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Abstract

Cell cycle progression is regulated by interactions
between cyclins and c yclin- dependent kinases (CDKs).
p21WAF1 is one of the CIP/KIP family which inhib its
CDKs activity. Increased expression of p21WAF1 may play
an important role in the growth arrest induced in
transformed cells. Although the stability of  the p21WAF1

mRNA could be altered by different signals, cell
differentiation and numerous influencing factors.
However, recent studies suggest that two known
mechanisms of epigenesis, i.e.gene inactivation by
methylation in promoter region and changes to an
inactive chromatin by histone deacetylation, seem to
be the best candidate mechanisms for inactivation of
p21WAF1. To date, almost no coding region p21WAF1

mutations have been found in tumor cells, despi te
extensive screening of hundreds of various tumors.
Hypermethylation of the p2 1WAF1 promoter region may
represent an alternative mechanism by which the
p21WAF1/CIP1 gene can be inactivated. The reduction of
cellular DNMT prote in levels also induces a
corresponding rapid increase in the cell cycle regulator
p21WAF1 protein demonstrating a regulatory link
between DNMT and p21 WAF1 which is independent of
methylation of DNA. Both histone hyperacetylation
and hypoacetylation appear to be important in the
carcinoma process, and induct ion of the p21WAF1 gene
by histone hyperacetylation may be a mechanism by
which dietary fiber prevents carcinogenesis. Here, we
review the influence of hi stone acetylation and DNA
methylation on p21WAF1 transcription, and affect ion
of pathways or factors associated such as p53, E2A,
Sp1 as well as sever al histone deacetylation inhibitors.
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INTRODUCTION
Cell cycle progression is regulated by interactions between cyclins
and CDKs[1,2]. Especially, the transition of G1 to S phase is known to
be regulate d by a family of negative cell cycle regulators, CDKIs. The
latter includes two families, the CIP/KIP family and the INK4
family[3-6]. p21WAF1 is one of the CIP/KIP family[7,8]. Increased
expression of p21WAF1 may play a crucial role in the growth arrest
induced in transformed cells[9 ].
      p21WAF1 was first cloned and characterized as an important
effector that a cted to inhibit cyclin-dependent kinase activity in p53
mediated cell cycle  arrest induced by DNA damage[10,11]. It has been

shown that this is a G C-rich region in the human p21WAF1

promoter[12]. Although the sta bility of the p21WAF1 mRNA could be
altered by different signals cell diff erentiation[13] and oxidative
stress[14] as well as numerous inf luencing factors including decorin[15],
Ras/Raf protein[16], TGF-β[17] and Tax of human T cell leukemia virus
type 1(HTLV-1)[18,19]. However, two known mechanisms of epigenetic
modification, gene inactivat ion by methylation in promoter region
and changes to an inactive chromatin by hi stone deacetylation, seem
to be the best candidate mechanisms for the inactivati on of CIP/KIP
family[20]. In this review, we focused on the methylation,  histone
acetylation and some transcription factor, co-transcription factor ass
ociated with acetylation.

