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Abstract

AIM: To explore the correlation of the inherent cellular
ROS level with the susceptibility of the digestive tract
tumor cells to apoptosis inducted by As2O3.

METHODS: Two gastric carcinoma cell lines, SGC7901
and MKN45, and two esophageal carcinoma cell lines,
EC/CUHK1(alternatively named EC1.71) and EC1867
with low concentration(2µµµµµmol·L-1)of As2O3 were
cultured respectly, which confirmed the difference in
apoptosis susceptibility between SGC7901 and MKN45,
and between EC/CUHK1 and EC1867. The cells were
incubated with dihydrogenrhodamine123 (DHR123),
used as a ROS capture in absence of As2O3. The
fluorescent intensity of rhodamine123, which was the
product of cellular oxidation of DHR123, was detected
by flow cytometry, and ROS was measured.

RESULTS: Apoptosis induced by a low concentration
of As2O3 was more readily to occur in SGC7901
(22.4%±2.4%) and EC/CUHK1(27.0%±2.9%) than
in MKN45(2.1%±0.5%) and EC1867(0.8%±0.5%). In
other words, SGC7901 was more sensitive than MKN45
to As2O3, meanwhile EC/CUHK1 was more sensitive
than EC1867 to As2O3. The level of inherent cellular
ROS in SGC7901(650±37) was higher than that in
MKN45(507±22)(P<0.01), and the level of inherent
cellular ROS in EC/CUHK1(462±17) was higher than
that in EC1867(187±12) (P<0.01).

CONCLUSIONS: The cellular sensitivity to apoptosis induced
by As2O3 is associated with the difference in cellular ROS
level. The inherent ROS level might determinate the
apoptotic sensitivity of tumor cells to As2O3.
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INTRODUCTION
Arsenic trioxide (As2O3) has proved to be effective in the treatment
of acute promyelocytic leukemia (APL)[1-7]. While many researchers
aimed at the effectiveness of As2O3-induced apoptosis on the
other leukemic cells and some solid tumor cells, a lot of evidence
showed that some types of tumor cells were sensitive while others

were insensitive to apoptosis-inducing effect of As2O3
[2,8-20].

Unraveling the causes of such sensitivity difference in the tumor
cells will benefit not only the clinical selection of patients,to
which As2O3 can be given, but also understanding the mechanisms
underlying the apoptosis induced by As2O3.
      Previously we investigated the sensitivity of a series of
digestive tumor cell lines to As2O3. We identified that there were
difference of sensitivity to apoptosis inductied by low
concentration (2µmol/L) of As2O3 between the gastric carcinoma
cell line SGC7901 and MKN45, and between the esophageal
carcinoma cell line EC/CUHK1(alternatively named EC1.71) and
EC1867; SGC7901 was more sensitive than MKN45, and EC/
CUHK1 was more sensitive than EC1867 to As2O3

[15-16]. We found
that As2O3 induced cell apoptosis via directly influencing
mi tochondr ion ,  consequen t ly  caus ing  dec rease  o f
transmembrane potential and increase of reactive oxygen species
(ROS) level[17]. Recently it was evidenced that ROS participate
the apoptosis induction of acute promylocytic leukemia[18,19,21,22].
But whether the difference of sensitivity of digestive tumor cells
to apoptosis-inducing effect of As2O3 is associated with the
inherent cellular ROS level is not clearly understood. In this
study, we demonstrated the difference between SGC7901 versus
MKN45, and EC/CUHK1 versus EC1867, thereby explored the
ralation between the sensitivity of cell to apoptosis induction of
As2O3 and the inherent cellular ROS level.

MATERIALS AND METHODS
Cell Lines and Culture Conditions
Gastric carcinoma cell line SGC7901 vs MKN45, and esophageal
carcinoma cell line EC/CUHK1 vs EC1867(kindly provided by
professor Shen, Shantou University) were cultured in DMEM
medium supplemented with 100kU·L-1 pennicillin,100mg·L-1

streptomycin, and 100mL·L-1 fetal bovine serum(Gibco) in a fully
humidified atomosphere with 50mL·L-1 CO2 at 37 . Cells were
split when reached to 80% confluency.

