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Abstract
AIM: To understand the influence of Kupffer cell (KC) on
signal transduction pathways in the liver.

METHODS: To decrease selectively the number and function
of KC, Kunming mice were ip injected with a single dose of
gadolinium chloride (GdCl3, 20 mg·kg-1), the time-effect
relationship assessment was performed after 1 d, 3 d and
6 d. sALT, sGST, liver glycogen content, phagocytic index,
and expression of CD68 were assessed as the indexes of
hepatotoxicity and functions of KC respectively, and
morphology of KC was observed with transmission electron
microscopy. Furthermore, cAMP, PGE2 level, nitric oxide(NO)
content, and mRNA expression of NFkappaBp65, Erk1, STAT1
were examined.

RESULTS: GdCl3 could selectively cause apoptosis of KC
and obvious reduction of KC’s activity, but no hepatotoxicity
was observed. One day after KC blockade, NO, PGE2, cAMP
contents in the liver were reduced 21.0 %, 6.94-fold, 8.3 %,
respectively, and mRNA expression of NFkappaBp65 was
decreased 3.0-fold. The change tendency of NO, PGE2,
and cAMP contents and mRNA expression of NFkappaBp65
were concomitant with recovery of the functions of KC.
The contents of NO, PEG2, cAMP were increased when
the functions of KC was recovered. However, all of the
changes could not return to the normal level except NO
content after 6 d Gdcl3 treatment. No obvious changes
were found in STAT1 and Erk1 mRNA expression in the
present study.

CONCLUSION: Hepatic NO, PGE2, cAMP level and mRNA
expression of NFkappaBp65 are closely related with the
status of KC. It suggests that KC may play an important role
in the cell to cell signal transduction in the liver.
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INTRODUCTION
Kupffer cells (KCs) account for a major portion of the tissue
macrophages and play an important role in the defense
mechanisms of the body[1]. KCs are involved in the pathogenesis
of chemically mediated liver injury through release of
biologically active mediators that promote the pathogenic
process[2]. KCs can synthesize and release a variety of immuno-
modulating and inflammatory mediators such as oxygen-
derived free radicals, nitric oxide, lipid mediators, and
cytokines, etc. There are certain points to be elucidated that KCs
involve in the pathophysiologic response of liver injury[3]. And
now, many new functions have been found. KCs can reverse
liver fibrosis and are critical for the progression of alcoholic
injury[3,4]. Abolishment of KCs sensitization could prevent
alcoholic liver injury[5]. KCs are major contributors to cytokine
production in hepatic ischemia/reperfusion[6] and play a
stimulatory role in liver regeneration[7]. Up to now, few studies
about the influence of KCs on signal transduction in the liver
have been reported. NO, PGE2, cAMP are important second
messengers transmitting and magnifying messages to modulate
gene expression. NFkappaB, STAT, Erk are important nuclear
transcription factors, which are involved in the regulation of
cell proliferation and differentiation[8,9]. To understand the
effect of KCs on the second messengers and nuclear
transcription factors is of great importance in studying the
mechanism of liver diseases. Gdcl3, as an inhibitor of KCs, is
often used as a tool for studying the role of KC[10]. Kupffer cell
toxicant GdCl3 prevents stellate cell activation and the
development of fibrosis[11]. The present study was designed to
clarify the effect of KC on signal transduction pathway in the
liver following GdCl3-induced KC blockade.

MATERIALS AND METHODS
Reagents
Gadolinium chloride (GdCl3), collagenase IV, Indian ink were
purchased from Sigma, USA. NO, PGE2 detection kits were
obtained from Bangding Biotechnology Co., Ltd. cAMP
detection kit was obtained from Shanghai College of Chinese
Traditional Medicine. CD68 immunohistochemical kit and
NFkappaBp65, STAT1, Erk1 in situ hybridization kit were
purchased from Wuhan Boster Biological Technology Co., Ltd.
Other reagents were all of A.R.

Animal treatment
Kunming mice (aged 4-6 wk), weighing 22±3 g were
obtained from the Experimental Animal Center of School of
Medicine, Wuhan University. The animals were fed on a
standard diet in pellets, and allowed free access to water. The
mice were randomly distributed to control group, GdCl3-1d
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group, GdCl3-3d group, GdCl3-6d group, in which the mice
received ip injection of a single dose of 20 mg·kg-1 of GdCl3,
and were sacrificed after administration of GdCl3 for 1 d, 3 d,
6 d, respectively.

