cancer. Lack of RARα expression is responsible for the
resistance of RA in breast cancer cells[1,20,21,27- 29]. Investigation
the functions of retinoic acid receptors, therefore, is essential
to elucidate their anticancer effects of RA. In the present study,
we evaluate the role of RARα gene in mediating the effect of
all-trans retinoic acid (ATRA) in gastric cancer cells. The results
indicated that RARá is required for ATRA to exert its growth
inhibition on gastric cancer cells.

MATERIALS AND METHODS
Cell lines and culture conditions
The human gastric cancer cell lines, BGC-823, SGC-7901 and
MKN-45, were purchased from Institute of Cell Biology,
Shanghai, China. MGC80-3 cell line was established by Cancer
Research Center in Xiamen University. All of four cell lines
were maintained in RPMI1640 medium, supplemented with
100 mL·L-1 FCS, 1 mmol·L-1 glutamine, and 100×103 U·L-1

penicillin.

RNA preparation and Northern blot
Total RNA was prepared by guanidine hydrochloride/
ultracentrifugation method. About 30 µg total RNA was
fractionated on 10 g·L-1 agarose, then transferred to nylon, and
probed with 32P-labeled probe as previously described[30].
The probes of RARα, RARβ, RARγ and RXRα were provided



by Dr. Zhang (The Burnham Institute, CA, USA). 28S and 18S
were shown in quantitation of RNA.

Transient transfection and CAT assay
Cells were seeded in six-well plates with approximately 70%
confluent at the time of transfection. Cells were transient
transfected by LipofectamineTM (Gibco/BRL). Transient
transfection was performed utilizing βRARE-tk-CAT reporter
gene plasmid, containing the βRARE linked with tk-CAT
promoter[29], or -73col-tk-CAT receptor gene plasmid, containing
an AP-1 binding site located between residues -73 and -63 in
collagenase promoter[31,32]. Transfection condition was as
follows: 6 µL LipofectamineTM in 1.0 mL standard medium was
added to each well, togelher with 1.0 mL of standard medium
containing 400 ng reporter gene plasmid, 400 ng β-galactosidase
expression vector (pCH110, Pharmacia), and carrier DNA
(pBluescript) added up to 1000 ng total DNA. CAT activity was
normalized for transfection efficiency to the corresponding β-
galactosidase activity as described elsewhere[1,30-32].

Stable transfection
Sense RARα- and antisense RARα  expression vectors
(provided by Dr. Zhang) were stably transfected into gastric
cancer cells, MKN-45 and BGC-823, respectively, by
LipofectamineTM (Gibco/BRL) as described above, and then
screened with 600 µg of G418. Expression of endogenous RARá
was determined by Northern blot.

MTT assay
Cells were seeded at 1000 cells per well in 96-well plates, and
treated with ATRA (Sigma) at various concentrations. Medium
was changed and ATRA was added every other day. After
treatment for one week, cells were stained with 3-[4,5-
Dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT,
Sigma) for 3 h-4 h. Cell viability was determined by the MTT
assay[1,30,32]. An underlayer of 5 g·L-1 agar in medium
supplemented with 100 mL ·L-1 FCS was first prepared and
hardened in 6-well plate. Cells 1×108 ·L-1, in culture medium
containing 100 mL·L-1 FCS, 5 g·L-1 agar, and 10-6 mol·L-1 ATRA
(only for experimental groups), were seeded onto the
underlayer. The plate was incubated for three weeks in CO2

incubator. Number of colonies with diameter >80 µm was
counted under microscope[5].

RESULTS
Expressions of RARααααα , RARβββββ, RARγγγγγ and RXRααααα  in gastric
cancer cells
Northern blot analysis showed that the level of RARα
expression was high in MGC80-3, BGC-823 and SGC-7901 cells,
while rather low level in MKN-45 cells. After treated with ATRA,
MGC80-3, BGC-823, and SGC-7901, cells exhibited a marked
increase in RARα expression, whereas MKN-45 cells had no
change in RARα expression. RARβ expressed in MGC80-3,
BGC-823, and SGC7901 cells, but not in MKN-45 cells. As for
RARγ, none of the four cell lines expressed RARγ (data not
shown). All cell lines showed a relatively low-level expression
of RXRα. However, the expressions of RARβ, RARγ and
RXRα could not be induced by ATRA in these four cell lines
(Figure 1).

Figure 1   Expressions of RARα, RARβ and RXRα in gastric cancer cell
lines detected by Northern blot. Cells were treated with 10 -6mol·L-1

ATRA.

