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Abstract

AIM: Toosendanin is a pre-synaptic blocker at the
neuromuscular junction and its inhibitory effect is divided
into an initial facilitative/stimulatory phase followed by a
prolonged inhibitory phase. The present study investigated
whether the subsequent inhibitory phase was due to
exhaustion of the secretory machinery as a result of extensive
stimulation during the initial facilitative phase. More
specifically, this paper examined whether toosendanin could
directly inhibit the secretory machinery in exocrine cells.

METHODS: Rat pancreatic acinar cells were isolated by
collagenase digestion. Secretion was assessed by measuring
the amount of amylase released into the extracellular medium
as a percentage of the total present in the cells before
stimulation. Cholecystokinin (CCK)-induced increases in
intracellular calcium in single cells were measured with fura-
2 microfluorometry.

RESULTS: Effects of toosendanin on CCK-induced amylase
secretion and calcium oscillations were investigated.
Toosendanin of 87-870 mM had no effect on 10 pM-100 nM
CCK-stimulated amylase secretion, nor did 8.7-870 nM
toosendanin inhibit 5 pM CCK-induced calcium oscillations.
In contrast, 10 nM CCK; receptor antagonist FK 480 completely
blocked 5 pM CCK-induced calcium oscillations.

CONCLUSION: The pre-synaptic “blocker” toosendanin is a
selective activator of the voltage-dependent calcium channels,
but does not interfere with the secretory machinery itself.

Cui ZJ, He XH. The pre-synaptic blocker toosendanin does not
inhibit secretion in exocrine cells. World J Gastroenterol 2002;
8(5):918-922

INTRODUCTION

Toosendanin isatetracyclic triterpenoid isolated from the seeds
and barks of Mdlia toosendan Saib. et Zucc and Mdlia azedarach
L. It hasbeen used as an anthemintic for many centuries, and has
also been found to have pesticidal effectd*®, and have anti-
botulismic and other effectsin wholeanimalg® 7. Work on nerve-
muscle and other preparations (neuromuscular junction)®* has
established that toosendanin isapotent, long-lasting pre-synaptic

inhibitor. The neuromuscular blocking effect of toosendaninis
divided into two phases: an early stimulatory phase that is due
to direct activation of voltage-dependent calcium channelg8 >
8, and a delayed inhibition® 4. However, it is not known
whether or not the delayed blockade of the neuromuscular
transmission is due to direct interference with the secretory
machinery involved in neurotransmitter release.

Whether toosendanin has any direct effect on the secretory
machinery can only be examined in secretory cells with no
voltage-dependent calcium channels. If indeed the delayed
blocking effect of toosendanin is due to direct inhibition of
the secretory machinery, only will an inhibitory phase be
observed in secretory cells which lack voltage-dependent
calcium channels. The pancrestic acinar cell isan ideal model
in which to address this question. The molecular mechanisms
of secretion in pancreatic acinar cells are well elucidated*24,
and these non-excitable cells have no voltage-dependent
calcium channel§%> %, Therefore, this study examined if
toosendanin has any inhibitory effect on secretion induced by
a physiological secretagogue, cholecystokinin (CCK), in
freshly isolated rat pancreatic acinar cells.

MATERIALS AND METHODS

Materials

CCK octapeptide, a-amylase and amylose azure were
purchased from Sigma (St. Louis, MO, USA), Cell-Tak was
purchased from Collaborative Biomedicals (Bedford, MA,
USA). Toosendanin was a gift from Professor He LI
(Department of Chemistry, Beijing Normal University).
Collagenase P was bought from Boehringer Mannheim
(Mannheim, Germany). Fura-2 AM was purchased from
Molecular Probes (Eugene, OR, USA). (s)-N-[1-(2-
fluorophenyl)-3,4,6,7-tetrahydro-4-oxo-pyrrol o[ 3,2,1-jK] [ 1,4]
benzodiazepin-3yl]-1H-indole-2-carboximide (FK480) was
donated by Fujisawa Pharmaceutical Co. Ltd. (Osaka, Japan).
Toosendanin and FK480 were both dissolved in DM SO as
stock solutions before dilution to final concentration.