Inducing Cell Apoptosis by As2O3

About 5×105 tumor cells in logarithmic stage were treated with
2µmol·L-1 concentration of As2O3 (Sigma) for 72h and analyzed
by flow cytometry and electron microscopy for apoptosis[15-17].
As2O3 powder was dissolved in small amounts of 1.0 mol·L-1

NaOH, then diluted to 10.0 mmol·L-1 with phosphate-buffered
saline(PBS) as stock solutions.

Detection Inherent ROS Level
The cells was incubated with 1µmol·L-1dihydrorhodamine123
(DHR123,Sigma), as a ROS capture[23-25], for 1 or 24h. Blank and
positive controls were set, in which DHR123 was either omitted
or plus 50µmol·L-1 of hydrogen peroxide (H2O2). DHR123 could
be oxidized intracellularly to form the fluorescent compound
rhodamine123 (Rh123) by ROS, and be pumped into mitochondria
and remained there. After incubated with DHR123, cells were
trypsinized and harvested before an immediate detection of



fluorescence intensity of Rh123 by flow cytometry FACscan (Becton
Dickinson), and the cellular ROS level was thus measured.

RUSULTS
Cell Apoptosis Induced by As2O3

A significant apoptosis was observed in EC/CUHK1 and SGC7901
cells with 2µmol/L of As2O3 for 3 days while no remarkable apoptosis
could be seen in EC1867 and MKN45 cells with the equivalent
As2O3. The characteristic morphological changes were displayed
in the apoptotic cells, including the shrinkage of the nuclear
membrane, condensation and margination of the chromatin, and
nuclear breakage (Figure1). DNA flow cytometry showed that the
some cells with fractional DNA, as typical display of apoptosis,
appeared, (27.0±2.9)% and (22.4±2.4)% (x±s,n=5)respectively
in EC/CUHK1 and SGC7901 cells, but hardly visible in EC1867
(0.8±0.5)% and MKN45 (2.1±0.5)%. (Figure 2).

Figure 1  Apoptotic cells in EC/CUHK1  and SGC7901 with the condensa-
tion and margination of chromatin, and nuclear breakage EM×6000

Figure 2  Flow cytometry with PI staining: apoptosis proportions in EC/
CUHK1, EC1867, SGC7901 and MKN45

Inherent Cellular ROS Level
After incubation with DHR123 for 1 or 24h in absence of As2O3,
the values (x±s,n=3) of fluorescent intensity for Rh123 were 29±4.
1 and 650±37 in SGC7901 cells; 21±1.4 and 507±22 in MKN45 cells;
50±3.9 and 462±17 in EC/CUHK1; 46±6.4 and 187±12 in EC1867
cells. The fluorescent intensity in blank control was less than 3.
The values for the positive controls (DHR123 plus hydrogen
peroxide incubation for 1h) were 80±4.9 in SGC7901; 27±3.0 in
MKN45; 72±5.8 in EC/CUHK1; and 19±2.1 in EC1867. Figure 3
displayed the fluorescence histograms for four types of cells after
incubation with DHR123 for 24h. The data showed that,in absence
of As2O3, the cellular ROS level was higher in SGC7901 than in
MKN45, and higher in EC/CUHK1 than in EC1867. Such differences
were augmented in 24h incubation as shown above, where the
value in SGC7901 was as 1.3 times as in MKN45, and in EC/
CUHK1 was 2.5 times as in EC1867.

