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Abstract
AIM: To understand the response of human REV3 gene to
gastric cancer inducing carcinogen N-methyl-N’-nitro-N-
nitrosoguanidine (MNNG) and its ro le in human
mutagenesis.

METHODS: The response of the human REV3 gene to
MNNG was measured in human 293 cells and FL cells by
RT-PCR. By using antisense technology, mutation analysis
at HPRT locus (on which lesion-targeted mutation usually
occurs) was conducted in human transgenic cell line FL-
REV3- by 8-azaguanine screening, and mutation occurred
on undamaged DNA template was detected by using a shuttle
plasmid pZ189 as the probe in human transgenic cell lines
293-REV3- and FL-REV3-. The blockage effect of REV3 was
measured by combination of reverse transcription-
polymerase chain reaction to detect the expression of
antisense REV3 RNA and Western blotting to detect the REV3
protein level.

RESULTS: The human REV3 gene was significantly
activated by MNNG treatment, as indicated by the
upregulation of REV3 gene expression at the transcriptional
level in MNNG-treated human cells, with significant increase
of REV3 expression level by 0.38 fold, 0.33 fold and 0.27
fold respectively at 6 h, 12 h and 24 h in MNNG-treated
293 cells (P<0.05); and to 0.77 fold and 0.65 fold at 12 h
and 24 h respectively in MNNG-treated FL cells (P<0.05).
In transgenic cell line (in which REV3 was blocked by
antisense REV3 RNA), high level of antisense REV3 RNA
was detected, with a decreased level of REV3 protein.
MNNG treatment significantly increased the mutation
frequencies on undamaged DNA template (untargeted
mutation), and also at HPRT locus (lesion-targeted
mutation). However, when REV3 gene was blocked by
antisense REV3 RNA, the MNNG-induced mutation
frequency on undamaged DNA templates was significantly
decreased by 3.8 fold (P<0.05) and 5.8 fold (P<0.01)
respectively both in MNNG-pretreated transgenic 293 cells
and FL cells in which REV3 was blocked by antisense RNA,
and almost recovered to their spontaneous mutation levels.

The spontaneous HPRT mutation was disappeared in REV3-
disrupted cells, and induced mutation frequency at HPRT
locus significantly decreased from 8.66×10-6 in FL cells to
0.14×10-6 in transgenic cells as well (P<0.01).

CONCLUSION: The expression of the human REV3 can
be upregulated at the transcriptional level in response to
MNNG. The human REV3 gene plays a role not only in
lesion-targeted DNA mutagenesis, but also in mutagenesis
on undamaged DNA templates that is called untargeted
mutation.
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INTRODUCTION
It has long been known that exposure to certain chemicals is
associated with the development of specific human cancers,
which is largely the outcome of interaction between
environmental agents and genetic susceptibility. Examples
include the associations between amine dyes and bladder
cancer, benzene and leukemia, aflatoxin and hepatocellular
carcinoma, and tobacco smoke and lung cancer[1-5]. Recent
studies have also revealed that tobacco smoke significantly
increases the risks for oral[6, 7], esophageal[3-5, 8], bladder[9-12],
pancreas[11], gastric[13] and colorectal cancers[14]. In addition,
men who have a history of chronic indigestion or
gastroduodenal ulcer have substantially higher mortality rates
associated with concurrent cigarette smoking[13].
      Tobacco smoke consists of many chemicals. One important
substance found in tobacco smoke is chemical carcinogen N-
methyl-N’-nitro-N-nitrosoguanidine (MNNG), a direct acting
carcinogen, that targets the cellular DNA and induces severe
genotoxic stress to the cell that can result in various DNA
damages[15]. Epidemiologic studies have suggested an etiological
role for N-nitroso compounds from dietary sources in the
development of gastric and colorectal cancer in humans[16, 17],
and animal experiments have shown that MNNG induces
gastric cancer[18-21] and colorectal cancer[22, 23]. Obviously, the
link between DNA damages and MNNG induced cancers is
closely related to mutagenesis. To ensure normal growth
control and accuracy in DNA replication, cells have developed
a variety of responses to stress, such as DNA repair, cell cycle
checkpoints, DNA damage avoidance, or in extreme cases,
apoptosis[24]. In addition, cells have also evolved a sophisticated
lesion bypass system (also called translation synthesis, or TLS)
to repair the damaged DNA, resulting in DNA damage lesion-
targeted mutation. However, mutation can also occur on
undamaged DNA template, which is designated untargeted
mutation (UTM), which has been described in SOS-induced
mutagenesis in E. coli[25]. It has been known that untargeted
and targeted mutations caused by SOS response in E. coli both
are resulted from the inhibition of DNA polymerase functions



