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• LIVER CANCER •
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Abstract
AIM: To investigate whether troglitazone (TGZ), the
peroxisome proliferator-activated receptor (PPAR) gamma
ligand, can induce apoptosis and inhibit cell proliferation in
human liver cancer cell line HepG2 and to explore the
molecular mechanisms.

METHODS: [3-(4,5)-dimethylthiazol-2-yl]-2,5-diphenyl
tetrazolium bromide (MTT), [3H] Thymidine incorporation,
Hochest33258 staining, DNA ladder, enzyme-linked
immunosorbent assay (ELISA), RT-PCR, Northern and
Western blotting analyses were employed to investigate
the effect of TGZ on HepG2 cells and related molecular
mechanisms.

RESULTS: TGZ was found to inhibit the growth of HepG2
cells and to induce apoptosis. During the process, the
expression of COX-2 mRNA and protein and Bcl-2 protein
was down-regulated, while that of Bax and Bak proteins
was up-regulated, and the activity of caspase-3 was elevated.
Furthermore, the level of PGE2 was decreased transiently
after 12 h of treatment with 30 µM troglitazone.

CONCLUSION: TGZ inhibits cell proliferation and induces
apoptosis in HepG2 cells, which may be associated with the
activation of caspase-3-like proteases, down-regulation of
the expression of COX-2 mRNA and protein, Bcl-2 protein,
the elevation of PGE2 levels, and up-regulation of the
expressions of Bax and Bak proteins,
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INTRODUCTION
Peroxisome proliferator-activated receptors (PPARs) are
transcription factors belonging to the nuclear receptor gene
family. PPARs bind to specific response elements as
heterodimers with the retinoid X receptor and activate

transcription in response to a variety of endogenous and
exogenous ligands, including some polyunsaturated fatty acids,
arachidonic acid metabolites, and some anti-diabetic drugs and
non-steroidal anti-inflammatory drugs[1-6]. Recently, PPARs
subfamily has been defined as PPARα, PPARβ and PPARγ.
Three PPAR isoforms differ in their tissue distribution and
ligand specificity. PPARα is predominantly expressed in tissues
exhibiting high catabolic rate of fatty acids, whereas PPARβ
expression is ubiquitous, and its physiological role is not clear.
PPARγ is expressed predominantly in adipose tissue, the
adrenal gland, spleen, large colon and the immune system.
Several lines of evidence indicate that PPARγ plays an
important role in regulating adipocyte differentiation and
glucose homeostasis. Both PPARα and PPARγ have been
shown to be involved in anti-inflammatory reactions mediated
by arachidonic acid metabolites. PPARα binds to, and is
activated by leukotriene B4, and its level is regulated at the
transcriptional level by anti-flammatory glucocorticoids[7-15].
PPARγ is activated by prostaglandin D2 metabolite 15-deoxy-
Ä[12, 14] prostaglandin J2 (15 d-PGJ2) and synthetic anti-diabetic
thiazolidinedione drugs, resulting in down-regulation of the
expression of pro-inflammatory genes and inhibition of tumor
cell growth[16,17].
      Cyclooyxgenase (COX) is a rate-limiting enzyme, catalyzing
the initial step in biosynthesis of prostaglandins (PGs) from
arachidonic acid[18,19]. COX is encoded by two separate genes,
COX-1 and COX-2, both of which participate in formation of
a variety of eicosanoids including PGD2, PGE2, PGI2, PGF2α,
and thromboxane A. COX-1 is expressed constitutionally in
most tissues and has been proposed to be a house-keeping gene,
which is involved in cytoprotection of gastric mucosa,
vasodilation in kidney, and control of platelet aggregation. In
contrast, COX-2 is an inducible immediate-early gene that is
upregulated by various stimuli including mitogens, cytokines,
growth factors, and tumor promoters. Previous studies have
demonstrated that COX-2 expression is aberrantly increased
in (various) human epithelial cancers in colorectum, esophagus,
stomach, lung, and bladder[20-39]. These findings suggest that
up-regulation of COX-2 may be a common mechanism in
epithelial carcinogenesis. Recently, PPARγ ligands was found
to suppress COX-2 expression in fetal hepatocytes[40] and in
macrophage-like differentiated U937 cells[41]. However, other
authors reported that 15d-PGJ2 induced the expression of COX-
2 in immortalized epithelial[42] and colorectal cancer cells[43].
The mechanisms for the different regulation of COX-2
expression by PPARγ ligands remain to be elucidated. In the
present study, we wanted to investigate the effect of PPARγ
activation on cell growth and apoptosis, and to investigate
underlying mechanism in regard to the expression of COX-2
and Bcl-2 members in HepG2 cells.

