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Abstract
AIM: To design a hammerhead ribozyme targeting human
telomerase reverse transcriptase (hTERT) and clone it’s gene
for future use in the study of tumor gene therapy.

METHODS: Using the software RNAstructure, the secondary
structure of hTERT mRNA was predicted and the cleavage
site of ribozyme was selected. A hammerhead ribozyme
targeting this site was designed and bimolecular fold between
the ribozyme and hTERT was predicted. The DNA encoding
the ribozyme was synthesized and cloned into pGEMEX-1
and the sequence of the ribozyme gene was confirmed by
DNA sequencing.

RESULTS: Triplet GUC at 1742 of hTERT mRNA was chosen
as the cleavage site of the ribozyme. The designed ribozyme
was comprised of 22nt catalytic core and 17nt flanking
sequence. Computer-aided prediction suggested that the
ribozyme and hTERT mRNA could cofold into a proper
conformation. Endonuclease restriction and DNA sequencing
confirmed the correct insertion of the ribozyme gene into
the vector pGEMEX-1.

CONCLUSION: This fundamental work of successful
designing and cloning of an anti-hTERT hammerhead
ribozyme has paved the way for further study of inhibiting
tumor cell growth by cleaving hTERT mRNA with ribozyme.
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INTRODUCTION
Telomeres form the ends of eukaryotic chromosomes
consisting of an array of tandem repeats of the hexanucleotide
5’-TTAGGG-3’. Their functions are protecting the ends of
chromosomes against exonucleases and ligase, preventing the
activation of DNA-damage checkpoints, and countering the
loss of terminal DNA segments that occur during linear DNA
is replicated[1,2]. Telomerase, a ribonucleoprotein enzyme, add

the hexanucleotides to the ends of replicating chromosomes[3].
It is believed that telomerase plays a crucial role in cellular
senescence and immortalization[3-5]. Telomerase is strongly
repressed in most human somatic cells, and telomeres shorten
progressively with each cell division[6]. Most cancer cells
express telomerase activity[3,6-9]. The restoration of telomerase
activity is considered to immortalize cells and to be an
important step in carcinogenesis. Inhibition of telomerase can
lead to telomere shorting and tumor cell death. Thus, specific
inhibition of human telomerase is suggested to be an efficient
means of tumor therapy. Nowadays, a limited number of means
can be used experimentally to inhibit the activity of human
telomerase including chemical agents [10],  antisence
oligonucleotide[11,12], peptide nucleic acid[13], and ribozyme[14-16].
Telomerase is composed of at least three subunits[17]. The RNA
subunit and the catalytic subunit are the essential components
for telomerase activity[18]. The RNA subunit of telomerase
serves as the template for addition of short sequence repeats to
the chromosome 3’ends[19]. And the catalytic subunit, telomerase
reverse transcriptase (TERT), is the most important component
in telomerase complex which is responsible of catalytic activity
of telomerase. The expression of TERT correlates with the
presence of telomerase activity[20].These studies suggest that
hTERT is a good target for cancer gene therapy.
     Ribozymes are sis- or trans-acting, sequence-specific
catalytic RNA molecules. Based on the studies about natural
ribozymes, we can design site-specific trans-acting ribozymes
to suppress the expression of genes by recognize and splice
the mRNA. Hammerhead ribozyme and hairpin ribozyme are
intensively studied because of their simple structures and dual
activity of splicing as well as blocking[21]. Ribozymes may
surpass the efficiency of the antisence oligonucleotide and are
considered a promising means of gene therapy[22,23]. In this
study, we designed a hammerhead ribozyme targeting hTERT
and cloned the gene encoding the ribozyme for future study of
this ribozyme in the treatment of malignancies.

MATERIALS AND METHODS
Materials
Plasmid vector pGEMEX-1, X-gal and IPTG were Promega
products. T4 DNA ligase, Klenow fragment and restriction
endonucleases used in this study were purchased from Sino-
America Biotechnology Co.

Design of the hammerhead ribozyme
Using the software RNAstructure 3.6 (mFOLD for windows
version), the full-length telomerase mRNA (GenBank
NM003219) was analyzed and the second structure of
telomerase mRNA was predicted. Since trans-acting
hammerhead ribozymes preferentially recognize and cleave
the GUC sequence, all the fragments containing GUC were
candidate target sequences for ribozyme binding and cleavage.
Considering the predicted local conformation near the GUC
triplets and the nucleotide sequences flanking the GUCs, triplet
GUC located at 1 742 of the hTERT mRNA was chosen as the
target site of ribozyme. According to the rules of hammerhead
ribozyme design suggested by Haseloff et al[24], the ribozyme



6 confirmed that the ribozyme gene was correctly inserted into
the vector pGEMEX-1. This recombinant was named pGEMEX-
1-RZ. The diagram of DNA sequencing is shown in Figure 5.