DNA METHYLATION AND HISTONE ACETYLATION
The post-translational modifications include acetylation, phosphorylation,
meth ylation, ubiquitination and ADP-ribosylation[21]. In mammals,
methylati on of the 5’ position of cytosine in the CpG dinucleotide
sequence is the only n aturally occurring covalent modification of the
genome. The enzyme DNA 5-cytosi ne methyltransferase (DNMT)
catalyzes the transfer of a methyl group from S -adenosylmethionine
to the 5 position of cytosines residing in the dinucleotide  sequence
CpG[22]. DNA methylation patterns correlate inversely with gene
expression[23] and, therefore, DNA methylation has been suggested to
be an epigenetic determinant of gene expression.
      DNA methylation is believed to be an on-off switch in gene
expression, CpG isla nds present in the promoter regions have been
shown to be susceptible to hyperme thylation in many cancer cells[24].
CpG islands near promoters and 5’ re gulatory region are usually
unmethylated in normal somatic cells. In contrast, widespread
methylation of CpG islands occurs in autosomal genes and leads to
the silencing of the genes during oncogenic transformation.
      DNA in eukaryotes is packaged with histone and non-histone
proteins into chroma tin. In general, regions of chromatin that are
hyperacetylated are transcription ally active, whereas regions that are
hypoacetylated are silenced. Indeed, a glo bal increase in core histone
acetylation does not necessarily induce widespread transcription[25].
Histone acetylation results in charge neutralization and separation of
DNA from the histones allowing nucleosomal DNA to become more
accessible to transcription factors. Histone acetylation is believed to
stabiliz e local nucleosomal structure, thereby allowing transcription
factors and the ba sal trancriptional machinery access to DNA.
Hyperacetylation of histones has bee n shown to mark open chromatin
and to be required for trancriptional activation[26].
     Histone acetylation is a reversible process: histone
acetyltransferases (HATs) t ransfer the acetyl moiety from acetyl
coenzyme A to the lysine neutralizes the positive charge, and histone
deacetylases (HDACs) remove the acetyl groups re-es tablishing the
positive charge in the histones. At least six human HDAC enzymes
exist, and for higher eukaryotes, HDAC1 was first purified using an
affinity mat rix based on the deacetylase inhibitor trapoxin[27]. HDAC
inhibitor incl ude trichostatin A(TSA)[28,29], trapoxin (TPX)[30],
Butyrate[31,32], MS-27-275 (a synthetic benzamide derivative)[33] and
Apicidin[9,34]. Due to the inhibitory effects of the compounds of
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endogeno us genes that plays significant roles in G1-S progression of
the cell cycle, HD AC inhibitors have been considered to be a novel
class of cancer treatment agent [34].
      Methylation is not genomically uniform, as unmethylated CpG
are found preferenti cally in transcriptionally active chromatin. The
highest density of nonmethylated CpG islands, which usually contain
promoter or other regulatory DNA that is required for active
transcription of a gene. CpG island chromatin is enriched in
hyperacetylated histones and deficient in linker histones[35]. Recent
stu dies have suggested a strong link between histone acetylation,
chromatin remodel ing, and gene regulation[26,36,37]. The results from
many papers establi shed a link between DNA methylation, histone
acetylation and sequence-specific DNA binding activity. In general,
CpG island chromatin was found to contain highly acetylated histone
H3 and H4. Deacetylation of histone H3 and H4 by the HDACs
presumably leads to the formation of a chromatin environment that
inhibits tran scription[38]. Hypoacetylated, transcriptionally silenced
regions are of ten methylated[39], Furthermore, methylated DNA is

transcriptionally rep ressed, but only under conditions in which the
methylated template is assembled into uncleosomal structures[40],
methylation density defines the level o f histone acetylation[41]. There
are the roles of MeCP2, MBD1, MBD2, and MBD3[35], NuRD
(nucleosome-remodeling histone deacetylase)[42,43] and DMAP1[44], as
well as DNMT1[44,45] in the linkage of methylation with acetylation.

METHYLATION AND TRANSCRIPTION EXPRESSION OF

p21WAF1 GENE
Usually, one could propose the negative regulation of p21WAF1 on the
bindi ng of DNMT1 with PCNA in normal cells[46], however the loss
of p21WAF1 from PCNA complexes could cause abnormal gains of
methylation during repair of DNA damage[47]. Moreover, the p21WAF1

gene transcription level is regulated by methylation, due to that p21WAF1

promoter contains high d ensity of potentially methylatable CpG
dinucleotides clustered around the initia tion site of transcription
(Figure 1).

CpG island
-243
CGAGGGACTGGGGGAGGAGGGAAGTGCCCTCCTGCAGCACGCGAGGTTCCGGGACCGGCTGGCCTGCTGGA
ACTCGGCCAGGCTCAGCTGCTCCGCGCTGGGCAGCCAGGAGCCTGGGC CCCGGGGAGGGCGGTCCCGGG
CGGCGCGGTGGGCCGAGCGCGGGTCGCCTCCTTGAGGCGGGCCCGGGCGGGGCGGTTGTATATCAGGGCCG
CGCTGAGCTGCGCCAGCTGAGGTGTGAGCAGCT   G

                                                    -1    +1

Figure 1  There are more CpG island at the domain near by the t ranscription start site in the promoter of p21WAF1 gene.