MATERIALS AND METHODS
Cell culture
Human liver cancer cell line HepG2 was provided by the
American Type Culture Collection. Cells were grown in RPMI-
1640 medium supplemented with 15 % new born bovine serum,
penicillin G (100 kU·L-1) and kanamycin (0.1g/L) at 37  in



the 5 % CO2 incubator. Cells were grown on 96-well plates for
MTT assay, [3H] thymidine incorporation and DNA
fragmentation enzyme-linked immunosorbent assay (ELISA).
For the experiment, cells were grown in fresh serum-free
medium, incubated for 6 hours, and treated with experimental
reagents.

MTT cell viability assay
Cell growth was assessed by a modified MTT assay. About
2×105 cells/well were plated in 96-well microtiter plates and
incubated overnight. Cells were then treated with troglitazone
for 48 h in various concentrations. Then 10 µl stock MTT
(0.5 g/L) was added to each well, and the cells were further
incubated at 37  for 4 h. After supernatant was removed,
100 µl of 0.04 M HCl in isopropanol was added to each well to
solubilize the formazan products. The absorbance at the
wavelength of 570 nm was measured by a micro-ELISA
reader. The negative control well contained medium only.
The ratios of the absorbance of treated cells relative to those
of the control wells were calculated and expressed as percentage
of growth inhibition.

[3H] thymidine incorporation
Cells were planted in 96-well plates and grown for 24 h after
being starved by growing in the serum-free medium for 48 h.
Then, they were treated with troglitazone for 48 h and labeled
with 5 µCi of [3H] thymidine for 4 h. Radioactivity was detected
using a Beckman L5 counter, after the reaction was washed
and stopped with 5 % trichloro acetic acid and the cells
solubilized in 0.5 % of 0.25 N sodium hydroxide. Each
experiment was done in quadruplicates and repeated at least
three times.

Hoechst 33258 staining
Cells were fixed with 4 % formaldehyde in phosphate-
buffered saline (PBS) for 10 min, stained by Hoechst 33258
(10 mg/L) for 1 hour, and subjected to fluorescence
microscopy. After treatment with troglitazone, morphologic
changes, including reduction in cell size and nuclear chromatin
condensation, were observed.

DNA ladder demonstration
After induction of apoptosis, cells (7×106/sample, both attached
and detached cells) were lyzed with 150 µl hypotonic lysis
buffer (edetic acid 10 mM, 0.5 % Triton X-100, Tris-HCl, pH7.
4) for 15 min on ice and were precipitated with 2.5 %
polyethylene glycol and 1 M NaCl for 15 min at 4 . After
centrifugation at 16 000×g for 10 min at room temperature,
the supernatant was treated with proteinase K (0.3 g/L) at
37  for 1 h and precipitated with isopropanol at -20 . After
centrifugation, each pellet was dissolved in 10 µl of Tris-EDTA
(pH 7.6) and electrophoresed on a 1.5 % agarose gel containing
ethidium bromide. DNA ladder pattern was identified under
ultraviolet light.

Detection of DNA fragmentation
HepG2 cells were grown in 96-well plates. The cells were
incubated with various dose of troglitazone for 48 h. DNA
fragmentation was detected using an enzyme-linked
immunosorbent assay (ELISA) kit (Roche). This assay was based
on a quantitative sandwich enzyme-immunoassay directed
against cytoplasmic histone-associated DNA fragments. Briefly,
the cells were incubated in 200 µl of lysis buffer. After
centrifugation, 20 µl of the supernatant was reacted overnight
at 4  in streptavidin-coated wells with 80 µl of biotinylated
anti-histone antibody and peroxidase-conjugated anti-DNA
antibody. After washing, the immunocomplex-bound peroxidase

was probed with 2,2’-azino-di[3-ethylbenzthiazoline sulfonate]
for spectrophotometric detection at 405 nm.

