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Abstract
AIM: To study the effect of leflunomide on immunological
liver injury (ILI) in mice.

METHODS: ILI was induced by tail vein injection of 2.5 mg
Bacillus Calmette-Guerin (BCG), and 10 d later with 10 µg
lipopolysaccharide (LPS) in 0.2 mL saline (BCG+LPS). The
alanine aminotransferase (ALT), aspartate aminotransferase
(AST), nitric oxide (NO) level in plasma and molondiadehyde
(MDA), glutathione peroxidase (GSHpx) in liver homogenate
were assayed by spectroscopy. The serum content of tumor
necrosis factors-α (TNF-α) was determined by ELISA.
Interleukin-1 (IL-1), interleukin-2 (IL-2) and Concanavalin
A (ConA)-induced splenocyte proliferation response were
determined by methods of 3H-infiltrated cell proliferation.

RESULTS: Leflunomide (4, 12, 36 mg·kg-1) was found to
significantly decrease the serum transaminase (ALT, AST)
activity and MDA content in liver homogenate, and improve
reduced GSHpx level of liver homogenate. Leflunomide (4,
12, 36 mg·kg-1) significantly lowered TNF-α and NO level in
serum, and IL-1 produced by intraperitoneal macrophages
(PMΦ). Moreover, the decreased IL-2 production and ConA-
induced splenocyte proliferation response were further
inhibited.

CONCLUSION: These findings suggested that leflunomide
had significant protective action on ILI in mice.
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INTRODUCTION
Earlier studies have identified leflunomide, an isoxazole
derivative, as a unique immunomodulatory agent capable of
treating rheumatoid arthritis, allograft and xenograft rejection,
systemic lupus erythematosus, prostate carcinoma, and
neuronal-glial tumours, etc[1-12]. Our studies indicated that
leflunomide had significantly therapeutic effects on the
secondary inflammation response of adjuvant arthritis (AA)
in rats. Recent evidence suggested the anti-inflammatory and
immunoregulatory effects of leflunomide were related to its
ability to suppress IL-1 and TNF-α selectively over their

inhibitors in T lymphocyte/monocyte activation, and the
activation of nuclear factor kappa B, a potent mediator of
inflammation when stimulated by inflammatory egents[13-16].
Jankovic reported that A771726, leflunomide’s active metabolite,
also had inhibitory effect on NO production and iNOS mRNA
expression in IFN-γ+LPS-activated murine and rat primary
fibroblast[17, 18].
      As we known, the activity of cytokines such as TNF-α,
IL-1, IL-6, NO and T cell mediated immunity were closely
related to the degree of liver injury caused by virus, endotoxin,
ConA, and GalN[19-21]. Thus, inhibition of proinflammatory
cytokines and regulation of host immunity would be beneficial
to alleviating liver injury.
      Based on the immunological dysfunction in liver injury
and leflunomide’s immunomodulatory feature with high
effication and low toxicity, we assumed that leflunomide might
have therapeutic effect on ILI. To the best of our knowledge,
however, there has been no report so far concerning the effect
of leflunomide on ILI. In this study, therefore, we have clarified
the therapeutical effect of leflunomide on ILI in mice.

MATERIALS AND METHODS

Animals and reagents
Male Kunming strain mice weighing 18-22 g were purchased
from Animal Center of Anhui Medical University. Mice were
allowed to take food and tap water ad libitum. Leflunomide
was kindly donated by Cinkate Co., USA. ConA and LPS from
Escherichia coli were purchased from Sigma Co., St. Louis,
M, USA. 1, 1, 3, 1-tetraethoxypropane (TEP) and 5, 5’-dithibis-
(2-nitrobenzicacid) (DTNB) were purchased from FLUKA Co.,
Switzerland. BCG was purchased from Institute of Shanghai
Biological Products.

Preparation of ILI [22]

Each mouse was injected with 2.5 mg BCG (viable bacilli) in
0.2 mL saline via tail vein, and 10 d later with 10 µg LPS in
0.2 mL saline. At 0, 4, 8, and 12 h post-injection of LPS,
animals received either leflunomide (4, 12, and 36 mg/kg, ig)
or appropriate volume (25 mL/kg, ig) of vehicle (3 %
prednisone). The mice were anesthetized with ether, then
sacrificed by cervical dislocation 16 h after LPS injection and
trunk blood was collected into heparinised tubes (50 U/mL)
and centrifuged (1 500×g, 10 min, room temperature). Plasma
was aspirated and stored at -70  until assayed as described
below. The liver was also removed and stored at -70  until
required.

Measurement of plasma ALT, AST, NO and TNF-α
Plasma ALT, and AST were determined using commercial kits
produced by Institute of Shanghai Biological Products affiliated
to the Ministry of Health. These activities are expressed as an
international unit (U/L). Serum TNF-α and NO were measured
using commercial kits produced by Sigma Co. and Beijing
Biotinge-Tech., Co.Ltd, and their levels were expressed as
pg·mL-1 and µmol·L-1 respectively.