Figure 1  Predicted second structure of the substrate RNA sur-
rounding the selected cleavage site

Figure 2  Predicted bimolecular co-fold between the hammer-
head ribozyme and the substrate RNA

Figure 3  Diagram of the cloning of the hammerhead ribozyme

was primarily designed. Then, bimolecular fold between the
ribozyme and substrate RNA was predicted and modification
of the ribozyme sequence was made according to the prediction
to improve the binding between the ribozyme and the substrate.
The hammerhead ribozyme designed was comprised of 39
nucleotides, including 22nt catalytic core and 17nt (5’7nt and
3’10nt) flanking antisence sequence. The sequence is 5’-
TCTCCGTCTGATGAGTCCGTGAGGACGAAACATAAAAGA-
3’ (The underlined are nucleotides complementary to the
substrate).

Synthesis of the ribozyme gene
DNA synthesis was carried out by Shanghai Sangon
Biotechnology Co. LTD. with 3 900 DNA autosynthesis
instrument. The primers used for the ribozyme were as follows:
5 ’ - C C C A A G C T T C T C C G T C T G A T G A G T C -
C G T G A G G A C G A A A C - 3 ’ ( s t r a n d  A )  a n d  5 ’ -
GGAATTCATCGATAGATCTTTTATGTTTCGTCCTCA-
3’ (strand B). Twelve nucleotides from the 3’ends of the two
strands were complementary to each other. A HindIII restriction
site was introduced into the 5’ end of strand A. And restriction
sites of BglII, ClaIand EcoRIwere introduced into the 5’ end of
strand B. Equal molecule of the two strands were mixed and
annealed to form a hemiduplex. The hemiduplex was extended
with Klenow fragment to form full duplexes. The reaction mixture
contained 50 mM Tris-HCl (pH 7.2),10 mM MgSO4, 0.1 mM
DTT, 0.4 mM dNTP mixture, 4 µg each of the two single strand
oligonucleotides, 20 U Klenow fragment in a final volume of 50
µl. The reaction was carried out at 37  for an hour. The reaction
mixture was extracted with phenol-chloroform and precipitated
with sodium acetate ethanol (The methods referred to Sambrook
et al[25]).

Cloning of ribozyme gene
The double strand DNA was digested with HindIIIand EcoRI.
The product was electrophoresed in 2 % agrose for purification
followed by electroelution in a dialysis bag for DNA recovery.
The recovered fragment was inserted into the HindIII/EcoRI
site of plasmid vector pGEMEX-1 with T4 DNA ligase. E.coli
JM109 was transformed with the recombinant plasmid and
cultured on a solid medium containing ampicillin, X-gal and
IPTG. Six white colonies were picked and plasmid was extracted
by alkaline lysis. The plasmid was digested by HindIII, NotI,
EcoRI,BglII, respectively. Endonuclease digests of plasmid DNA
were analyzed on 1 % agarose. DNA sequencing was carried out
to further confirm the inserted sequence of ribozyme gene (The
methods referred to Sambrook  et al[25]).

RESULTS

Selection of cleavage site and design of the ribozyme
Aided by computer prediction of RNA secondary structure,
we selected the triplex GUC situated at 1 742 of the hTERT
mRNA as the cleavage site (Figure 1). The ribozyme could
co-fold with the substrate RNA to form a desired conformation
in computer-aided prediction (Figure 2).

Analysis of the transformants
Six white colonies were picked. All the plasmids were cleaved
into two fragments (1.0kb+3.0kb) by BglII. The plasmid from
colony number 6 was digested with HindIII,NotI and EcoRI
respectively. The plasmid DNA was linearized by HindIII or
EcoRI but not by NotI. This result suggested plasmid from
colony number 6 was a correct recombinant (Figure 3,4).

DNA sequencing
The DNA sequencing of the plasmid DNA from colony number
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Figure 4  Gel analysis of the plasmid containing the ribozyme
gene. Lane 1: 200 bp DNA ladder; lane 2: λDNA/HindIII
marker; lane 3: pGEMEX-1-RZ/BglII; lane 4: pGEMEX-1-RZ/
HindIII; lane 5: pGEMEX-1-RZ/EcoRI; lane 6: pGEMEX-1-RZ/
NotI; lane 7: pGEMEX-1-RZ

Figure 5  DNA sequencing of ribozyme gene

DISCUSSION
A hammerhead ribozyme is composed of a 22nt or 23nt
catalytic core and the flanking complementary sequences. The
catalytic core determines the cleavage activity of the ribozyme.
And the nucleotide sequence of the catalytic core is conserved.
Whereas the flanking sequences determine the recognition
specificity of the ribozyme[24]. The catalytic mechanisms of
hammerhead ribozyme and related factors have been
intensively studied[26]. Hammerhead ribozyme can cleave the
triplet sequence NUH (N is anyone of A, U, C or G, and H
could be C, U or A), but the triplet GUC is most efficiently
cleaved[27]. The length of complementary sequence also
influences the catalytic activity. Short complementary sequence
will decrease the recognition specificity of the ribozyme and
the annealing between ribozyme and substrate. In contrary,
long complementary sequence will influence the dissociation
of ribozyme from the substrate and hence the turnover of the
ribozyme. Commonly, the proper length of each of the flanking
sequence is 6-8nt[28,29] although some studies suggested that
longer antisense flanking arms have higher intracellular
cleavage efficacy[30,31]. This opinion is also supported by the
estimation that stretches of 11-15 nucleotides define unique
sequences for cellular RNA[32]. It was reported that asymmetric
ribozymes (longer helixIII, shorter helixI) have higher cleavage
activity than symmetric ribozyme[33]. In this study, we designed
a asymmetric hammerhead ribozyme which had 7nt helixIand
10nt helixIII.
    The premise of ribozyme cleavage is the base pairing
between flanking sequence of the ribozyme and the substrate
m R N A [ 3 4 ] .  T h i s  s t e p  i s  a k i n  t o  t h e  a n t i s e n s e
oligodeoxyribonucleotides used for the same purpose. And the
base pairing is determined by the secondary structure of the
target site, Triplet NUH situated in a loop, protruding or linker
of the substrate is advantageous to the annealing between

