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Abstract

AIM:  To study the influence of inducers of drug
metabolism enzyme, βββββ-naphthoflavone (BNF) and
dexamethasone (DEX), on the stereoselective metabolism
of propafenone in the rat hepatic microsomes.

METHODS: Phase I metabolism of propafenone was
studied using the microsomes induced by BNF and DEX
and the non-induced microsome was used as the control.
The enzymatic kinetics parameters of propafenone
enantiomers were calculated by regress analysis of Eadie-
Hofstee Plots. Propafenone enantiomer concentrations
were assayed by a chiral HPLC.

RESULTS:  The metabolite of propafenone, N-
desalkylpropafenone, was found after incubation of
propafenone with the rat hepatic microsomes induced
by BNF and DEX.  In  these two groups,  the
stereoselectivity favoring R(-) isomer was observed in
metabolism at low substrate concentrations of racemic
propafenone, but lost the stereoselectivity at high
substrate concentrations. However, in control group,
no stereoselectivity was observed. The enzyme kinetic
parameters were: Km. Control group: R(-) 83±6, S
(+) 94±7; BNF group: R(-) 105±6, S(+)128±14; DEX
group: R(-) 86±11, S(+) 118±16;  υυυυυmax. Control
group: R(-) 0.75±0.16, S(+) 0.72±0.07; BNF group: R
(-)1.04±0.15, S (+)1.0 7±14; DEX group: R(-) 0.93±
0.06, S(+) 1.04±0.09;  Clint. Control group: R(-) 8.9±
1.1, S(+) 7.6±0.7; BNF group: R(-)9.9±0.9, S(+)8.3±
0.7; DEX group: R(-) 10.9±0.8, S(+) 8.9±0.9. The
enantiomeric differences in Km and Cl int were both
significant, but not in υυυυυmax, in BNF and DEX group.
Whereas enanti omeric differences in three parameters
were all insignificant in control group. Furthermore, Km
and υυυυυmax were both significantly less than those in BNF
or DEX group. In the rat liver microsome in duced by
DEX, nimodipine (NDP) decreased the stereoselectivity
in propafenone metabolism at low substrate
concentration. The inhibition of NDP on the metabolism
of propafenone was stereo selective with R(-)-isomer
being impaired more than S(+)-isomer. The inhibition
constant (Ki) of S(+)- and R(-)-propafenone, calculated
from Dixon plots, was 15.4 and 8.6 mg·L-1, respectively.

CONCLUSION:  CYP1A subfamily (induced by BNF) and

CYP3A4 ( induced by DEX) have pronounced
contribution to propafenone N-desalkylation which
exhibited stereose lectivity depending on substrate
concentration. The molecular base for this phenomenon
is the stereo selectivity in affinity of substrate to the
enzyme activity centers instead of at the catalyzing
sites.
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INTRODUCTION
Propafenone, is a widely used antiarrhythmic agent administered as
the racemic mixture of R(-) and S(+) enantiomers. The two enantiomers
are equipotent in terms of sodium channel-blocking activity, but the
main side effect, ie., β-adrenoreceptor-blocking action resides in the S
(+)-isomer[1], and, therefore, information on stereoselective disposition
of the racemate is of clinical relevance.
       The main metabolic pathways of propafenone in vivo and in vitro
involve CYP1A2 and CYP3A4 mediated N-desalkylation, CYP2D6
mediated 5-hydro xylation and UDPGT mediated glucuronidation[2-6].
N-desalkylpropafenone has the same electrophysi ological potency
as 5-hydroxypropafenone and propafenone, and the plasma
concentrations of N-desalkyl propafenone are similar to those of 5-
hydroxypropafenone during chronic administration in human,
therefore, N-desalkylpropafenone contributes to the antiarrhythmic
effects of propafenone, especially in patients with poor metabolizer
phenotype of CYP2D6[7-8]. Although stereoselectivities in 5-
hydroxylation and glucuronidation in vitro have been reported[9-11],
whether N-desalkylation exhibits stereoselectivity has not been
addressed. Meanwhile, rat liver microsomes pretreated by specific
inducers provide sound models to study metabolism in vitro[12-16].
Considering that β-nap hthoflavone (BNF) was a typical inducer of
CYP1A subfamily and dexamethasone (DEX) was a typical inducer
of CYP3A4[17-21], this experiment studied the stereoselective
propafenone N-desalkylation in rat hepatic microsomes induced by
BNF and DEX.