Test for phagocytic function
14 % Indian ink (10 ml·kg-1) was injected into the mice tail
vein. After 1 min and 5 min, 20 µl blood was obtained from
the orbital vein of the mice and added into 2 ml of 0.1 % Na2CO3

solution. Absorbance (OD) at 600 nm was read, and the phagocytic
activity (α) of KCs was calculated as described[12].

Biochemical assay
Twenty-five percent liver homogenate was prepared, the
glycogen content was quantified by an enzymatic reaction as
previously described[13]. NO content was measured by Griess
reaction[14]. PGE2  and cAMP concentration were determined
by radioimmunoassay, and the radioactivity of the samples
was measured with a P CK RD CA-2000 liquid scintillation
spectrometer[15]. The protein content of liver homogenate was
determined by Lowry[16].

In situ hybridization and immunohistochemistry methods
The livers were briefly washed in cold 0.1 M phosphate buffer
containing 0.1 % DEPC and then fixed in cold 4 %
formaldehyde (in 0.1 M phosphate buffer, pH7.4), paraffin-
embedded sections in 5-6 µm thickness were cut and placed
onto aminopropyltriethoxysilane-coated glass slides. The
expression of CD68 was determined by in situ hybridization
with DIG detection system kit. The anti-sense sequence of the
probe was 5’-AAGCT TGGCC CAAGC CACCT TGGTT
TTAGA-3’ for Erk1 (extracellular signal-regulated kinase),
5’-CAGGT TGTCT GTGGT CTGAA GTCTA GAAGG-3’
for STAT1 (signal transducers and activators of transcription),
5’-AGTTG ATGTC CGCAA TGGAG GTCTT-3’ for NF-
kBp65 (nuclear factor kappa B p65).

Image analysis of immunohistochemistry and in situ
hybridization
Microscopic images through an interference filter (Nikon,
Tokyo, Japan) were transferred to the processor (HPIAS
image analysis system, Wuhan Tongji Medical University).
Average absorbances in defined areas of the sections were
measured,  relative optical density(OD) was used to evaluate
expression level.

Liver cells isolation and transmission electron-microscopic
study
Liver cells were isolated as described[17]. In brief, after washed
in D-Hanks, liver tissue was digested with 0.075 % collagenase
for 30 min. The resulting suspension was passed through 70 µm
gaze and then 1 g of sediment was generated after 10 min.
Hepatocytes were fixed in 2.5 % glutaraldehyde in 0.1 mol·L-1

phosphate buffer, transmission electron- microscope was used
to observe the morphology of KCs.

Statistical analysis
The data were presented as x±s, and statistical analysis was
performed with Student’s t-test.

RESULTS
Effect of GdCl3 on sALT, sGST, liver glycogen and activity
of KCs
After administration of GdCl3, no changes in sALT, sGST level
and liver glycogen content were observed. Liver expression
of CD68 (specific surface antigen of macrophage) and
phagocytic activity (α) obviously reduced 102 %, 86 %
respectively after 1 d of GdCl3 treatment, then the function of
KCs was gradually recovered. However they could not return
to the normal level after 6 d of GdCl3 treatment.

Electron microscopic study
The characteristics of apoptosis (the membrane of KCs was
integrate, chromatin in the nucleus presented uneven
distribution and was close to nuclear measure) were observed
after treatment of GdCl3 (Figure 1).

Figure 1  Influence of GdCl3 on morphology of KCs under EM.

Effect on NO, PGE2, cAMP content
After 1 d of GdCl3 treatment, NO, PGE2, cAMP contents were
reduced 21.0 %, 6.94-fold, 8.3 %, respectively, and then they
were gradually recovered. However, PGE2 and cAMP contents
could not return to the normal level after 6 d of treatment.

Table 2  Influence of GdCl3 on NO, PGE2, cAMP contents in
liver (n=8 mice, x±s)

Group           NO content              PGE2 content          cAMP content
      (pmol·mg-1·pro-1.)      (pg·mg-1·pro-1.)       (pmol·mg-1·pro-1.)

Control 2.5±0.4         6.8±1.8             0.157±0.031
GdCl3-1d 2.1±0.3a         0.9±0.2b             0.145±0.027a

GdCl3-3d 2.0±0.3a         2.5±1.3b             0.131±0.010a

GdCl3-6d 2.2±0.3         5.0±2.6a             0.133±0.010a

aP<0.05, bP<0.01 vs control.