      Dr. Nass et al[48] transfected three antisense DNMT1 (pCMV
TMH) into  human breast cancer MDA231 cell line, and found that
the reduced DNMT1 protein and up-regulation of p21WAF1 suggesting
that DNMT protein levels were inv ersely correlated with the level of
p21WAF1 in breast cancer cells.
      To date, almost no coding region p21WAF1 mutations have been
found in tumor cells, despite extensive screening of hundreds of various
tumors[49-51]. Hypermethylation of the p21WAF1 promoter region may
represent an alter native mechanism by which the p21WAF1/CIP1 gene
can be inactivated. DNMT and p21WAF1 compete for the same binding
site on PCNA, an increase in DNMT expression might promote
dissociation of p21WAF1 from PCNA, perhaps making  p21WAF1 more
susceptible to ubiquitination and proteasome degradation [52]. A
decrease in DNMT expression would then be expected to have an
opposi te effect on  p21WAF1 stability[48]. 5-Azacytidine (5-Aza-C, a
demethylating agent) mediated Sp1 expression also up-regulated
activities p21WAF1[53].
      Rat-1 is a cell line containing wild-type p53[54]. Allan and co-w
orkers found which p21WAF1 5’UTR contains a putative CpG island
which is m ethylated in Rat -1 cells that used frequently to assess
transformation and for apoptosis studies, the lack of p21WAF1 expression
appears to be the resul t of hypermethylation of the p21WAF1 promoter
region, as p21WAF1 protein expression could be induced by growth of
Rat-1 cells in the presence of 5 -aza-2-deoxycytidine(5-Aza-dC).
Furthermore, sequencing analysis of bisulfi te-treated DNA
demonstrated extensive methylation of cytosine residues in CpG d
inucleotides in a CpG-rich island in the promoter region of the p21WAF1

gene[55]. A report showed that altered DNA methylation was present
in RMS tumors and that the DNA methyltransferase expression is
increased in both embryonal and alveolar subtypes of this cancer[56,57].
They think that hypermethylation of the p21WAF1 gene at the proximal
STAT-binding site, xorrelates with decreased p21WAF1 expression. The
p21WAF1 gene is su bjected to methylation regulation at the transcription
level and is a target of aberrant methylation in RMS cells.
       However, several studies indicated that the hypermethylation of

p21WAF1 was not the main machineries of p21WAF1 expression regulation.
Although Young et al[58] reported that cells arrested and p21WAF1

expressed by DNMT inhibition in normal human fibroblasts.
Milutinovic demonstrated that i nhibition of DNMT resulted in the
rapid induction of the known tumor suppressor and cell cycle regulator
p21WAF1 by a mechanism that did not involve DNA m ethylation of
the p21WAF1 promoter, in human non-small cell lung cancer c ell line,
A549 cells[59]. The reduction of cellular DNMT protein levels also
induced a corresponding rapid increase in the cell cycle regulator
p21WAF1 protein demonstrating a regulatory link between DNMT and
p21WAF1 which was independent of methylation of DNA[60]. Shin’s
result showed that the promoter of the p21WAF1 gene was not been
methylated in gastric cancer cells. This confirmed that methylation was
not the mechanism for inactivation of p21WAF1 in gastric cancer cells[20].
In adenomatoid polyps, alth ough DNMT1 expression coincided with
the expression of other cell proliferation markers, many DNMT1-
expressing cells also expressed p21WAF1. The fidelity of DNMT1
expression was further undetermined in colorectal carcinomas, in which
a striking heterogeneity in DNMT1 expression, with some carcinoma
cells contain ing very high DNMT1 levels and others containing very
low DNMT1. These results indicate that human colorectal carcinogenesis
is accompanied by a progressive dys regulation of DNMT1 expression
and suggest that abnormalities in DNMT1 expression may contribute
to the abnormal CpG dinucleotide methylation which changes the
characteristic of human colorectal carcinoma cell DNA[61].

HYPERACETYLATION, HDAC INHIBITORS AND

OVEREXPRESSION OF p21 WAF1 GENE
Histone deacetylation is a general mechanism for inactivation of the
p21WAF1 in gastric cancer cell lines[20]. Both histone hyperacetylation
and hypoacetylation appear to be important in the carcinoma process,
and induction of the p21WAF1 gene by histone hyperacetylation may
be a mechanism by which dietary fiber prevents carcinogenesis[31].
       Regarding the correlation of histone acetylation and p21WAF1 gene
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expression, that HDAC inhibitor TSA, trapoxin, butyrate and apicidin
induce p21WAF1 transcriptional activity involved in most studies.
      TSA is originally reported to be a fungistatic antibiotic, and it
appears to be a promising tool for analyzing the many functions of
histone hyperacetylation in  cell proliferation and differentiation. TSA
can stimulate p21WAF1 express ion in HT29 cells[32].
      TPX is the microbially derived cyclotetrapeptide[62], Sambucetti
found t hat it increased the level of chromatin acetylation associated
with histone H3 in the trapoxin-responsive region of the p21WAF1