that normally maintain fidelity and the involvement of DNA
polymerases with low fidelity, which include DNA pol IV
(dinB), pol V (UmuD’2C) and other factors[26-30]. In eukaryote,
it has been found that up to 40 % of cycl-91 revertants induced
by ultraviolet (UV) is untargeted using mating experiments with
excision deficient strains of Saccharomyces cerevisiae[31], and
that stress response induced by DNA damaging agents (8-
methoxy-psoralen or UV) leads to specific and delayed UTM in
mouse T-lymphoma cells[32]. Previous studies in our laboratory
also shown that low concentration MNNG induces UTM in
mammalian cells[33]. Currently, it has been known that specialized
DNA polymerases are responsible for DNA damage lesion-
targeted mutation in eukaryote. However, it is not clear which
factor can be activated and involved in UTM on undamaged
DNA templates.
     The human REV3 gene, encoding the catalytic subunit
REV3 of human pol ζ, has been received intensive attention
in recent years[34]. REV3 gene is thought to be the major
component of error-prone TLS pathway[34, 35], although a
number of other polymerases might also be involved in this
process[36]. It is responsible for most of spontaneous and UV-
induced mutation in yeast and humans, as well as somatic
hypermutation in humans[34, 35, 37-43, 44-47]. The expression of REV3
appears to be elevated at the transcriptional level in some tumor
cell lines[48]. However, the response of REV3 gene to gastric
cancer inducing carcinogen MNNG and its role in MNNG-
induced mutagenesis are still not clear. In order to understand
the relationship between the human REV3 gene and the etiology
of gastric cancer and colorectal cancer in humans, the response
of REV3  to MNNG and its role in MNNG-induced
mutagenesis, including both lesion-targeted and untargeted
mutation, were explored.

MATERIALS AND METHODS

Cell culture and treatment
Human 293 cells were grown in DMEM (Dulbecco’s Modified
Eagle Medium, Gibco) containing 10 % fetal bovine serum
(Gibco), 200 units/ml penicillin, 100 µg/ml streptomycin and
200 µg/ml kanamycin. Human FL cells were grown in MEM
(Minimum Essential Medium, Gibco), containing 10 %
newborn calf serum (Gibco), 200 units/ml penicillin, 100 µg/
ml streptomycin and 200 µg/ml kanamycin. Transgenic cell
line 293-REV3-[49] and FL-REV3- (unpublished data) were
established in this laboratory by transfecting 293 cells and FL
cells with pM-RS- plasmid[50] that can express anti REV3 RNA
when induced by dexamethasone (dex). 293-M and FL-M cell
line were established by transfecting 293 cells and FL cells
with the control vector pMAM neo-amp- alone. These
transgenic cell lines were grown in MEM containing 200 mg/
ml of G418 (geneticin, Gibco). For MNNG treatment, cells
were exposed to 0.2 µM of MNNG (Sigma, dimethyl sulfoxide
(DMSO) as solvent) in serum-free DMEM (for 293 cells) or
MEM (for FL cells) for 2.5 h, and then MNNG was removed
and replaced with fresh medium. DMSO treated cells were
used as control.

Response of human REV3 to MNNG
The response of the human REV3 gene to MNNG was
measured at the transcriptional level by using reverse
transcription-polymerase chain reaction (RT-PCR) with ARF1
(encoding ADP-ribosylation factor 1) as the internal control.
RNA from 2×106 293 or FL cells was extracted at different
time point using TRIzol agent (Gibco) after 0.2 µM MNNG
treatment, followed by the first-strand cDNAs synthesis with
3 µg of RNA using M-MuLV reverse transcriptase (MBI
fermentas) and random hexamer primer. After exponential

phase selection, PCR was performed with the appropriate
cycles: 5 min pre-denaturation at 95 , 30 sec denaturation at
94 , 30 sec annealing at 59 , 1 min extension at 72 , and
an additional 10 min extension at 72 . PCR primers: REV3,
5’-TGT CCA AGG CAC CAT ATC TC-3’ (sense), 5’-TGC
TAC ACG TGG TAC TAC TG-3’ (antisense); ARF1, 5’-GAA
CAT CTT CGC CAA CCT CTT C-3’ (sense), 5’-ACA GCC
AGT CCA GTC CTT CAT A-3’ (antisense). The sizes of the
expected products are 635bp for REV3 and 515bp for ARF1.
Ratios of ODREV3./ODARF1 representing REV3 transcript level
were calculated.