Measurement of MDA and GSHpx in liver homogenate
Livers were thawed, weighed and homogenized with Tris-Hcl



buffer (5 mM containing 2 mM EDTA, pH 7.4). Homogenates
were centrifuged (1 000×g, 10 min, room temperature) and
the supernatant was used immediately for the assays of MDA
and GSHpx. MDA was measured by the thiobarbituric acid
method according to standard techniques (Gavino VG., 1981).
The content of MDA was expressed as nmol per gram liver
tissue. GSHpx was measured by the DTNB method, and its
content was expressed as U per milligram protein.

Measurement of ConA induced splenocyte proliferation, IL-
1 and IL-2
ConA induced splenocyte proliferation was determined
according to the report by Yamamoto I in 1982. IL-1 and IL-
2 were measured according to the reference (Liang JS, 1989;
Ding GF, 1988).

Statistical analysis
Results were expressed by x±s. Statistical significance of
differences between groups were determined by ANOVA
followed by Student’s t test. P value of less than 0.05 was
considered statistically significance.

RESULTS

Therapeutic effects of leflunomide on ILI induced by
BCG+LPS in mice
Results are shown in Tables 1 and 2. ALT, AST, and NO in
plasma and MDA content in liver homogenate were
significantly increased after the interval injection of BCG and
LPS. Meanwhile, the GSHpx level in liver homogenate was
sharply decreased. Both leflunomide (12, 36 mg/kg) and
prednisone (3 mg/kg) could not only significantly decrease
ALT, AST, NO and MDA level, but evidently increase GSHpx
in mice with ILI.

Table 1  Effects of leflunomide on serum ALT and AST activi-
ties induced by BCG+LPS in mice (n=10, x±s)

Groups Dose (mg·kg-1)            ALT (u·L-1)  AST (u·L-1)

Normal              32.1±5.6     35.8±6.4

Model            195.4±21.8d   188.4±22.5d

Leflunomide              4            181.5±19.5d   175.2±18.1d

          12            173.8±15.8ad   166.5±15.7ad

          36            121.8±11.5bd   108.2±9.8bd

Prednisone              3              81.5±7.8bd     64.7±5.8bd

aP<0.05, bP<0.01 vs model group; dP<0.01 vs normal group.

Table 2  Effects of leflunomide on serum NO, MDA and GSHpx
contents in liver homogenates induced by BCG+LPS in mice
(n=10, x±s)

Liver homogenates
Groups Dose     Plasma

          (mg·kg-1)   NO (µM)
                 MDA                   GSHpx
          (nmol/g tissue)   (µ/mg protein)

Normal     8.8±1.0 133.2±14.5 163.9±15.9

Model   74.5±10.1d 395.9±23.6d   62.5±8.8d

Leflunomide   4   68.3±8.5d 385.7±22.2d   66.3±9.1d

12   60.7±7.1bd 363.9±19.3bd   87.1±9.9bd

36   55.3±6.2bd 301.9±17.1bd   95.1±10.7bd

Prednisone   3   44.4±5.3bd 272.0±15.7bd 108.0±12.0bd

aP<0.05, bP<0.01 vs model group; dP<0.01 vs normal group.

Effects of leflunomide on TNF-α
As shown in Table 3, when the mice were first injected with
BCG and then challenged with LPS, the level of TNF-α was
elevated significantly. Leflunomide (4, 12, and 36 mg/kg)
obviously decreased the increased TNF-α level in serum.

Table 3  Influences of leflunomide on serum TNF-α induced
by BCG+LPS in mice (n=8, x±s)

Groups Dose (mg·kg-1)     TNF-α (pg·mL-1)

Normal - Under detection limit

Model -        353.3±28.7d

Leflunomide 4        305.0±31.4ad

            12        240.0±31.1bd

            36        140.0±31.1bd

Prednisone 3          88.7±25.6bd

aP<0.05, bP<0.01 vs model group; dP<0.01 vs normal group.

Influence of leflunomide on IL-1
IL-1 excreted by PMΦ was significantly increased in the model
group. As shown in Table 4, Leflunomide (4, 12, and 36 mg/
kg) evidently inhibited PMΦ excreting too much IL-1.

Table 4  Influences of leflunomide in vivo on IL-1 and IL-2 pro-
duction and splenocyte proliferation in mice induced by
BCG+LPS. (unit:103cpm) (n=8, x±s)

Groups              Dose      IL-1     IL-2 Splenocyte
         (mg·kg-1)             proliferation

Normal 11.2±2.40 13.3±1.76 17.5±2.26

Model 34.6±3.96d   9.3±1.57d   7.9±1.19d

Leflunomide   4 29.6±3.71ad   8.2±1.44d   7.0±1.01d

12 18.9±3.28bd   7.6±1.31ad   6.4±0.95ad

36 16.6±3.08bd   6.5±1.20bd   5.2±0.87bd

Prednisone   3 15.7±2.85bd   5.0±1.12bd   4.4±0.71bd

aP<0.05, bP<0.01 vs model group; dP<0.01 vs normal group.