promoter, and it activated p21WAF1 transcription that led to elevated
p21WAF1 protein levels in three kinds of human tumor cells. Since the
domain of the promoter that is ne cessary for TPX- mediated activation
does not contain p53 binding sites, hence p21WAF1 expression
upregulation by TPX is independent of p53[30].
       Sodium butyrate is a short chain fatty acid produced in the human
colon by bacte rial fermentation of carbohydrates[32], causes
hyperacetylation of histo ne through the inhibition of HDAC. Three
years ago, Archer and his coworkers sho wed firstly the critical
importance of p21WAF1 in butyrate-mediated growth arrest was able to
cause growth arrest in the human colon cancer cell line HT -29[31].
Siavoshian[32] suggested that butyrate and TSA stimula ted, the p21WAF1

expression both at the mRNA and protein levels, whereas t hey induced
histone H4 hyperacetylation. Butyate sensitivity requires Sp1-3 site
in conjunction with the Sp1-5 site and Sp1-6[29]. Shin et al [20] indicated
that the overexpression of p21WAF1 gene occurred in human gastric
cancer cell lines after butyrate treatment. Butyrate increased histo ne
H4-acetylation in human melanoma cell lines A375 and S91 and up-
regulated p21WAF1 gene transcription level[63].
      Apicidin is a fungal metabolite shown to exhibit antiparasitic
activity by inhib ition of HDAC. Han et al[64] indicated that inhibition
of HDAC activ ity by apicidin was closely associated with
monorphological change and induction of p21WAF1, although The
protein levels of cyclin D1, CDK2, HDAC1 and p 53 were not affected
by the addition of apicidin for 24 hrs, whereas the induc tion of
p21WAF1 by apicidin was reversible.
      Suberoylanilide hydroxamic acid (SAHA) is a hydroxamic acid-
based hybrid polar compound, and it is an inhibitor of HDAC[65,66].
SAHA causes an accumula tion of acrtylated histones H3 and H4 in
total cellular chromatin by 2h, which  is maintained throughout 24h of
culture with increased p21WAF1 expressi on, but no change in chromatin
associated with the actin and p27 genes, and SAHA also induces up to
a 9-fold increase in p21WAF1 mRNA and protein in T24 bladder
carcinoma cells. p21WAF1 by SAHA is regulated, at least in par t, by the
degree of acetylation of the gene-associated histones and that this i
nduced increase in acetylation is gene selective[66]. These studies also
suggest that p21WAF1 is HDAC inhibitor and that the p21WAF1 promoter
is a useful model for study in hsitone acetylation regulated transcription.
     In addition,  MS-27-275 inhibits HDAC and causes
hyperacetylation of histones, as well as induces the expression of
p21WAF1 various tumor cell lines[33].
     The data above indicated that the induction of histone
hyperacetylation by HDAC inhibitor is responsible for the
antiproliferative activity through the crucial role of p21WAF1 in the
regulation of cell cycle.

PATHWAY OR FATORS ASSOCIATED TO ACETYLATION OF p21WAF1

Several genes or transcriptional regulatory proteins including  p300/
CBP associate to p21WAF1 gene regulation.

p53
The p21WAF1 expression may be dependent[11,67] or independent of  p53
regulation[68-70]. Also, the mechanisms of p21WAF1 transcription

regulation fall into two general categories: dependent or independent of
the p53 gene[31]. The p21WAF1 promoter contains five natural p53
binding sites, at positions 4001, 3764, 2311, 2276, and 1391,
respectively (GenBank accession number U24170)[19].
       p53 gene regulates the expression of p21WAF1, and HDAC1,2,and
3 are al l capable of downregulating p53 function, i.e., interactions of
p53 and HDAC2 likely result in p53 deacetylation, thereby reducing
its transcription al activity[71]. Clark and co-workers found that loss
of the G1/S che ckpoint in HIV-1-infected cells may in part be due to
Tat’s ability to bind p53 and sequester its transactivation activity, as
seen in both in vivo an d in vitro transcription assays[72].
      p21WAF1 overexpression has been seen to inhibit two critical
checkpoints i n the cell cycle, G1 and G2, through both p53-dependent
and -independent[ 74].