Identification of the antisense blocking effect on REV3
function in transgenic cells
The antisense blocking effect on REV3 function was analyzed
by detecting the expression of antisense REV3 fragment with
RT-PCR and the REV3 protein level with Western blotting.
RNA was extracted from transgenic cells, which could express
antisense REV3 fragment after 10 µM dex treatment for 3 days.
0.1 µg RNA from 1 µg RNA sample digested by 1unit DNaseI
(Gibco) was reverse transcribed using the REV3 specific sense
primer (5’-AAG GCC AGC ATA CAA GAC-3’). For the
positive control (with no dex treatment), a random hexamer
primer was used as the reverse transcription. Each cDNAs
sample was amplified with the specific primers: 5’-GCC AAG
GAA TAC AGA GGA AGT-3’ (sense), 5’-CCA GCT GAA
GAC ATC AAT ACC-3’ (antisense). The PCR cycling
parameter is as following: 5 min pre-denaturation at 94 , 30
cycles of 30 sec denaturation at 94 , 30 sec annealing at
59 , and 1 min extension at 72 . Amplifications were
completed by an additional 8 min extension at 72 . For
Western blotting, the nuclear protein were extracted from the
cell strains as described before[24]. Each nuclear extract (30
µg) was used for Western blotting, and the Ku70 protein was
used as the loading control.

Detection of mutation at HPRT locus[51]

2×105 cells of the FL, FL-M or FL-REV3- were seeded in
100 ml culture flasks, respectively. After 1 day incubation,
the media were replaced with HAT medium (Gibco) for 24 h
and HT medium (Gibco) for the next 48 h to remove the pre-
existed HPRT- cells in the population, then the cells were
induced with 10 µM dex for another 48 h. After treatment
with 0.2 µM MNNG or DMSO for 2.5 h, the medium was
removed and replaced with a fresh medium containing 10
µM dex for an additional 24 h incubation. Cells reaching
approximately 80 % confluent were subcultured three or four
times, with a consistent density at 106 cells/flask. Then 200
cells were transferred to a 9-cm plate (5 plates total) for 15
days to count the relative cloning efficiency. In the meantime,
2×105 cells were seeded in 100 ml culture flask (5 flasks total).
After 24 h, the medium was replaced with fresh one
containing 5 µg/ml 8-azaguanine (Gibco). Cells were then
maintained for 30 days, with the medium changed every 3
days. After washing with 0.9 % NaCl, the clones were fixed
with ethanol: acetic acid (3:1), stained with 1 % methyllene
blue, and the number counted. The mutation frequency was
calculated as following:
Mutation frequency=(number of mutant clones/106 cells)×
(1/relative cloning efficiency).
      Statistical analysis was performed according to the method
described by Kastenbaum and Bowman[52].

Detection of untargeted mutation on shuttle plasmid
pZ189
The detection of untargeted mutation was performed as
described (Figure 1) [33].
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Figure 1  The detection system of untargeted mutation occur-
ring on undamaged DNA template. Cells were pretreated by
MNNG, and then intact and undamaged shuttle plasmid pZ189
was transfected into cells after removing MNNG. After repli-
cation for 48 h in cells, replicated pZ189 plasmid was rescued
and then transformed to host bacterial MBM7070 to screen
pZ189 mutants.

RESULTS

Response of human mutator REV3 to MNNG
It was found that PCR with 31 cycles for 293 cells and 28
cycles for FL cells ensured the exponential amplification of
REV3 and ARF1 within the same tube (data not shown). The
expression of REV3 was upregulated at the transcriptional level
in both 293 cells and FL cells after MNNG treatment. In
MNNG-treated 293 cells, the level of REV3 expression was
significantly increased by 0.38 fold at 6 h, 0.33 fold at 12 h
and 0.27 fold at 24 h, when compared with the control (P<0.05,
Figure 2). Similarly, the transcriptional level of REV3 was also
significantly increased by 0.77 fold at 12 h and 0.65 fold at 24 h
in MNNG-treated FL cells, when compared with the control
(all P<0.05, Figure 2). The data suggest that the human mutator
REV3 gene was activated by low concentration MNNG
treatment and could be regulated at the transcriptional level.

Figure 2  The response of the human REV3 to MNNG at differ-
ent time points. The response of REV3 to MNNG was mea-
sured in human 293 cells and FL cells at the transcriptional
level by using RT-PCR. aP<0.05, compared with the control.