Material AND METHODS
Chemicals and solutions
Dexamethasone (DEX), β-naphthoflavone (BNF), 7-ethoxyresorufin
(ER), triacety loleandomycin (TAO), NADPH, 2,3,4,6-tetra-O-acetyl-
β-D-glucopyranosyl isothiocynate (GITC), (R,S)-propafenone, R(-)
and S(+)-propafenone were supplied by Sigma Chemical Co (St. Louis,
MO, US A). N-desalkylpropafenone was a generous gift from Prof.
Tang YN (Xinhua Hospital, Shanghai). All other chemicals were
obtained from the common commercial sources. Stock buffer (pH7.4):
1 mol·L-1 pH7.4 Tris-HCl buffer 25 mL, 1 mol·L-1 KCl 75 mL and
1 mol·L-1 MgCl2 5 mL were mixed and diluted with water to 500 mL.
NADPH solution: dissolve NADPH in ice-cold 10 g·L-1 NaH CO3



solution to the desired concentration of 25 mmol·L-1. The solution
should be freshly prepared just before the incubation.

Preparation of hepatic microsomes
Sprague-Dawley rats (male, 170-210 g) were divided into three groups.
One group received three daily intraperitoned injection of 80 mg·kg-1

BNF (dissolved in oil); the second group received three daily DEX
(132 mg·kg-1·d-1, ig) and the third group was used as the non-treated
control. About 24 h after the last treatment and with no food supplied
for 16 h before taking the livers, the rats were sacrificed by decapitation.
Liver samples were excised and perfused by the ice-cold physiological
saline to remove blood and homogenized in ice-cold Tris buffer. Hepatic
microsomes were prepared with the ultracentrifugation methods[22,23].
All manipulations were carried out in cold bath. Pellets were re-
suspended in sucrose-Tris buffer (pH 7.4)(95:5, mass to volume ratio)
and immediately stored at -30 . Protein and cy tochrome P450
contents were estimated according to the methods of Zeng et al[24]and
Omura et al[25],respectively. Enzymatic activity of CYP1A was
measured according to the method of Klotz et al[26], and expressed as
initial velocity of O-deethylation of 7-ethoxyresorufin (activity of
EROD). Enzymatic activity of CYP3A4 was determined according to
the method of Wrighton et al[27], and expressed as the extent of P450-
MI complex (absorbance difference per gram of protein between 456
nm and 510 nm) using triacetyloleandomycin as substrate. Incubation
of propafenone with rat hepatic microsomes The incubation mixture
contained microsomal protein (1.6 g·L-1), stock buffer (pH 7.4) bubbled
with oxygen for 1 min and racemic propafenone as substrate. After 5
min preincubation, reaction was started by adding 10 µL NADPH
solution. The final volume was 250 µL. For kinetic experiments,
racemic propafenone was used at concentrations of 10, 20, 40, 80,
160, and 320 mg·L-1 and the incubation time was 30 min. For the time
dependent experiments, the substrate concentration used was 10 mg·L-1.
For inhibition experiments, nimodipine was used as inhibitors (at 0, 8,
16, 32 mg·L-1) and incubated simultaneously with racemic propafenone
(50, 100 mg·L-1). After the indicated time, the reaction was terminated
by adding 750 µL chlorform. The mixture was votexed for 3 min, then
centrifuged at 2 000 g for 10 min. The organic layer was transferred to
a clean tube and evaporated to dryness under a gentle stream of air.

GITC solution (in acetonitrile) and methanol containing 14 g·L-1

triethamine were added and the tube was capped and allowed to react
for 30 min a t 35 . After evaporation of organic solvents, the residues
were reconstutited with 100 µL methanol, and 20 µL was injected
into HPLC system.

HPLC procedure for determining propafenone enantiomer in
the rat hepatic incubates
Enantiomers of propafenone were quantitated with an HPLC system
with UV detection (λ = 254 nm)[28]. A 5-ìm reverse phase column
(Shimpack CLC- ODS 15 cm×4.6 mm) was used with a flow rate of
0.8 mL/min. The mobile phase was a mixture of methanol -water-
glacial acetic acid (67:33:0.05).

Statistical analysis
The maximum velocity (υmax) and Michaelis-Menten constant (Km)
values for propafenone enantiomer were determi ned by regress analysis
of Edie-Hofstee plots. The x±s of three determinations of υmax and Km

was calculated for each substrate and metabolic reaction. Intrinsic
clearance was calculated by the ratio of υmax/Km. All statistical
difference was tested by unpaired t test.