TUENL reaction
TUNEL reaction was done using apoptosis detection system
(Cayman). Cells were fixed overnight at 4  with 4 %
paraformaldehyde in PBS. The samples were washed three
times with PBS and permeabilized by 0.2 % Triton X-100 in
PBS for 15 min on ice. After washed twice, cells were
equilibrated at room temperature for 15 to 30 min in
equilibration buffer (potassium cacodylate 200 mM,
dithiothreitol 0.2 mM, bovine serum albumin 0.25 g/L, and
cobalt chloride 2.5 mM in 25 mM Tris-HCl, pH 6.6), and then
incubated in a solution containing 5 µM pluorescein-12-dUTP,
10 µM dATP, 100 µM edetic  acid ,  and terminal
deoxynucleotidyl transferase at 37  for 1.5 h in a dark
chamber. The tailing reaction was terminated by 2×standard
saline citrate (SSC). The samples were washed three times with
PBS and analyzed by fluorescence microscopy. At least 1000
cells were counted, and the percentage of TUNEL-positive
cells was determined.

RNA isolation and northern blotting
After incubation with different doses of troglitazone for 6 h,
cells were washed with RPMI. Total RNA was extrcted from
adherent cells using Rneasy Mini kits (Sigma) as described
previously[37]. 30 mg of total RNA from each sample was
separated on agarose/formaldehyde gels and transferred to
nylon membranes. The membrane was hybridized with probes
for COX-2 and for GAPDH as a reference.

RT-PCR for COX-2
Total RNA was extracted from cells using TRIzolTM (Sigma).
COX-2 and beta-actin mRNA were detected by polymerase-
chain-reaction following reverse transcription- (RT-PCR) as
described[37]. Primers for beta-actin were: sense 5’-ATCT-
GGCACCACACCTTCTACAATGAGCTGCG-3’, antisense
5’-CGTCATACTCCTGCTTGCTGATCCACATCTGC-3’.

Western blotting analysis
The cells were lysed in a lysis buffer (hepes 25 mM, Triton X-
100 1.5 %,  sodium deoxycholate 1 %, SDS 0.1 %, NaCl 0.5
M, edetic acid 5 mM, NaF 50 mM, sodium vanadate 0.1 mM,
phenylmethylsulfonyl fluoride (PMSF) 1 mM and leupeptin
0.1 g/L, pH7.8) at 4  with sonication. The lysates were
centrifuged at 15 000 g for 15 min and the concentration of
the protein in each lysate was determined with Coomassie
brilliant blue G-250. Loading buffer (42 mM Tris-HCl,
containing 10 % glycerol, 2.3 % SDS, 5 % 2-mercaptoethanol
and 0.002 % bromophenol blue) was then added to each lysate,
which was subsequently boiled for 3 min and then
electrophoresed on a SDS-polyacrylamide gel. Proteins were
transferred onto a nitrocellulose filter and incubated separately
with the antibodies against Bcl-2, Bax, Bak, Bcl-xL and COX-
2, and then labeled with peroxidase-conjugated secondary
antibodies. The reactions were visualized using the enhanced
chemiluminescence reagent (Sigma). The results were
approved by repeating the reactions 2 times.

Evaluation of PGE2 production
To determine the levels of PGE2, HepG2 cells were treated
with different concentrations of troglitazone for 24 h. The
quantity of PGE2 in supernatants was immediately determined
with the PGE2 Enzyme Immunoassay kit (Caymen Chemical)
according to the manufacturer’s instructions. Data were
recorded using a Dynatech MR50000 microplate reader and
normalized to micrograms of protein.
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Assessment of caspase-3 activity
Caspase-3 activity was evaluated using a caspase assay kit
following instructions of the manufacturer. In brief, caspase-3
fluorogenic substrate (Ac-DEVD-AMC or Ac-IETD-AMC) was
incubated with JTE522-treated cell for 1 h at 37 , then AMC
released from Ac-DEVD-AMC or Ac-IETD-AMC was detected
using a fluorometric plate reader with an excitation wavelength
of 380nm and an emission wavelength of 420-460nm.

Statistical analysis
Data were presented as the mean ± standard error, unless
otherwise indicated. Multiple comparisons were examined for
significant differences using analysis of variance, followed by
individual comparisons with the Bonferroni post-test.
Comparisons between two groups were made with the Student
t test. P<0.05 was considered significant.

RESULTS

Effects of PPARγ activation on cell proliferation and cell
viability
HepG2 cells were incubated with various does of trogliatzone
for 48 h. MTT assay showed that trogliatzone significantly
inhibited cell viability. The inhibition was dependent on dose
of trogliatzone administered (Figure 1A). Application of
trogliatzone also resulted in a reduction of [3H] thymidine
uptake in a dose-dependent manner (Figure 1B).