Figure 3 Flow cytometry displaying the inherent ROS level of cells
A:MKN45; B:SGC7901; C:EC1867; D:EC/CUHK1

DISCUSSION
ROS, including superoxide anion (O-

2), hydrogen peroxide(H2O2),
hydroxyl free radical (OH) and singlet oxygen (1O2), continuously
generated from mitochondrial respiratory chain, have powerfully
oxidative potential. ROS is capable of attacking lipids, nuclear
acids and proteins, resulting in certain degree of oxidative
damages[26-35]. It has been thought recently to involve in apoptosis
triggering and signaling[36-43]. Cell possesses an efficient
antioxidant defense system, mainly composed of the enzymes
such as superoxide dismutase, glutathione peroxidase, and catalase,
which can scavenge the ROS excessive to cellular metabolism,
and make ROS level relatively stable under physiological
conditions[26-35]. Though it has been noticed that ROS were
involved in As2O3-induced apoptosis[18,19,21,22], evaluation of ROS
level differences directly by a flow cytometric detection of ROS,
to our knowledge, has not been frequently reported. Instead,
H2O2, a kind of ROS, was adopted to represent the total ROS
level, usually judged from a decrease in activity of glutathione
peroxidase or catalase, or a decrease in ratio of reductive/oxidative
glutathione[18,19]. The total ROS level in the resting cells, however,
was directly measured in the present study, by flow cytometric
detection of Rh123. The comparative investigation on the
inherent ROS levels in the cells showed that there were different
apoptosis susceptibility to As2O3. In this study, inherent ROS
level signified the basal cellular level of ROS in absence of any
drug or exogenous ROS.
      Detecting ROS level by flow cytometry has been a novel
approach with characteristic of rapidness, convenience and
reproducibility. DHR123, one of common ROS captures, is
membrane permeable. It is oxidized by ROS intracellularly to become
fluorescent Rh123, and is pumped into mitochondria and remain
there, then is detectable by flow cytometry after a period of
accumulation[23-25]. 6-carboxy-2’,7’-dichlorodihydrofluorescein
diacetate (DCFH-DA) is another agent used to capture ROS. It is
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cleaved by nonspecific esterases to form DCFH, which was further
oxidized to form the fluorescent compound DCF and kept inside
cells[19,44,45]. It proved important, as we realized in this study, to
prolong the incubation time with the ROS capture in order to
visualize the nuance in ROS, since the absolute quantity of ROS
is scarce. We selected two time intervals to visualize the
accumulation of Rh123 fluorescence, finding that difference
began to display at 1 h and became much pronounced by 24 h.
These parameters definitely represented the difference of ROS
level inherently existed in the respective types of cells. A similar
result was obtained by using DCFH-DA in our study. Recently it
was evidenced that NB4 leukemia cell line, which is sensitive to
low concentration of As2O3 (1-2µmol/L), had higher H2O2 level
than the U937 leukemia cell line which is insensitive to As2O3,
and exposure of cells to low concentration of As2O3 elevated the
level of H2O2 in NB4 but not in U937[19]. Though these studies
indicated that a higher H2O2 level in NB4 might link to its higher
sensitivity to As2O3 -induced apoptosis[19], whether there existed
a difference in total ROS level between cell lines which possessed
different susceptibility to As2O3 -induced apoptosis, prior to
As2O3 treatment, has not been documented.
      Based on our previous work, we selected two pairs of digistive
tract cell lines EC/CUHK1 versus EC1867, SGC7901 versus
MKN45 in which one type of cell was susceptible and the other
type was unsusceptible to As2O3 -induced apoptsis in this study,
and measured the inherent levels of total ROS in these cells. The
data on both pairs showed that the inherent ROS level was higher
in sensitive cells. These results indicated that difference in
apoptosis susceptibility of tumor cells to low concentration of
As2O3, was associated with the difference in the inherent cellular
level of ROS, and what’s more, the inherent ROS level might be
pivotal in determination of the cellular susceptibility to As2O3

-induced apoptosis. The difference of inherent ROS level between
cells probably resulted from the differential expression of enzymes
involved in ROS generation and elimination[46-51]. An interference
to the expression of relevant enzymes or simply ROS is likely an
approach by which an improved effect and expanded usage of
arsenic trioxide can be achieved clinically.
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