p300/CBP
Up to now, four families of nuclear proteins including p300/CBP and
p300/CBP-as sociated cofactors contain an intrinsic HAT activity
have been confirmed that po ssess HAT activity[74-78]. Accumulating
evidences suggest that p300 and CBP are adaptors for various DNA-
binding transcription factors[79]. Alt hough the precise mechanism by
which p300/CBP stimulates transcription remains unclear, the
discovery that p300/CBP and an associated factor P/CAF have histone
acetylase activities suggests that these cofactors may regulate
transcriptionth rough acetylation[80]. These activities have been
proposed to modify the  amino-terminal tails of the core histone
ptoteins in a manner that may allow for some as yet uncharacterized
modification of nucleosome structure.
      p300 has been found to be required for induction of p21WAF1

expression in keratinocyte differentiation[70]. Xiao and coworkers indicated
the evide nces that p300 is required for TSA-induced, Sp1-mediated
p21WAF1 transcr iption: cotransfection of p300 elevated p21WAF1 promoter
activity, and thi s elevation was dependent on TSA-responsive GC-box;
TSA-induced promoter acti vation was blocked by the introduction of
p300 dominant-negative mutant into ce lls; Sp1- or Sp3- mediated
activation was also suppressed by this p300 dominan t-negative mutant
[28]. Owen et al[81] demonstrated the prog esterone regulated transcription
of the p21WAF1 gene through Sp1 and CBP/p300. A report[82] showed
that p21WAF1 stimulated trans-activatio n by p300/CBP, p21WAF1 induction
of p300 results from the activity of a di screte domain in the amino-
terminal half of the protein which functioned to rep ress transcription.
they proposed a model in which p300/CBP activity might switc hed
between promoters following p21WAF1 induced cell cycle arrest.

P/CAF and GCN5
Two human homologs of GCN5 have been cloned and shown to have
HAT activity[83,84]. One homolog is human p300/CBP associated factor
(hP/CAF), which is a transcriptional co-activator with intrinsic histone
acetylase activity, which c ontributes to transcriptional activation by
modifying chromatin and transcriptio nal factors[84,95]. The second family
member is hGCN5[85,86 ].The ability of hGCN5 to acetylate nucleosomal
histones is significantly re duced relative to its activity on free histones,
where it predominantly modifies  histone H3 at lysine 14.
      The co-activator/adaptor protein GCN5 is a conserved histone
acetyltransferase,  which functions as the catalytic subunit in multiple
yeast transcriptional regu latory complexes.

E2A
E2A gene encodes two alternatively spliced products, E12 and
E47[87,88].  The p21WAF1 promoter contains eight putative E-box
consensus sequences, two of which lie between the TATA box and the
transcription starting site, E2 and E1(as Figure 2). E1 binds E47
hetero- and homodimers and E2 has mush less aff inity for E47[89], and
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it contains a conserved basic region responsible  for DNA binding and
a helix-loop-helix domain for dimerization[90].

TATA box                          E Boxes

TATATCAGGGCCG

CGCTGAGCTGCGCCAGCTGAGGTGTGAGCAGCTGCCGAAGTCAGT

                                      E2                               E1             +1

Figure 2  The nucleotide sequence of the p21WAF1 promoter  from -149
through +1. There are the E1 and E2 binding sites.

    E2A plays important roles not only in promoting cellular
differentiation but als o in suppressing cells grown[89]. E2A binds to
p21WAF1, so the ove rexpression of p21WAF1 may be due to the effects
of E2A transcriptional fa ctor[19]. Moreover, the overexpression of
E2A proteins, such as E47 has been shown to induce p21WAF1 promoter
activity independent of p53 bind ing sites[89].
      Histone H4 but not histone H3 is acetylated from the endogenous
p21WAF1 pr omoter in vivo, implying that CBP/p300, and not the
SAGA complex is critical  in complexing with E2A and upregulation
of p21WAF1 in HTLV-1 infected cells[19].
      The E3 box located 130 bp upstream from the TATA box also
contributes to the act ivation of p21WAF1 expression, but the E4 to E8
boxes have no effect on p2 1WAF1 expression[89]. E2A is shown to be
upregulated in HTLV-1 in fected T cells.