Isolation of rat pancreatic acini

Pancreatic acini were isolated from male Sprague-Dawley rats
with body weight ranged from 170 g to 250 g according to the
method reported previously!?* 27 281,

Measurement of amylase secretion

I solated acini were aliquoted into 2 ml portions and stimulated
at 37 °C in a shaking water bath (50 cycle- min?) for 30 min.
The amylase secreted into the buffer was assayed according to
the procedures reported previously?® %2 and expressed as
percentage of thetotal present in the acini before stimulation.

Measurement of intracellular calcium [Ca®];

Ten micralitre of ImM Fura-2 AM was added tol ml of isolated
acini (final concentration 10 M) and the mixture wasincubated
in ashaking water bath at 37 °C and 50 cycle - min for 40 min.
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Fura-2-loaded acini were attached to the cover-dip of a Sykus-
Moore chamber and perfused on the stage of an Olympus
fluorescence miscroscope (1 X 70) attached to amicrofluorometric
calcium measurement system (M40, Photon Technology
International, NJ, USA). Calcium increases were expressed as
fluorescence ratios measured at 510 nm (F340/F380)(2%27: 3339,

Standard buffer used in this work was composed of (al in
mM) NaCl 118, KCI 4.7, MgCl, 1.16, CaCl, 2.5, NaH,PO,
1.16, glucose 5.6, bovine serum albumin 2 mg - mi, soybean
trypsin inhibitor 0.1 mg - ml, N-(2-hydroxyethyl) piperazine-
N’ -(2-ethanesulfonic acid) (HEPES) 10, MEM amino acid
mixture (GIBCOBRL, Grand Island, NY, USA) 2 % and
glutamine 2. The buffer was adjusted for pH to 7.4 with 4 mM
NaOH and oxygenated with O, for 30 min before use.

RESULTS

Effects of toosendanin on CCK-induced amylase secretion
CCK stimulated amylase secretion from the freshly isolated
rat pancreatic acini in a concentration-dependent manner
(Figure 1). The maximum stimulation was achieved at CCK
concentration of 100 pM, with a percentage secretion of 33+
1.6 (n=6). This bell-shaped dose response curve is consistent
with previous report’®,

In separate experiments, acini were first incubated with
toosendanin at 870 nM or 87 nM for 10 min before stimulation
with CCK for afurther 30 min in the continued presence of
toosendanin (Figure 2). When toosendanin was added at 87
nM, the maximum stimulating CCK concentration shifted from
100 pM (18.2+1.6, n=6) to 1 nM (19.7+ 1.2, n=6). With the
addition of toosendanin at 870 mM, the maximum CCK
concentration also shifted from 100 pM (18.2+1.6, n=6) to 1
nM (19.2£1.9, n=4). The slight rightward shift indicates a
mild but statistically insignificance inhibition (Student’” st test,
P>0.05). In control experiments, neither 0.01 % solvent DM SO
nor toosendanin at each concentration used had any effect on
amylase secretion (data not shown).
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Figure 1 Concentration dependence of cholecystokinin (CCK)-
stimulated amylase secretion. Note that maximum secretion
was achieved at 100 pM of CCK. n=6

Effects of toosendanin on CCK-induced [Ca?]; oscillations

CCK of 5 pM induced regular calcium oscillationsin perfused
rat pancreatic acinar cells (Figure 3), which is consistent with
previous reportg?” 2, Addition of toosendanin at 8.7 mM to
the CCK-stimulated acinar cellsfor 10-20 min had no apparent
effect on CCK-induced calcium oscillations (Figure 3A, n=4).
Even when toosendanin was increased to 87 nM, there was
gtill no obvious inhibition observed (Figure 3B, n=7). At 870
nmMl, toosendanin induced avery mild inhibition: asingle spike

appeared missing in the trace shown (Figure 3C, n=8).