Table 1  Influence of GdCl3 on hepatic function and activity of KCs in mice (n=8, x±s)

Group           sALT          sGST  Liver glycogen Phagocytic            Expression of
(mmol·min-1·L-1) (µmol·min-1·L-1) (µmol·mg-1·pro-1)  activity(α)      CD68 (relative O.D.)

Control          2.4±0.3        15.2±2.2          4.9±0.9     9.7±0.7 0.131±0.018

GdCl3-1d          2.6±0.9        14.9±1.9          5.4±1.4     5.2±0.4b 0.065±0.010b

GdCl3-3d          2.6±1.0        16.5±3.1          5.8±1.1     6.0±1.1a 0.084±0.015b

GdCl3-6d          2.6±1.4        15.7±2.3          5.0±0.2     6.8±1.3a 0.108±0.014b

aP<0.05, bP<0.01 vs control.



Effect on NFkappaB, STAT1 and Erk1 mRNA expression
The time course of alteration of NFkappaB, STAT1 and Erk1
mRNA expressions after administration of 20 mg·kg-1 GdCl3

showed that NFkappaB mRNA expression was decreased (3-
fold) after administration of GdCl3  for 1 d, then it was gradually
recovered, but did not return to the normal level after 6 d of
treament. No obvious influence on STAT1, Erk1 mRNA
expressions was observed (Figure 2).

Figure 2  Time course of alteration of NFkappaB, STAT1 and
Erk1 mRNA expressions after administration of 20 mg·kg-1

GdCl3 (n=6, x±s). aP<0.05, bP<0.01 vs control.

DISCUSSION
In the present study, ip injection of a single dose of GdCl3

could selectively cause  apoptosis of KCs, but did not induce
hepatotoxicity. Therefore, it can be used as a tool for studying
the role of KCs.
      KCs are the phagocytic macrophages in the liver. NO, PGE2,
and cAMP could transmit and magnify extracellular messages
to cells through a cascade system to regulate gene expression
and cell proliferation and differentiation[18]. NO, PGE2, and
cAMP had different functions in hepatoprotection and hepatic
injury. NO from KCs could induce membrane barrier
dysfunction in liver sinusoid[19]. But according to Abou-Elella
et al, the exacerbation of hepatocyte death by KCs was not
related to NO[20]. Hsu et al, sproposed that KCs be the major
source of induction of inducible NO synthase(iNOS) activity
and NO production have a beneficial role in hepatic IR injury
and the constitutive isoforms of NOS play a hepatoprotective
role in hepatic injury[21-23]. The protective function of NO
against hepatic injury might lie in that it could reduce tissue
oxygenation[24]. PGE2 derived from KCs increased cAMP,
which caused triglyceride accumulation in the liver and fatty
liver[3]. Increase of cAMP levels in KCs occurred during the
late stage of polymicrobial sepsis, and might contribute to the
depression of macrophage phagocytic function[25]. The current
study showed that NO, PGE2, and cAMP contents in the liver
were reduced following KC blockade, and recovered following
the functional recovery of KCs. It suggests that Kupffer cells
may mediate signaling of second messengers in the liver.
Moreover, in the present experiment, the hepatic function did
not change following the alterations of NO, PGE2, and cAMP
content, the reasons remain to be researched.
      It has widely been accepted that NFkappaB activation plays
an important role in the pathophysiology of inflammatory
disorders[26]. NFkappaB is an essential component of TNF
proliferative pathway and TNF-induced changes in IL-6
mRNA, STAT3, and c-myc mRNA are dependent on
NFkappaB activation[27]. NFkappaB activation may be
important in “switching off” the cytokine cascade during acute
pancreatitis[28]. The current study showed that mRNA
expression of NFkappaB in the liver was down-regulated after
KC blockade, suggesting that KCs may play an important role

in mediating liver diseases and inflammatory disorders via
changes of the signal transduction pathway in the liver.
     In this experiment, STAT1 and Erk1 mRNA expressions
were not affected by GdCl3. STAT1 played a harmful role in
Con A-mediated hepatitis, whereas STAT3 protected against
liver injury[29]. Inhibition of STAT1 activation without
reduction of STAT1 protein level might be one of the factors
that are involved in the cAMP-dependent stellate cell growth
arrest[30]. In this study, we only examined the expression of
STAT1 mRNA, the relationship between STAT1 and hepatic
injury needs to be further studied.
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