RESULTS
A baseline separation between the diastereomers of S(+) and R(-)-
propafenone was achieved, with the retention time being 23 min and
28 min, respectively. The HPLC system also allowed monitoring the
formation of N-desalkylpropafenone. The retention time was 8 min
and 10 min for diastereomer of N-desalkylpropafenone, respectively.
The amount of diastereomers of N-desalkylpropafenone were
increasing while those of propafenone were decreasing during 30 min
incubation with the rat hepatic microsomes induced by DEX and
BNF. Typical chromatograms were showed in Figure 1. Quantitation
was performed by external standardization. Calibration curves were
linear at a range of 0.5 to 320 mg·L-1 for each enantiomer of
propapfenone. The LOQ was 0.5 mg·L-1 (S/N = 10, n = 5) for each
enantiomer. The inter-assay and intra-assay variability averaged 8.5%
for both enantiomers. The method recovery averaged 77.1% for both
enantiomers.
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Figure 1  Chiral high performance liquid chromatogram of racemic propafenone in rat liver microsomal incubates after 30 min incubation. A:BNF pre-
treated B:without incubation.

Peaks 1,2: Diastereomers of S(+)-propafenone and R(-)-propafenone; Peaks 3,4: Dia stereomers of metabolite (N-desalkylpropafenone)



Induction of rat hepatic metabolizingenzymes
In DEX group, the extent of P450-MI complex (an indicator of activity
of CYP3A4) was significantly more than the control or BNF group
(P<0.001, Table 1). In BNF group, the initial velocity of deethylation
of 7-ethoxyresorufin (an indicator of activity of CY P1A) was
significantly more than in the control or DEX group (about 20-fold,
P<0.001). Therefore, CYP1A subfamily was successful inducted by
BNF and CYP3A4 by DEX, which provided sound enzymatic sources
for getting information on CYP1A and CYP3A4 mediated N-
desalkylation of propafenone.

Table 1    The amount and activity of P450 in rat liver microsomes
    (x±s, n = 3)

Pretreat P450 in pro Extent of P450-MI      Activity of EROD
/µmol·g-1     complex A         /µmol·min-1µg-1

Control 0.95±0.15          0.5±0.2 0.22±0.04
BNF 1.42±0.21          2.2±0.4 3.87±0.20b

Dex 1.11±0.17                   18.3±3.6a 0.18±0.02

aP<0.01,vs BNF or control, bP<0.01,vs Dex or control.

Impact of substrate concentration on stereoselective
metabolism of propafenone
At 10 mg·L-1 concentration of racemic propafenone, stereoselectivity
was observed in DEX and BNF group, but not in control group (Table
2). The depletion of R(-)-isomer was faster than that of S(+)-isomer.

However, with the substrate concentration increasing, S/R ratios of
prop afenone were not altered in control group (P>0.05), but in
DEX and BNF group S/R ratios were decreasing from 1.18 to 1.00 (P
<0.01), and 1.10 to 1.00 (P<0 .01), respectively.

Table 2    Ratio of S(+)/R(-) propafenone at different concentrations in rat
liver microsomal incubates (x±s, n = 3)

Enantiomer        Pretreat
   / mg·L-1

   Control            Dex       BNF

        5                1.016±0.016              1.177±0.062a,b 1.104±0.019a,b

      10 1.029±0.012       1.103±0.057 1.069±0.015
      20 0.995±0.016       1.088±0.018 1.053±0.002
      40 0.974±0.026       1.057±0.030 1.043±0.000
      80 0.978±0.024       1.019±0.017 1.027±0.005
    160 0.988±0.012       1.003±0.019 1.005±0.005

a P<0.01, vs control; bP<0.01,vs 160 mg·L-1.

Concentration-time curves and ratio of S(+)/R(-) propafenone
concentration
The ratio of S/R was in unity in control group from the incubation
time of 0 to 30 min, whereas in DEX or BNF group, the ratio of S/R
increased and was significantly different with the corresponding ratio
in control group at 8 and 30 min (P<0.01, 0.05, Table 3). Moreover,
the ratio of S/R in DEX group at incubation time of 30 min was
significantly higher than that in BNF.
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Table 3   Ratio of S(+)/R(-) propafenone concentration in rat liver microsomal incubates (x±s, n = 3)

 t (incubation)/min
Group

   0     3    8        20         30 (min)

Control 1.000         1.017±0.010         0.997±0.016 1.006±0.012       1.016±0.016
Dex 1.000         1.007±0.003         1.044±0.011d 1.076±0.019       1.170±0.050a,b,c

BNF 1.000         1.005±0.002         1.031±0.012d 1.068±0.023       1.094±0.017a,c

aP<0.01, vs 8 min; bP<0.05, vs BNF group; cP<0.01, dP<0.05, vs control.