Effect of leflunomide on IL-2 generation and ConA induced
splenocyte proliferation
IL-2 and ConA induced splenocyte proliferation were
significantly inhibited in the model group  (Table 4). Leflunomide
(4, 12, and 36 mg/kg) further inhibited IL-2 production and ConA
induced splenocyte proliferation response.

DISCUSSION
It has been demonstrated that severe hepatitis could be induced
by injecting a small dose of bacterial LPS into BCG-pretreated
mice[22]. In this article, ILI was successfully induced by
BCG+LPS. On this basis, leflunomide (4, 12, and 36 mg/kg)
could significantly lower the increased plasma transaminase
level and MDA content in liver homogenate, meanwhile,
GSHpx level rose significantly. All these indicated that
leflunomide markedly protected ILI. Leflunomide significantly
inhibited the generation of NO, TNF-α and IL-1 excreted by
PMΦ, moreover, IL-2 production and ConA induced splenocyte
proliferation was further inhibited by leflunomide. Therefore,
the protective effects of leflunomide on ILI might be related
with its function of balancing cytokine generation and
modulating immune.
      As it is known, TNF-α is one of the important mediators
in liver injury. It has been demonstrated that liver injury
induced by endotoxin was conducted by TNF-α, and the
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activity of TNF-α was positively related with the extent of
liver necrosis[22-24]. However, TNF-α itself could not directly
result in liver injury. The damaging degree of TNF-α on liver
might be involved with infection, activity of Kupffer cell, and
endogenous serine type protease, etc[25-30]. TNF-α could act as
the first factor of liver injury, its elevation would stimulate a
number of proinflammatory mediators including NO, IL-1, IL-
6, IL-8 and SIL-2R[31-36], which further deteriorated the liver
injury intoxicated by TNF. Therefore, although the TNF lever
was low, liver was damaged significantly.
     Leflunomide, an immunomodulatory reagent, is mainly
aimed to inhibit the activity of dihydroorotate dehydrogenase
(DHODH) involved in de novo pyrimidine biosynthesis. But
at a higher concentration, it mainly inhibited protein tyrosine
kinases initiating signaling[1,13,14,37,38], and therefore could reduce
the cell response to mitogen and cytokine. In the model of ILI
induced by BCG+LPS, leflunomide could significantly lower
the increased TNF-α level in serum, which agreed with the
results of Smith’s experiment that leflunomide significantly
lowered the increased TNF level in joints from AA rats[15,16,39].
As it is known, TNF mainly come from Kupffer cell in liver.
In this article, leflunomide significantly inhibited TNF-α level
in serum of ILI. It deserved further investigation on about
whether it is related to leflunomide’s effect of regulating the
immunological dysfunction through inhibiting the growth and
differentiation of Kupffer cell and production of TNF, thus,
alleviating liver injury.
      As reported in documents, the synthesis of NO was regulated
by many immunological factors including TNF-α, IL-1, and
IFN-γ, which is composed of a complicated web system, could
act on hepatocytes, Kupffer cells and Ito in endotoxemia mice
to increase the generation of NO[31,32,35,40]. Likewise, LPS could
also induce Ito cells to express iNOS and synthesis of a large
amount of NO[41,42]. According to our investigation, the effects
of leflunomide to inhibit ILI might well be related with its
function of decreasing the degeneration of NO.
      Although IL-1 itself has no damage on liver, its elevation
could stimulate many kinds of immunological and
inflammatory cells to excrete cytokine including TNF-α, IFN-
γ, IL-6, and IL-8, which mediate the inflammatory and
immunological injury. Apart from these, IL-1,TNF-α, IFN-γ
and LPS could act on hepatocyte to enhance the expression of
iNOS mRNA in synergetic manner, and to increase the
generation of NO, thus deteriorating the liver injury.
Leflunomide significantly regulated abnormal IL-1 level
excreted by PMΦ in ILI mice in vivo, which agrees with Deage’s
investigation[43] in effect of leflunomide on AA rats.
       Suzuki found that splenectomy could modulate the excretion
of inflammatory mediators, which prevented liver injury
intoxicated by LPS after hepatectomy. In this study, we
discovered that IL-2 production and ConA induced splenocyte
proliferation were reduced in ILI induced by BCG+LPS.
However, leflunomide further inhibited the production of IL-
2 and ConA induced splenocyte proliferation response. Hoskin
et al[44] reported that leflunomide inhibited the T lymphatic
cell growth and response to IL-2 and production of IL-2.
Further studies are needed to elucidate the relationship between
the protective effect of leflunomide on ILI and its inhibitory
action on cellular immune function.
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