Figure 1  Effect of TGZ on growth of HepG2 cells. HepG2 cells
were incubated with various concentrations of TGZ for 48 h:
(A) MTT assay; (B) [3H] thymidine uptake assay. The value
was represented as mean ±SEM (n=3). bP<0.01 versus corre-
sponding control group.

Influence of PPARγ activation on apoptosis
Effect of PPARγ activation on apoptosis was assessed by staining
with Hoechst 33258, TUNEL reaction, DNAfragmentation
demonstration on an agarose gel and by ELISA. The initiating
effect of PPARγ activation on apoptosis was confirmed in
HepG2 cell, the morphologic changes included reduction in
cell size and nuclear chromation condensation visualized by
Hoechst 33258 staining. The apoptotic index was also increased
by treatment with different concentration of troglitazone from

3.2±1.2 % to 53±2.6 %. Agarose gel electrophoresis showed
DNA ladder pattern in the exposed HepG2 cells (Figure 2).
The PPARγ pathway-induced apoptosis was further
demonstrated in quantitative measurement of cytoplasmic
histone-associated DNA fragment by ELISA. As shown in
Figure 3, troglitazone induced significant increase in DNA
fragmentation in a dose-dependent manner.

Figure 2  DNA ladder pattern formation in HepG2 cells after
treatment with TGZ. Cells were treated with TGZ for 48 h and
the formation of oligonucleosomal fragments was determined
by 1.5 % agarose gel electrophoresis: M) DNA markers; 1)
control; 2) 10 µM TGZ; 3) 30 µM TGZ.

Figure 3  DNA fragmentation by ELISA assay, as measured by
absorbance (OD 450 values). HepG2 cells cultured for 48 h in
the presence of TGZ resulted in dose dependent DNA
fragmentation. aP<0.05, bP<0.01 compared to respective control.

Down-regulation of COX-2 associated with the PPARγ
activation
The fact that the COX-2 promoter contains a PPRE indicates
that COX-2 might be one of the downstream targets of the
PPARγ pathway. In the present study, COX-2 expression was
observed in HepG2 cells treated with vehicle or 30 µM
troglitazone. After 6, 12, 24 and 48 h of the treatment, cells
were harvested. COX-2 mRNA was analysed by RT-PCR (4A)
and Northern blotting (4B), and its translation product was
demonstrated by Western blotting (4C). As shown in Figure
4, no significant change was detected during the first 6 h of
treatment when compared with the control. After treatment
with 30 µM troglitazone for 12 h, the expression of COX-2
was inhibited.

Effects of PPARγ activation on expression levels of Bcl-2,
Bcl-xL, Bax and Bak
To further elucidate the mechanisms of troglitazone-induced
apoptosis in HepG2 cells, we assessed the involvement of bcl-
2 family proteins in the process by Western blotting. Expression
of Bax protein was up-regulated 6 h after 20 µM troglitazone
treatment and remained elevated to 24 h. Expression level of
Bak protein was also elevated 12 h after the treatment with 30
µM troglitazone and declined at 48 h. On the controry, Bcl-2
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protein expression was down-regulated at 6 h and undetectable
at 24 h. No significant change was observed in the expression
of bcl-xL protein (Figure 5).

Figure 4  Effect of TGZ on the expression of COX-2 mRNA
and protein in human liver cancer cell line HepG2 cells: (A)
RT-PCR; (B) Northern blot; (C): Western blot.

Figure 5  Effects of TGZ on the levels of bcl-2, bcl-xL, bax and
bak proteins in HepG2 cells at indicated time.

Effects of PPARγ activation on PGE2 production
The levels of PGE2 in vehicle controls were always high
throughout the culture. When HepG2 cells were treated with
30 µM troglitazone, PGE2 concentration decreased transiently
at 12 h (Figure 6).

Figure 6  Effect of TGZ on the production of PGE2. The value
was represented as mean ±SEM (n=3). bP<0.01 compared to
respective control.

Change in caspase-3 activity associated with PPARγ
activation
In consideration of frequent involvement of caspaes activation
in apoptosis, caspase-3 activity was assessed in HepG2 cell,
treated with 20 µM troglitazone. As shown in Figure 7, the
caspase-3 activity increased with the treatment, the reaction
was time-dependent.

Figure 7  Effect of TGZ on the activity of caspase-3. The value
was represented as mean ± SEM (n=3).