Figure 2   Concentration-time curves for S(+)- and R(-)-propa fenone metabolism in rat hepatic microsomes. A: Control; B: BNF; C: DEX.

Enzymatic kinetic parameters for propafenone metabolism in
hepatic microsomes
Depletion of propafenone could be described by Michaelic-Menten
kinetics. Km had no statistical difference between the two enantiomers

in control microsomes, whereas the enantiomeric difference in Km was
significant in the microsomes induced with DEX or BNF (S>R, P<
0.05, Table 4). There was signific ant difference for Clint between the
two enantiomers (S<R, P<0.05, Table 4) in DEX or BNF group,
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but not in control group. The Km of S(+)-isomer in DEX, or S(+)- or
R(-)-isomer in BNF group was significantly higher than the
corresponding enantiomer in control group (P<0.05, 0.01, Table 4).
The υmax of S(+)-isomer in DEX group, or S(+)- or R(-)-isomer in
BNF group, was significantly higher than the corresponding
enantiomers in the control group (P<0.05, 0.01, Table 4). Difference
for Clint between the two enantiomers in DEX or BNF group and the
corresponding enantiomer in control group was insignificant. Moreover,
the Km of R(-)-propafenone in DEX group was significantly lower
than that in BNF group (P <0.05, Table 4).

Table 4  Enzymatic parameters in propafenone enantiomer metabolism in vitro
    (x±s, n = 3)

Pretreat  Enantiomer     Km     υmax                Clint in prot
         /µmol·L-1             /µmol·g-1·min-1             /Lµmin-1·g-1

Control       S(+)          94±7 0.72±0.07       7.6±0.7
      R(-)          83±6 0.75±0.16       8.9±1.1

Dex       S(+)        118±16a,b 1.04±0.09c       8.9±0.9a

      R(-)          86±11d 0.93±0.06                10.9±0.8b

BNF       S(+)        128±14a,c 1.07±0.20 b       8.3±0.7a

      R(-)        105±6c 1.04±0.15b       9.9±0.9

aP<0.05, vs R(-)-propafenone; bP<0.05, cP<0.01, vs corresponding enanti-
omer in control; dP<0.05, vs R(-)-isomer in BNF.

Stereoselective inhibition of propafenone metabolism by
nimodipine
Ki for S(+)- and R(-)-propafenone was 15.4 and 8.6 mg·L-1,
respectively, which suggested that nimodipine (specific substrate of
C YP3A4) inhibited metabolism of propafenone enantiomer
stereoselectively (Figure 3). With nimodipine amount increasing, the
depletion of propafenone enantiomers and the S/R ratio of the remaining
amount o f propafenone enantiomer were decreasing (Table 5).

Figure 3   Dixon plot for S(+)-propafenone (Left) and R(-)-pro pa fenone
(Right) wit nimodipine as inhibitor at three concentration. Ki for S(+)-and
R(-)-PPF was 15.4, 8 mg·L-1, respectively. Each data point represents the
mean of duplicate determinations.

Table 5    The stereoselective effects of nimodipine on metabolic depletion
of propafenone     (x±s, n = 3)

Group       Nimodipine     S(+)-propafenone  R(-)-propafenone       S/R
        /mg·L-1                /mg·L-1

DEX 0         2.10±0.04 1.75±0.14a 1.20
DEX 8         2.32±0.26 2.10±0.21b 1.1
0DEX               16         3.81±0.11c 3.62±0.13c 1.0
6DEX               32         4.30±0.13c 4.17±0.26c 1.03

aP<0.01,vs S(+)-propafenone in DEX without nimodipine; bP<0.05, cP<
0.001, vs the corresponding enantiomer in DEX without nimodipine.

DISSCUSSION
Due to the capabilities of highly efficient separation and sensitive
determination of enantiomers in microsome incubates, chiral
chromatography is extremely valuable to study stereoselectivity of
racemate met abolism[29-34]. So far as we are aware, we took the lead in
acquiring the information on stereoc hemistry of propafenone
metabolism by chiral HPLC method.
       Previously, we observed that the glucuronidation of propranolol
in rat hepatic microsome has stereoselectivity of S(-)-propranolol,
and   that   the   induction   of   phenobarbital   reduced   this
stereoselectivity[35]. The phase I metabolic stereoselectivity of
propranolol was reversed by the induction of BNF and increased by
the induction of phenobarbital[36]. Phenobarbital instead of BNF
inducted the stereoselective difference of Clint in glucuroniodation of
ofloxacin[37]. However, the induction of DEX or BNF in this study
vested propafenone metabolism with stereoselectivity in rat hepatic
microsomes. It is thus clear that different inducers may have different
impacts on some racemate metabolism.
       The  enantiomers  of  a  racemic  drug  may  differ  in  metabolic
behavior as a consequence of stereoselective interaction with hepatic
microsomes[38-42]. The underlying mechanism of stereoselectivity
in metabolism, as many studies have shown, was enantiomeric
difference in υmax (an indice of enzymatic catalyzing ability) and/or
in Km (an index of enzyme affinity to the substrate). For example,
the stereoselective N-demethylation of chlorpheniramine was due
to enantiomeric differences in Km