Transfection and expression of RARααααα gene in gastric cancer
cells
Based on these results mentioned above, we transfected
antisense RARα gene and sense RARα gene into BGC-823
and MKN-45 cells, respectively. It was demonstrated by
Northern blot that when antisense RARα gene was transfected
into BGC-823 cells, RARα expression was repressed, and could
not be induced by ATRA, compared with parallel cells BGC-823
(Figure 2A). On the contrary, MKN/RARα cells that transfected
with sense RARα gene had a higher expression of RARα than
parallel MKN-45 cells, and the expression of RARα could be
induced by ATRA (Figure 2B).

Figure 2 A. Expression of RARα  mRNA in BGC-823 cells trans-
fected with antisense RARα gene. B. Expression of RARα mRNA in
MKN-45 cells transfected with sense RARα gene.

Effect of ATRA on the growth inhibition of gastric cancer
cells
ATRA could effectively inhibit the growth of MGC80-3,
BGC-823 and SGC-7901 cells, but had a rather weak effect
on MKN-45 cells (Figure 3A). As for the transfected cells,
BGC/aRARα, the inhibition rate by ATRA dropped obviously
from 61.0% to 18.4%. The opposite result was seen in another
transfected cell, MKN/RARα, in which ATRA could effectively
suppress the growth of MKN/RARα cells, with an enhanced
inhibition rate from 3.9% to 31.7% (Figure 3B).
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Figure 3A  Growth inhibitory effect of ATRA on gastric cancer cell
lines measured by the method of MTT. Cells were treated with
various concentrations of ATRA indicated.

Figure 3B  Growth inhibitory effect of ATRA on BGC-823 cells
transfected with antisense RARα  gene and on MKN-45 cells trans-
fected with sense RARα  gene, respectively.

Effect of ATRA on cell clone formation in soft agar
ATRA could inhibit the ability of clone formation in four cell
lines and the inhibition for MKN-45 cells was lowest among
four cell lines (Table 1). In contrast, in the transfected cells, the
highest inhibition on MKN/RARα cells transfected with sense
RARα gene was observed, compared with BGC/aRARα cells
transfected with antisense RARα gene (Table 1).

Table 1  Inhibitory rate of clone formation of cells treated with 10-6

mol·L-1 ATRA in soft agar

Cell lines           MGC BGC SGC MKN MKN/  BGC/
RARα aRARα

Inhibitory rate (%)        48.8b 45.2b 65.3b 14.3b 56.1b 15.2b

bP<0.01, vs control.

Regulation of ATRA on αααααRARE transcriptional activity
When transient transfection was performed with reporter gene,
βRARE-tk-CAT, MGC80-3, BGC-823 and SGC-7901 cells
exhibited a stronger induction of CAT activity by ATRA than
MKN-45 cells, with an increased induction (CAT activity
induced by ATRA deletes CAT activity in control) by 3.67,
3.44 and 2.25 fold, respectively, compared with that of MKN-
45 cells by 1.04 (Figure 4A). However, ATRA could not
significantly induce CAT activity in BGC/aRARα cells, and
the induction was 1.76 fold, compared with 3.40 fold in
MKN/RARα cells whose CAT activity was induced by ATRA

obviously (Figure 4B).

Inhibitory effect of ATRA on AP-1 activity
AP-1 (activator protein-1) activity is associated with
proliferation and trans fomation of tumor cells, and can be
induced by some agents for mitogen, such as TPA (12-O-
tetradecanoylphorbol-13-acetate)[31-33]. Detection of AP-1
activity by transient transfection and CAT assay was carried
out in gastric cancer cells. As shown in Figure 5, the AP-1
activity (CAT activity) induced by TPA was suppressed by
ATRA in MGC80-3, BGC-823 and SGC-7901 cells, with an
ATRA-dose dependent manner. However, the suppressive
effect of ATRA could not be observed in MKN-45 cells
(Figure 5A). In the transfected cells, ATRA treatment resulted
in a decrease of AP-1 activity induced by TPA in MKN/RARα
cells transfected with sense RARα gene, but with a little effect
in BGC/aRARα cells transfected with antisense RARα gene
(Figure 5B).

Figure 4A  Regulation of ATRA on βRARE transcriptional activity
in gastric cancer cell lines detected by CAT assay.

Figure 4B  Regulation of ATRA on βRARE transcriptional activity
in BGC-823 cells transfected with antisense RARα gene and in MKN-
45 cells transfected with sense RARα gene, respectively.
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Figure 5A  Inhibitory effect of ATRA on AP-1 activity in gastric
cancer cell lines at various concentrations of ATRA shown by CAT
assay.