ribozyme and substrate and then the cleavage of the substrate
RNA by the ribozyme[35]. The selection of the cleavage sites is
most important in the design of ribozymes. Nowadays, two
approaches are available in the selection of the cleavage sites
of ribozymes. One approach is to use in vitro accessibility
assays. The other is to use theoretical prediction, that is,
computer-aided prediction. A number studies aimed to compare
the two approaches in their consistency have suggested that
theoretical prediction is positively correlate with the
intracellular accessibility of the target sites in mRNA[35-37]. So
we performed computer-aided analysis of the secondary
structure of the substrate RNA. mFOLD is a commonly used
software for RNA secondary structure[38], so we used mFOLD
to predict the secondary structure of hTERT mRNA previous
to designing the ribozyme. We choose 1742 GUC as the
cleavage site of ribozyme in total 57 triplet GUC in hTERT
mRNA. The reasons included: (1) 1 744 triplet RNA is located
in coding region of an essential motif of telomerase activity-T
motif, and T motif is unique to telomerase in all kinds of reverse
transcriptase[39]. (2) 1 742 triplet GUC is situated in a rather
large loop of the predicted secondary structure of telomerase
RNA where comparatively more unpaired bases are present
near the cleavage triplet. It was reported this kind of structure
was correlated with the hybridization accessibility for
hammerhead ribozymes[35]. (3) The sequence surrounding 1742
triplet GUC is rich of adenosine and uridine. It is reported that
for efficient catalytic turnover, the free energy of the ribozyme-
substrate duplex should be less than -16 kal/mol, that is, higher
ratio of A+U will be advantageous to the annealing between
ribozyme and substrate[28]. Next, we performed a computer-
aided bimolecular fold prediction between the ribozyme and
the substrate and modified the complementary sequences until
the ribozyme and the substrate can co-fold into a correct
conformation in computer-aided prediction.
     Commonly, cloning of short double-strand DNA is carried
out by synthesizing the full-length sense strand and antisense
strand, annealing and then inserting into a cloning vector. In
this study, both the sense strand and antisense strand
synthesized were partial of the ribozyme gene which were 12
nucleotides complementary to each other on the 3’ends. After
annealing to form a hemiduplex, the hemiduplex was extended
with Klenow fragment to obtain full-length double-strand
DNA. The reliability of this method is proven by the present
study. The advantages of this method including comparative
simplicity, higher precision and lower cost to synthesize shorter
single-strand DNA.
     Since the hammerhead ribozyme gene is only about 50 bps
in length, primary analysis of the recombinant relies on PAGE
conventionally. Because PAGE is comparatively complex, in
this study, we introduced BglIIand ClaIrestriction sites to the
3’end of the ribozyme gene for the convenience of restriction
analysis. As shown in figure, correct recombinants can be
linearized by ClaIas well as cleaved into two fragments(1.0kb+3.
0kb) by BglII. Also, because NotIrestriction site in pGEMEX-1
had been removed, correct recombinant could not be cleaved
by NotI. Then agarose electrophoresis can be used to analyze
the recombinants. One of the six recombinants selected by this
strategy was sequenced, and the sequence of the inserted
ribozyme gene was confirmed. The result suggests that this
strategy is applicable. The recombinant plasmid pGEMEX-1-
RZ also would be used as an in vitro transcription vector to
test the in vitro cleavage activity of the ribozyme. The recovered
2.0 kb fragment after BglII restriction would be used as the
transcription template. The transcribed product would have
two additional nucleotides on the 3’end of the ribozyme, but
these two additional nucleotides have no influence on the
secondary structure of the ribozyme predicted by computer.
     Design and cloning of a ribozymes are the essential work of

106                ISSN 1007-9327         CN 14-1219/ R         World J Gastroenterol    January 15, 2003   Volume 9   Number 1

1      2      3     4      5      6      7

GTCTGATGAGTCCGTGAGGACCAAACATAAAAGATCTATCGATGAATTCCAAGCTTCT

10                  20                  30                  40                  50           60



studies about ribozymes. In this study, we designed and cloned
the anti-hTERT ribozyme successfully. Next, we will test the in
vitro cleavage activity of the ribozyme and will investigate the
growth inhibition effect of this ribozyme on colonic tumor cell
lines.
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