Identification of the antisense blocking effect on REV3
function in transgenic cells
An expected high level of 297bp antisense RNA to C-terminal
of REV3 was detected in transgenic cells by RT-PCR (Figure

3). In addition, the results of Western blotting showed that the
REV3 protein level was obviously reduced in transgenic cells
(Figure 4). Therefore, it was indicated that the function of
REV3 protein was partially blocked by antisense REV3
fragment in transgenic cells.

Figure 3  Detection of antisense REV3 RNA fragment expressed
in 293-REV3- cells using RT-PCR. A, 100bp DNA ladder; B, RT-
PCR result in Dex-treated 293-REV3- cells; C, RT-PCR result in
293-REV3- cells (Dex-free); D, a positive control.

Figure 4  Western blotting showing the loss of REV3 protein in
transgenic FL-REV3- cells. Western analysis showing the level
of expression of REV3 protein in nuclear extracts from REV3
antisense-expressing transfectant FL-REV3- and its parental
strain FL. Ku-70 was used as the loading control.

Decreased formation of MNNG induced HPRT mutants in
transgenic cells
HPRT locus is traditionally used as a genetic marker for genome
instability. Normally the spontaneous mutation frequency at
HPRT locus was quite low. In the present study, we observed
that the spontaneous mutation frequency was 2.87×10-6 in FL
cells, and 4×10-6 in FL-M cells. Interestingly, in FL-REV3-

cells, no spontaneous mutants were observed. This observation
led to the speculation that REV3 may be involved in the process
of spontaneous mutagenesis.
     Previous studies found that MNNG could induce HPRT
mutation in human cells[53]. It would be of interest to know if
MNNG had the same effect on FL and the derived FL-M and
FL-REV3- cells. As shown in Table 1, we observed that MNNG
treatment significantly elevated the mutation frequency from
2.87×10-6 to 8.66×10-6 at HPRT locus in FL cells. Similarly,
the mutation frequency was also increased in FL-M cells by
MNNG treatment from 4×10-6 to 18.75×10-6. On the other hand,
the induced mutation frequency was only 0.14×10-6 cells in
FL-REV3- cells, which was significantly lower than that of
the spontaneous mutation frequency in FL cells (Table 1).

Decreased untargeted mutation frequency on undamaged
plasmid transfected into MNNG pretreated transgenic cells
Intact and undamaged shuttle plasmid pZ189 DNA was
introduced into MNNG pretreated human cells. Progeny
plasmids were harvested 48 h after transfection, and used to
transform MBM7070. White and light blue colonies were
picked and the frequency of supF tRNA mutants was scored.
As shown in Table 2, the spontaneous mutation frequencies
were at comparable level between each cell lines. Untargeted
mutation on undamaged DNA templates was increasingly
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induced in MNNG-pretreated 293, 293-M, FL and FL-M cells,
with the mutation frequencies occurred in these cells being
4.5-5.8-fold higher than those in control groups. However, the
untargeted mutation frequencies significantly decreased by
3.8 fold (from 7.37×10-4 to 1.52×10-4, P<0.05) and 5.8 fold
(from 27.4×10-4 to 4.0×10-4, P<0.01) respectively in MNNG-
pretreated transgenic 293 cells and FL cells in which REV3
was blocked by antisense RNA, and the mutation frequencies
were almost similar to their spontaneous mutation levels.

DISCUSSION
The interconnections between environment and human health
have been increasingly recognized. With the increasing cases
of environmental cancer in the world range, especially in
developing countries, investigation on the potential biomarkers
for environmental risk assay or new targets for gene therapy is
an emergent task to prevent and control the carcinogenesis. In
China, the incidence of gastric cardia cancer has greatly
increased in the past 2-3 decades, and dietary habits might be
one of the risk factors for the cardia carcinogenesis among
Chinese population[54]. Recently, it was found that COX-2 may
contribute to progression of tumor in human gastric
adenocarcinoma[55]. However, it has become clear that the
induction of carcinogenesis is a complex multi-step process
involving a series of genetic and epigenetic changes. For
example, the induction of colon cancer requires alterations in
at least three tumor-suppressor genes (MCC, DCC, and p53)
and activation of the oncogene K-ras[56-58]. The genetic changes
mainly occur in initiation, malignant conversion and progression
stages in the development of malignant tumors[59]. DNA
damaging agents can induce lesions in DNA template, causing
the block on DNA replication fork. However, it also leads to
the activation of several TLS DNA polymerases, especially
the activation of pol ζ, to restart the replication process by
replacing the normal replication polymerases and finally result
in lesion-targeted mutation[40, 42, 60]. On the other hand, UV-
light or chemical carcinogen can induce the UTM on
undamaged DNA templates[31-33].
    It was interesting to find that human REV3 gene, which