DISCUSSION
Potent effects of PPARγ on cell proliferation and cell cycling
have been described. PPARγ ligands can trigger cell cycle arrest
in NIH3T3 cells and HIB-1B cells[44]. PPARγ ligands can also
induce terminal differentiation and withdrawal of human
liposarcoma cells from the cell cycle[45]. Importantly, PPARγ
ligands have been found to slow down the progression of
advanced liposarcoma in humans[46]. Given the expression of
PPARγ in nonadipose tissues, the effect of PPARγ on human
breast cancer, gastric cancer, prostate cancer, colon cancer and
transtitional cell, bladder cancer have been explored. Treatment
of cultured breast cancer cells with troglitazone results in cell
growth arrest and promotes differentiation[47]. Troglitazone has
also been shown to inhibit tumor growth and induce apoptosis
in human breast cancer cells in vitro and in BNX mice. Moreover,
another PPARγ ligand, GW7845, has been shown to decrease
tumor incidence, tumor growth and tumor burden I, the NMU
induced mammary carcinoma[48]. These data suggest that PPARγ
ligands may be used as novel, nontoxic and selective
chemotherapeutic agents for human breast cancers. In the present
study, our results have shown that activation of PPARγ by
troglitazone inhibits cell growth and induces apoptosis in human
liver cancer HepG2 cells. We confirmed that the induction of
apoptosis was mediated through down-regulation of COX-2 and
Bcl-2 expression, and up-regulation of Bax and Bak expression.
The down-regulation of COX-2 was coincident with down-
regulation of the production of PGE2. The activity of Caspase-3
was increased after treatment with 30 µM PPARγ ligand
troglitazone in a time-dependent manner.
     Meade et al. have demonstrated that COX-2 expression is
enhanced by peroxisome proliferators, including some fatty
acids, PGs and NSAIDs, as well as the prototypical peroxisome
proliferator WY-14, 643, in mammary and colonic epithelial
cells, presumably through PPARα[49]. Yang et al. showed that
activation of PPAR pathway by ciglitazone induced apoptosis
and inhibition of COX-2 expression in human colon cancer
cells HT-29[50], but the result was not approved in an
observation by Lefebvre et al[51]. Our data showed that PPARγ
activation inhibited the expression of COX-2. The discrepancy
may be caused by different cell types used in these groups.
    Overexpression of COX-2 plays important roles in cell
adhesion, apoptosis and angiogenesis. Numerous epidemiological
studies suggest that use of nonsteroidal anti-inflammatory drugs
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(NSAIDs) decreases the incidence of gastrointestinal cancers and
COX-2 is recognized as a major target of NSAIDs[52-64]. Inhibition
of COX-2 by NSAIDs or COX-2 specific inhibitors causes
cell death in cancer cells, indicating that COX-2 may be used
as an important molecular target for prevention and therapy
in gastrointestinal cancers[65-70]. The mechanism of COX-2
expression remains unclear. Subbaramaiah and colleagues have
shown that PPARγ can inhibit COX-2 expression.
     In the present study, the levels of PGE2 were decreased in a
time-dependent manner after the treatment with 30 µM
troglitazone, and were correlated with the change in COX-2
expression. This is in agreement with previous observations
in other cell lines[71-73]. Thus, excessively synthesized PGE2

mediated by overexpression of COX-2 is believed to play an
important role in neoplasma formation. Inhibition of COX-2
activity may at least partly explain the chemopreventative effect
of activated PPAR pathway in human liver cancer.
   Apoptosis is characterized by a series of distinct
morphological and biochemical changes. Several apoptosis-
related genes have been found. One group of apoptosis
regulatory genes is the Bcl-2 family[74-79]. Of these genes, Bcl-
2, Bcl-xL are antiapoptotic, whereas Bax, Bcl-xs, Bak, Bad and
Bik are proapoptotic. In this study, overexpression of Bax and
Bak, and suppression of the expression of Bcl-2 were found
during the apoptosis induced by PPARγ activation. These data
confirm the role of these proteins in troglitazone-induced
apoptosis in HepG2 cells. In addition, the activity of caspase-
3 was also found to be elevated during the apoptotic process
induced by PPARγ activation.
     In summary, we have shown that activation of PPARγ by
troglitazone induces apoptosis in HepG2 cells through down-
regulation of the expression of COX-2 and bcl-2, up-regulation
of bax and bak, and activation of caspase-3. Consistent with
other potential chemopreventive agents in human liver cancer
model, we believe that COX-2, bak, bax, bcl-2 and caspase-3
play some roles in the process of PPARγ activation-induced
apoptosis. These serve as potential targets for future drugs or
therapies for prevention and treatment of liver cancer.
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