[43]. Whereas there were little or
no difference in Km of the enantiomers of ofloxacin, the
stereoselectivities in glucuronidation were caused by enantiomeric
differences in υmax

[44]. The υmax of the O-demethylation of (-)-
tramadol was 1.6 times that of (+)-isomer, but the Km for both
enantiomers was same, thus resulted in its stereos elective O-
demethylat ion [45].  Recent ly ,  we have a lso proved that
stereoselectivity of propranolol cytochrome P450 metabolism in
the rat hepatic microsomes was due to the stereoselectivity of the
catalyzing function in enzyme[35].  In this in vitro  study,
stereoselectivity of propafenone occurred in Km and Clint in the
rat hepatic microsomes induced by DEX or BNF, but not in υmax.
Combining with the interesting results  of Table 2 that
stereoselectivity depends on substrate conce ntration, we suppose
that stereoselectivity at low substrate concentration was mainly
due to the enantiomeric difference of the enzyme affinity to the
substrate, and that insignificant enantiomeric difference in catalyzing
abilities resulted in the abolished stereoselectivity at high subs
trate  concentration.   Fujita  et  al[46]  also  reported  that
stereoselectivity of propranolol in rat liver microsomes was
sometimes altered when the substrate concentration was varied.
Augustijns et al[38] observed that the enantiomeric ratio (R/S) of
desethylchloroquine was dependent on concentrati on, and ranged
from 8 at 1 microM to 1 at 300 microM. Mutual enantiomer-
enantiomer interacti on studies at low concentration (1-5 microM)
revealed that the formation of (R)-desethylchlor oquine was strongly
inhibited  by  (S)-chloroquine.  In  this  in  vitro  metabolism,
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enantiomer-enantiomer interaction at enzyme activity centers may
also exist at low concentration, resulting in enantiomeric difference of
the enzyme affinity to the substrate. This needs to be addressed by
additional experiments.
      Table 3 indicated that the stereoselectivity in DEX was stronger
than in BNF. It maybe explained by the difference in Km of R(-)-
propafenone between DEX and BNF group and that the affinity of R
(-)-PPF with CYP3A4 was higher than that with CYP1A, and that of
S(+)-PPF with CYP3A4 was similar with CYP1A. Table 1 showed
that CYP1A and CYP3A4 were significantly inducted by BNF and
DEX, respectively, and this agreed with the well known documents.
In BNF or DEX group, the υmax was also significantly higher than that
in the control group (about 1.5-fold), which indicated that CY P1A
and CYP3A4 contributed to the metabolism of propafenone. This
substantiated the methods used by Botsch et al[47]. In their study,
CYP1A2 and CYP3A4 were identified involved in N-desalkylation
using specific antibodies and inhibitors and stably expressed
cytochrome P450. Km in the control group was significantly lower
than that in DEX or BNF group, which indicated that other enzyme
with high affinity to substrate involved in metabolism of propafenone.
CYP2D6 which had very low value of Km might be one of such
enzymes. Due to the lower value of both K m and υmax in control group,
the Clint of propafenone enantiomer was not different from that in
DEX or BNF group.
     The competitive inhibition model (propafenone/nimodipine)
suggested that propafenone and nimodipine were both substrates of
the same coenzyme. Because nimodipine was as pecific substrate of
CYP3A4[48,49], the results of inhibition experiment also proved that
CYP3A4 contributed to propafenone metabolism. Drug interaction
of enantiomer with specific inhibitor of P450 is an important tool in
the search for detailed information on the stereoselective metabolism
of xenobiotics[1]. Because fluoxetine impeded in vivo met abolism of
R-methadone more than that of S-methadone, Eap et al[50] conclud ed
that CYP2D6-mediated methadone metabolism exhibited
stereoselectivity. The fact that the AUC ratio for the two enantiomers
of reboxetine was minimally affected by ketoconazole treatment
indicates similar affinities of the enantiomers for CYP3A4[51]. In the
present study, the phenomenon that nimodipine in hibited S(+)-
propafenone more than R(-)-isomer also implies that CYP3A4-
mediated propafenone metabolism existed stereoselectivity.
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