Figure 5B  Effect of ATRA on AP-1 activity in BGC-823 cells trans-
fected with antisense RARα gene and in MKN-45 cells transfected
with sense RARα  gene, respectively.

DISCUSSION
Retinoicacid (RA) is known to inhibit the growth of cancer
cells in vitro, including cells of breast cancer, lung cancer,
gastric cancer and liver cancer[1,15,30,34-36]. Effects of retinoic
acid are mediate d by its receptors RARs and RXRs[8-13]. In
the present study, we demons trated that the molecular
mechanism by which RA inhibited the growth of gastric
cancer cells was involved in RARα -mediated signal

transduction pathway. Although ATRA did not show any
inhibitory effects on MKN-45 cells (Figure 3A, Table 1), the
expression of exogenously transfected sense RARα gene at
elevated level in MKN-45 cells resulted in acquisition of
sensitivity to growth inhibition by ATRA (Figures 2B, 3B,
Table 1). In contrast, exogenous transfection of antisense RARα
gene into BGC-823 cells, which expressed RARα, and RARα
could be induced by ATRA (Figure 1, 2A), failed in growth
inhibition by ATRA (Figure 3B, Table 1). These data suggested
that the growth inhibitory effect of ATRA is due to the presence
of RARα. In addition, we noted that although RARα mRNA
was detected in MKN-45 cells, its mRNA level was rather low,
compared with that in MGC80-3, BGC-823 and SGC-7901 cells
(Figure 1). This may be the reason why ATRA could not exert
its anti-proliferation effect on MKN-45 cells. RARα, thus, plays a
major role in mediating growth inhibition of ATRA on gastric cancer
cells, and adequate level of RARα is required for such action.
     AP-1 is a transcriptional factor mainly composed of the
products of cJun and cFos[31,37,38], which relate with proliferation
and transformation of tumor cells. Our observation that ATRA
could effectively inhibit AP-1 activity induced by TPA in
MGC80-3, BGC-823 and SGC-7901 cells, but not in MKN-45
cells (Figure 5A) indicated that the suppression of AP-1 activity
might contribute to cell growth inhibition by ATRA in gastric
cancer cells. The anti-AP-1 effect of ATRA was mediated by
the activation of RARα. When transfecting sense RARα gene
into MKN-45 cells, a clear inhibition of AP-1 activity was seen
(Figure 5B), thus leading to growth inhibition of MKN-45
cells (Figure 3B, Table 1). However, a little effect by ATRA in
BGC/ aRARα cells observed in this study (Figure 5B) was
associated with a weakened inhibition in BGC/aRARα cell
proliferation (Figure 3B, Table 1). Thus, anti-AP-1 activity is
one of the mechanisms for ATRA to inhibit growth of gastric
cancer cells, and RARα does play a critical role.
      RARα, once activated by RA, forms a heterodimer with
RXR, then bind to retinoic acid response element (such as
βRARE), and regulates transcription and expression of target
genes[13-17]. In acute promyelocytic leukemia cells and RA-
resistant breast cancer cells, RA could up-regulate the
expression of RARα via modulation of RARE motif located in
RARα promoter[39-41]. The fact that when the reporter gene
βRARE-tk-CAT was transfected into MGC80-3, BGC-823 and
SGC-7901 cells, a marked increase in βRARE transcriptional
activity induced by ATRA was observed (Figure 4A) suggested
that RARs are functional in these cell lines, i.e., to activate
βRARE transcriptional activity in the presence of ATRA, and
then to stimulate cell growth inhibitory signals to repress the
growth of cancer cells. However, when the same reporter gene
was transfected into MKN-54 cells, the âRARE transcriptional
activity induced by ATRA was relatively low (Figure 4A),
indicating the abnormality of βRARE transcriptional regulation
or functional loss of RARα in MKN-45 cells, which caused the
failure of growth inhibition of MKN-45 cells by ATRA. The
similar results were further confirmed by transient transfection
assay in transfected gene cell lines, BGC/aRARα and MKN/
RARα, respectively (Figure 4B). All these data are consistent
with those observed in breast cancer cells and lung cancer
cells[1,42], and imply that low-level expression of retinoic acid
receptors in cancer cells is closely associated with the
development of malignant tumor. RARα might serve as a
candidate marker to determine which gastric cancer patient
would respond to and benefit from the retinoid therapy, and
this is also useful for the synthesis of RARα-selective retinoids.
Of course, some further experiments to verify this issue are
needed.
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