encodes the catalytic subunit of TLS polymerase ζ, was
activated by the carcinogen MNNG that can induce gastric
and colorectal cancer. Our computational analysis indicated
that transcriptional factor binding sites for CREB, AP-1 and
NF-κB were found in the promoter region of REV3 (data not
shown). Previous studies in our laboratory have shown that
MNNG treatment activates CREB[61], AP-1 and NF-κB
(unpublished data) in mammalian cells as early epigenetic events,
which indicates that REV3 could be activated by MNNG via
the activation of specific transcriptional factors in advance.
      Mutation at HPRT locus can be used as an indicator to reflect
the degree of genome instability[62]. It has been recognized that
HPRT mutants are generated directly by DNA damage[62, 63], i.
e., the mutation spectrum belongs to lesion-targeted mutation.
In human fibroblasts, the number of UV-induced HPRT
mutants is significantly increased, whereas, the mutation is
remarkably depressed in the human cells that express high
levels of REV3 antisense RNA[47]. In this study, our data showed
that the spontaneous mutation of HPRT locus in human cells
was dependent on the function of REV3, since mutation at HPRT
locus was eliminated in cells expressing antisense REV3 (Table
1). On the other hand, REV3 gene was also involved in MNNG-
induced HPRT mutation, like in UV-induced mutation[47], as the
antisense block of REV3 function significantly decreased the
MNNG-induced mutation frequency. It is also possible that
other factors might be involved in MNNG-induced HRPT
mutagenesis, for example, the function of human REV1 gene
is required for mutagenesis at HPRT locus induced by UV
light[64].
     Interestingly, our data further indicated that human REV3
gene also played a role in mutation genesis occurred on
undamaged DNA templates. Unlike the role of REV3 in lesion-
targeted mutation, the spontaneous mutagenesis in SupF tRNA
gene in pZ189 replicated in human cells was REV3-
independent, i.e., the antisense block of REV3 has no effect on
the spontaneous mutations (Table 2). It was suggested that
most of the spontaneous mutation occurring in such an
experimental system are due to the deletion damage induced
by the shear force during transfection. Different mechanisms
are involved in repairing the base damage and deletion damage,

Table 1  Detection of the spontaneous and induced mutation frequency at HPRT locus in FL, FL-M and FL-REV3- cells

Cell line   MNNG (0.3 µM) Antisense block of REV3 No. of mutants per 106 cells selected          Mutation frequency (10-6)

FL 0    None 2.87 2.87
0.3             19.25bc 8.66

FL-M 0    None 4.00 4
0.3             18.75 bc                      18.75

FL-REV3- 0      Yes 0a 0
0.3 7a 0.14

a: mutants screened from 5×107 cells; bP<0.01 compared with spontaneous mutants in FL cell and FL-M cell; cP<0.01 compared with
FL-REV3- cells.

Table 2  Mutation frequency of supF tRNA gene in intact plasmid pZ189 after replicated in cultured human cells

DMSO       MNNG
Cell line

 Number of Number          Mutation          Number of          Number              Mutation
transformant              of mutant      frequency(10-4)         transformant         of mutant          frequency(10-4)

293        7954        1 1.26 12205   9     7.37ab

293-M      15358        2 1.30 12040   7     5.81ab

293-REV3-      39236        9 2.29 19758   3     1.52
FL      13495        7 5.2 13854 38   27.4cd

FL-M      13272        7 5.3 10310 28   27.2cd

FL-REV3-      10967        3 2.7 12609   5     4.0

a, c χ test P<0.05 and 0.01 respectively as compared with spontaneous mutation frequency; b, d χ test P<0.05 and 0.01 as compared
with induced mutation frequency in 293-REV3- and FL-REV3- cells respectively.
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in the later case no evidence was presented of REV3 dependent.
In this study, however, we proved that MNNG-induced
mutation on undamaged DNA templates was REV3-depedent
(Table 2). To date, we still do not know whether there are
other factors involved in untargeted mutation in addition to
the human REV3 gene. Taken together, these data strongly
suggest that human REV3 gene is capable of inducing
mammalian genome instability, and this mutator gene could
be a potential target for gastric and colorectal cancer prevention
and gene therapy.
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