For comparison, FK480, an antagonist for CCK;
receptors®*, produced immediate and complete inhibition of
5pM CCK-induced calcium oscillations (Figure 4, n=5). FK480
at 10 nM abolished 5 pM CCK-induced calcium oscillations
immediately upon addition, reducing the calcium to pre-
stimulation level (Figure 4). After washout of FK480, calcium
oxcillations did not re-appear immediately, indicating that FK480
might bind totheacinar cdlsvery tightly. It was possible, however,
to re-introduce calcium oscillations when CCK wasincreased to
100 pM. At alower FK480 concentration of 1 nM, amuch longer
timewas needed before complete abolition of 5 pM CCK-induced
Ca?* oscillations was observed (data not shown).
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Figure 3 Effect of toosendanin on 5 pM CCK-induced calcium
oscillations. CCK and TSN were added as indicated by the horizontal
bars. A. TSN 8.7 niM, n=4. B. TSN 87 ni], n=7. C. TSN 870 niv, n=8.

DISCUSSION

The present work demonstrated that toosendanin, apre-synaptic
inhibitor of the neuromuscular transmissiont” %4 had little
effect on CCK-stimulated amylase secretion. Although
treatment with toosendanin at both concentrations tested (87
mM, 870 mM) resulted in arightward shift in concentration of
CCK that was needed to induce a maximum stimulation, i.e.
from 100 pM in untreated cellsto 1 nM in treated cells (Figure
2)1%8, the toosendanin inhibition was not statistically significant
for each CCK concentration (P>0.05).

Toosendanin of 8.7- 87 mM had no effect on 5 pM CCK-
induced calcium oscillations. At a much higher concentration
of 870 nM, amild inhibition was observed because one spike
seemed missing (Figure 4). Thislack of marked inhibition of
toosendanin on CCK-induced calcium oscillationsisin sharp
contrast with the complete blockade of CCK-induced calcium
oscillations by FK480, a CCK, receptor antagonist (3840411,
Toosendanin at the neuromuscular junction had dual effects, a
fast-onset stimulation which lasts about 40 min followed by a

long-lasting inhibitionl™® 214, The fast phase has been
postul ated to be due to activation of voltage-dependent calcium
channel g8 1238, However, toosendanin had no effect on CCK-
induced calcium oscillationsin rat pancresatic acinar cells. This
indicates that toosendanin had no effect on stores-operated
calcium channels as they are the only calcium channels existing
inthefreshly isolated pancreatic acinar cell9° 2 and areimportant
for the continued presence of calcium oscillationg® 27,

In view of the above findings, the pre-synaptic blocking
effect of toosendanin should be looked at under a new light.
The delayed inhibition of heuromuscular transmission could
just be due to massive stimulation of synaptic vesicle fusion
after activation of the voltage-dependent calcium channels at
the nerve terminal, resulting in the depletion of synaptic
vesicles and delayed depression. The fact that toosendanin
administration in rat leads to adecreasein synaptic vesicleg*>+
strongly supportsthis hypothesis. Theinitial strong stimulation
of voltage-dependent calcium channels would afford the early
stimulatory effects of toosendanin, providing an antidote to
botulisms. 181,

An activator for voltage-dependent calcium channels as
toosendanin may be, a long-lasting inhibition of the
neuromuscular junction” >4 or an extended period of synaptic
vesicle depletion would require the stimulatory effect of
toosendanin to belong-lasting. Thisstimulatory effect hasindeed
been found to last 40 min in nerve-muscle preparationg™® 1241,
It is well known that voltage-dependent calcium channels
inactivate rather quickly after opening, although with different
kineticd**9. Therefore, the long-lasting effect must be due to
something other than constant opening of the calcium channels.
Itisknown that intracellular calcium signals are subsequently
encoded into activation of calcium/calmodulin-dependent
protein kinases®-%2, and short-duration calcium signals could
be transformed into long-lasting activation of calcium/
calmodulin-dependent protein kinase 1155%, therefore it would
be interesting in the future to further investigate the possible
effect of toosendanin on calcium oscillationsin excitable cells,
and on oscill ation-associated activation of cal cium/calmodulin-
dependent protein kinase I1. It would also be interesting to
identify which types of voltage-dependent calcium channels
areactivated by toosendanin since anumber of them areinvolved
in neurotransmitter release!®. In this conjunction, it is
important to note that decreased calcium influx into motor nerve
terminals has been found to recruit additional neuromuscular
junctions during the synapse elimination period®7.
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