Sp1 binding
Sp family of proteins comprise ubiquitous and tissue-restricted
transcription f actors that bind GC-rich DNA sequences and other
related GT and GA motifs throu gh their zinc-finger domains[91].The
ubiquitously expressed and closely  related Sp1 and Sp3 factors have
been found to regulate the promoters of severa l genes, including cell-
cycle regulated genes, with Sp1 defined as a potent coo perative
transcriptional activator and Sp3 as weak trans-activator or a repress
or[91,92]. Sp1-binding sites appear to play a critical role in the main
tenance of the methylation-free CpG island[93].Both Sp1 and Sp3 bind
th e promoter of p21WAF1 gene[94].
      The proximal p21WAF1 promoter contains a TATA box[81] and six
Sp1 binding sites, also Sp1-1,-2,-3,-4,-5 and -6 near the TATA box[29].
p21WAF1 is Sp1 dependent promoters[95]. The region between -15 4
and transcription starting site contains Sp1-1,-2,-3,-4,-5,-6 binding si
tes[20,81]. Sp1 is a sequence-specific transcription factor that recogn
izes GGGGCGGGG and closely related sequences, often referred to
as GC boxes. To Sp1, at last there are at least three homologous,
transcription factors in the S p1 family: Sp2, Sp3 and Sp4[96]. Xiao
also reported[28] TSA-ind uced promoter activation was blocked by
the introduction of p300 dominant-negat ive mutant into cells. Their
result from gel-shift assay[29] showed tha t physical and functional
evidence which strongly indicated that both Sp1 and Sp 3 were
responsible for TSA-induced transactivation for he murine p21WAF1

promoter in NIH3T3 cells. p21WAF1 gene is one of the natural target s
of HDAC inhibitors. Sp1 is a sequence-specific transcription factor
that reco gnizes GGGGCGGGG and closely related sequences, often
being referred to as GC bo xes. To Sp1 at last there are at least three
homologous, transcription factors i n the Sp family: Sp2, Sp3 and Sp4[96].
       The GC-rich region in the six consecutive Sp1 binding sites of the
p21WAF1 promoter was digested either with methylation-sensitive
HpaII or with me thylation-insensitive MspI. The resulting DNA
was subjected to a PCR react ion. Sp1 binding sites are the common
elements that exist in the promoters of bo th genes[20]. Using transient
reporter gene assays, Pagliuca et al[94] determined that Sp1 was a
stroung activator of p21WAF1 promoter, whereas Sp3 functioned as a
weak transactivator.

Signal transducers and activators of transcription (STAT)
STAT proteins recognize and bind to the palindromic sequence
TTCNNGAA[95]. Such sequences have been identified in the p21WAF1

promoter region at nt -692,-2557 and -4232, and designated as sis-
inducible element (SIE)-1, -2 and -3, respectively[97]. All three SIEs
have been shown to bind STA T1. Chen et al indicated that
hypermethylation of p21 gene at the proximal Sis-inducible element
(SIE)-1, a STAT-responsive element located upstream of the p21WAF1

CpG 5-Aza-dC, demethylation at SIE-1 reactivated p21 WAF1

expression[98]. STAT could up-regulate activation of cyclin-dep endent
kinase inhibitor p21WAF1[98,99].
      In addition to its role in cell cycle regulation, p21WAF1 is also
believed  to inhibit DNA replication through its ability to bind
proliferating cell nucle ar antigen (PCNA), which is required for both
replicative DNA synthesis and DNA repair. However, p21WAF1 has
no inhibitory effect on the DNA repair functi on of PCNA[100,101].
Thus, p21WAF1may play a central role in preve nting the replication of
mutations incurred after exposure of cells to DNA damage.

CONCLUSIONS
Histone acetylation is the major mechanism for regulation of the p21WAF1

gene in most cell lines (shown as Figure 3). Both histone
hyperacetylation and hy poacetylation appear to be important in the
carcinoma process. The influence of methylation on p21WAF1 gene
expression is dependent on differentiation of cells and tissue. It is our
anticipation that induction of the p21WAF1 gen e by histone
hyperacetylation may become a mechanism of dietary prevention of
carcinogenesis.

Figure 3  Butyrate,TSA,TPX and Apicidin inhibits HDAC enzyme ac
tivity, and HAT from p300/CBP, P/CAF and GCN5 resulting in histone
hyperacetylat ion of H3 or H4 associated p21WAF1 gene, and induces tran-
scriptional activ ation of the p21WAF1 gene.
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